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Abstract

Adverse outcome pathways have shown themselves to be useful ways of understanding and expressing knowledge about
sequences of events that lead to adverse outcomes (AOs) such as toxicity. In this paper we use the building blocks of adverse
outcome pathways—namely key events (KEs) and key event relationships—to construct networks which can be used to make
predictions of the likelihood of AOs. The networks of KEs are augmented by data from and knowledge about assays as well as
by structure activity relationship predictions linking chemical classes to the observation of KEs. These inputs are combined
within a reasoning framework to produce an information-rich display of the relevant knowledge and data and predictions of
AOs both in the abstract case and for individual chemicals. Illustrative examples are given for skin sensitization,
reprotoxicity and non-genotoxic carcinogenicity.
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Introduction
Introduction to AOPs

Adverse outcome pathways (AOPs) [1] were first developed in the
2000s to express the sequence of events leading from a molecule
interacting with a biological target [known as a molecular ini-
tiating event (MIE)] to an adverse outcome (AO). The pathways
include measurable key events (KEs) linking the MIE to the AO
in a biologically plausible sequence and describe the evidence
of the relationships between them as key event relationships
(KERs). Importantly, the events were devised in the context of the
level of organization at which the effect could be seen to occur,

ranging from molecular through cellular and organ-level events
to events affecting individuals and populations. The pathways
were initially developed in the sphere of ecotoxicology [1] but
subsequently the concept has been taken up more widely [2] and
has been used for many toxicity endpoints—perhaps most suc-
cessfully for skin sensitization [3]. The Organization for Economic
Co-operation and Development (OECD) have taken a supportive
role in reviewing and publishing diverse AOPs, now included
in an online library [4], with work plans published for many
others [5]; additionally, they have published guidelines in how
to develop AOPs including questions to be asked when assessing
the evidence for KEs and KERs [6]. Efforts have been underway

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
http://orcid.org/0000-0002-4796-5016


Ball et al. 103

for several years to standardize AOPs and their constituent parts
(KEs and KERs) most notable of which is AOP-Wiki and the related
projects in the Adverse Outcome Pathway Knowledge Base (AOP-
KB) [7–9]. Standardization is important for several reasons: con-
sistency of terminology is needed to reduce duplication; review
of suggested AOPs allows for them to be put into the context of
other, previously submitted or accepted AOPs. The development
of a confidence framework allows the increasing use of AOPs for
regulatory purposes [10].

Limitations of AOPs

From the first attempts to define and codify AOPs there have
been issues that are difficult to resolve. These include the fact
that AOPs, by their nature, are agnostic of chemicals; that is to say
that an AOP is devised such that no knowledge of the chemical
that induces the first event (the MIE) is held in the AOP. This
makes sense from a theoretical point of view but all experiments
that are devised to observe the AOP in practice need a particular
chemical to initiate the sequence; in practice, pathways are
developed with prototypical compounds (stressors) known to
give rise to the postulated sequence of events. In contrast, the
complementary concept of mode of action (MOA) [11, 12] relates
the activity of a particular chemical to the sequence of events
that follow from its interaction with biological entities. There is
much overlap in the concepts shared by AOPs and MOAs though
the latter, being compound specific, includes consideration of a
chemical’s metabolism and dose–response thus allowing them to
be more relevant to toxicological risk assessment of the chemical
under study.

AOPs are generally linear, simplified constructs; although
they may be branched, they start from a single MIE and lead to a
single AO. This is a somewhat artificial limitation as, in practice,
it is known that a KE can give rise to several others which
in turn lead to a variety of adverse events, i.e. KEs are shared
between pathways. It is therefore potentially helpful to consider
the knowledge about a KE in the context of many or all pathways
leading from a KE; this gives rise to key event networks (KENs).

The need for going beyond AOPs

The framework and concepts of AOPs have demonstrated their
utility as shown, e.g. by the contributions from many individ-
uals and organizations to AOP-Wiki [8]. However, the concepts
need augmentation if the knowledge they represent is to be
utilized more fully in the prediction and understanding of the
toxicity of individual compounds, compound classes or other
subsets of chemical space. In this paper we consider how a
scientist might make use of the combination of knowledge about
AOPs, assays related to KEs and (quantitative) structure activity
relationships ((Q)SAR) predictions to assess toxicological hazard.
We show how software can be used to support a scientist in
these assessments. We do not consider specific work flows of
these scientists but typically toxicology assessments are made
either in early discovery of chemicals and pharmaceuticals, their
development or prioritization or for submission to regulators. In
each case a different level of detail or evidence is required: in
early stages many chemicals are considered and software would
be required to support high-throughput screening whereas for
regulatory submission detailed evidence and considerations are
required. In the former case, software can be used to quickly
screen out chemicals and/or rank those that remain; providing
that the means of screening out or prioritising is trusted then it
is unlikely that detailed information on the basis of the decision

is scrutinised (though should be available). In the latter case soft-
ware can be used to help expert review. In between are scientists
with one or a few lead compounds who have to consider assay
and related data and consider how a chemical structure might
be improved to obviate potential toxicity. Clearly, in all scenarios
the most frequent use case would be ‘What does my compound
do?’ and there are many aspects to the answer to that question.
We illustrate three use cases that contribute to ‘What does my
compound do?’ where AOPs can be used to provide a reasoned
answer: the first might be asked as part of making a regulatory
submission; it, along with the second and third use cases, may
also be asked by discovery scientists considering a potential lead
candidate.

Use case 1: what do compounds like mine do?

In the context of AOPs this equates to what AOs do compounds
like mine cause? The use of AOPs allows the answer to such a
question to be more convincing by demonstrating which MIEs
and KEs are observed by compounds similar to the one of inter-
est. The observations of KEs are, of course, by proxy through assay
data where a measurement conducted as part of an assay can
be linked to a KE (or MIE). The user can then frame the assay
observations in the context of the AOP or wider network.

In the context of ‘compounds like mine’ the question of
compound similarity arises. There are many different ways of
determining chemical similarity, often a measure of similarity
will be based on chemical features or descriptors which can be
compared via a Tanimoto coefficient. However, more pertinent
similarity measures may be available—such as a biological sim-
ilarity measure—that may better represent activity relevant to
an MIE or KE. In fact, this is what makes AOPs, and associated
networks, an attractive approach for the problem. Different sim-
ilarity measures can be used which are appropriate to the KE in
question rather than using a single generic method. Fragment-
based focussed similarity may be more useful for reactive KEs
whereas pharmacophoric type descriptors would be more appro-
priate for KE involving protein active site binding.

Use case 2: given this assay result, what AOs should I
be worried about?

This question is answered by relating assay information in gen-
eral—rather than about specific compounds—to KEs and by way
of the AOP or KEN to one or more AOs. The ‘assay result’ men-
tioned in the use case may be an individual measurement taken
as part of an assay or an ‘overall call’ derived from several mea-
surements taken as part of a bioassay protocol. The measure-
ment may be one that other assays share and may be indicative
of different AOs: for instance a measurement of an increase in
organ weight may be found as part of a rodent carcinogenicity
assay. If the organ were the uterus the observation of weight
gain may be indicative of a developmental and reproductive
toxicology (DART) AO rather than hyperplasia which might lead
to carcinogenicity.

As an assay measurement may be associated with a KE some
distance from the MIE of an AOP, it is not necessary (though it
might be useful) to know about all the preceding events in the
pathway. Knowledge of preceding events is particularly impor-
tant when considering human relevance of a pathway where the
meaning of an assay result may be questioned in the context of
the pathway. Also, as the KE(s) that an assay can be linked to may
be in different AOPs, the answer to this question may well cover
several AOPs.
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Figure 1: Use cases under consideration in this paper.

Use case 3: if I have this assay result, what assay
should I run next?

Here the question is about confirmatory assays and/or assays
which are most discriminating in coming to a conclusion about
the likelihood of observing an AO. Underlying the question are
considerations about how likely is it that, for a result giving rise
to concern, it will lead to the AO. Furthermore, knowing which
pathway is likely to have led to this KE might give the user
enough information to dismiss the AO in the human context.
For practical purposes, ‘what assay should I run next?’ will be
tempered by cost and convenience of the assay and by availability
of the compound in question; the question might be rephrased
as ‘what assay should I run next (other than a long-term animal
study)?’

Answering this question requires an understanding of which
KEs are expected to follow from the one linked to the assay result
that the user has, and how previously tested compounds have
behaved. The question can be answered without specific knowl-
edge of the structure of the compound of interest—though if this
is known then the answer to the question can be augmented with
similarity measures that are used to answer Question 1.

The use cases are summarised in Fig. 1.

Approaches to reasoning: combining expert knowledge
and data

Decision making about toxicological hazard and risk involves
combining a lot of different sorts of evidence, including (Q)SAR,
in vivo, established in vitro, new and emerging in vitro (biomarkers
and omics data). Experts may spend a lot of time using their exist-
ing knowledge to combine this evidence and reach a conclusion
to generate new knowledge.

It is difficult to reason in a consistent and reproducible way
without structure to the evidence: we are ‘drowning in informa-
tion, while starving for wisdom’ [13]. This is where AOPs provide
a framework to structure reasoning between different pieces of
evidence.

Many (Q)SARs and other models for predicting toxicity give
their predictions and the user makes reasoned decisions about
how predictions from QSARs and other models are taken into
account: ICH M7 is a good example of this encoded in reg-
ulatory guidance [14]. Adding predictions and data to an AO
network allows us to put many different data and predictions
together and look specifically at diverse data and predictions

for specific KEs or AOs. Furthermore, we can use the strength of
KERs between an event of interest, its upstream and subsequent
events to relay a considered likelihood through the network.
Therefore, we can then consider diverse and independent inputs
about the likelihood of a KE occurring and reason between them.
We can use expert knowledge about the reliability and applicabil-
ity of assays, observations and predictions related to a KE to come
to an overall conclusion of the likelihood of the KE occurring.

When considering assay data, we might take into account the
reproducibility of the assay, the known variation in the measure-
ments or the source of a particular measurement and how well
we believe the assay reports for a KE occurring. Furthermore, we
might want to consider known limitations of an assay—what
might be termed an assay applicability domain or, negatively,
‘gotchas’—where some combination of the compound under
study or the assay conditions (cell line, solvent, dose etc.) mean
that the assay result is unreliable. Additionally, we might want
to consider the biological complexity of the assay system and
use this to weight the emphasis put on the result as well as
the relationship between the assay, the KE and the AO. When
considering a prediction, we would take into account the per-
formance of the prediction model, its applicability domain and
all the usual provisos when considering a statistical or expert
system prediction. In the case of both assays and predictions
we would take into account, if known, the performance in the
immediate chemical space around a particular chemical under
study.

In this paper, we illustrate how we address these issues with
illustrations from prototype software designed to address the
above use cases. The prototype helps us discuss how software
can help in resolving issues encountered in this space without
discussing them in the context of a specific, commercial piece of
software.

Materials and Methods
Data

In the prototype software, observations made as part of assays
came from several sources depending on the endpoint. All the
data are publicly available.

Skin sensitization data

Data were taken from Urbisch et al. [15] with further elaboration
from the authors and in-house curation. The curated dataset
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contains a total of 210 chemicals structures, with data from six
different skin sensitization assays. Of the 210 chemicals, 197
have in chemico data from the direct peptide reactivity assay
(DPRA); 203 have in vitro data from the KeratinoSens™ and/or
Lusens assays; and 175 have in vitro data from the h-CLAT and/or
U-SENS™ assays. The U-SENS™ results were collected from a
number of recent publications [16–18] as the prediction model for
this assay has changed since the original data were published. All
210 chemicals have in vivo data from the local lymph node assay
(LLNA), as well as an expert-derived human skin sensitization
classification.

Carcinogenicity data

Data were compiled in house from public data made available
in Lhasa Limited’s Vitic software; additional data were used
from a dataset from Kirkland et al. [19, 20] and a collection of
in vitro/in vivo chromosome aberration and micronucleus test
data derived from the FDA/CFSAN/OFAS knowledge base [21].
Compounds were selected that had data associated with one of
12 assays identified as being relevant to KEs or AOs associated
with carcinogenicity. Unreliable results and those where there
was not a clear result (Positive, Negative or Conflicted) were
excluded. A summary call for the compound was taken if there
was not a detailed experimental protocol available in Vitic.

Chemical structures were standardised using in house soft-
ware which performs the following functions:

Curation—identifies and checks for common structural prob-
lems (e.g. representation of transition metal complexes).

Validation—checks for valency violations etc.
Normalization—attempts to fix common resonance problems

and generate a single tautomer for a given compound class.
Biological data associated with the assays were curated for

consistency, in terms of metabolism (e.g. Rat S9, S9 Rat, Rattus S9,
etc.), result call (Positive, positive, active, etc.) and exposure time.
This was required due to inconsistencies between the datasets.

Where a compound has been tested in the same assay more
than once (using all the assay variables) an overall call was
generated according to the scheme:

Multiple calls (Positive, Negative and/or Conflicted) => Con-
flicted.

Positive => Positive
Negative => Negative
Conflicted => Conflicted
A compound can still have more than one result if the

assay definition was different (e.g. different exposure time or
metabolising enzyme etc.).

Developmental and reproductive toxicology data

Assay data came from the publically available data stored in the
Vitic database.

During AOP creation, data from assays were identified during
literature and database searches. The assays are reviewed and
then mapped to relevant KEs in the AOP network.

The rules for curating the bioactivity data for assay vary
depending on the type of assay and data availability. Data for
assays were reviewed and classifications are given in accordance
with the assay guidelines. Typically, this means looking for spe-
cific activity and accounting for any non-specific responses, e.g.
cytotoxicity for in vitro assays, or systemic toxicity for in vivo
assays.

For generating overall calls, expert-defined rules are estab-
lished and then applied to summarize the assay measurements.

For example, such an approach was designed to generate a set
of classifications for in vitro measurements for chemical interac-
tions with the oestrogen receptor [22].

Knowledge

Expert knowledge about KEs, KERs, assay reliability, the con-
nections between assays and KEs, the importance of different
measurements undertaken as part of the assay, links between
predictions and KEs, and expert judgements on the reliability
and human relevance of all of these were added to the prototype
software. For the covalent protein binding leading to skin sensi-
tization AOP these elements were taken from AOP Wiki. All other
AOPs and associated knowledge were compiled in-house by the
authors and details of these will be given in forthcoming publica-
tions, some of which have appeared in preliminary form [23–26].
Although the prototype tool allows for data entry and editing,
bulk data and knowledge were imported into the prototype’s
underlying relational database using SQL scripts which in turn
were generated from KNIME [27] workflows developed in-house.
The KNIME workflows consume datasets prepared from Vitic
and public data sources as well as expert-prepared documents
containing the AOP knowledge in Excel or simple text formats;
the KNIME workflows marshal the data in SQL format.

(Q)SAR predictions

Derek Nexus predictions described come from version 5.0.1 of
Derek Nexus [28] in version 2.1 of the Lhasa Knowledge Suite.
Predictions were extracted from a Setaria [29] repository which
stored the Derek Nexus output and entered into the prototype
software database using SQL scripts developed in KNIME. The
prototype database was then augmented with links between
Derek Nexus predictions—specifically the alerts fired or, in the
case of skin sensitization, the prediction of no activity—and one
or more AOs, KEs or assays; the links between alerts and AOs, KEs
and assays were hand-curated by the authors using knowledge
of how the alerts were constructed in the first place. Typically,
when a Derek Nexus alert is derived it will be based on several
different types of study, involving different assays and testing
regimes. Alerts are, therefore, typically associated with an AO.
But in some cases the alert has been derived from results from a
narrower field and so we can relate it to a KE (which Derek Nexus
then extrapolates to the AO using knowledge which may include
the basis for the AOP). In some cases, alerts have been derived
from extensive in chemico or in vitro assays which allows us to
relate the alert to that assay in the software prototype.

Software

The data and knowledge in the preceding sections were entered
into a database linked to prototype software written with Lhasa’s
Discovery suite [30]. The figures in this paper are taken as screen-
shots from this prototype, with additional labels to features
mentioned in the text where necessary.

Results
We report the integrated display of AOP knowledge with assay
information and (Q)SAR predictions as successive augmentation
of a basic design implemented in the software prototype. Some
of the motifs in the display correspond to concepts expressed in
AOP Wiki [8] and other display tools such as Cytoscape [31] where
the user has a degree of control on how concepts and attributes
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Figure 2: The AOP for covalent protein binding leading to skin sensitization. KEs, including the MIE and AO are represented as rounded squares, and KERs by the lines

between them. KEs are labelled for reference with the text.

are depicted. Clearly where similar concepts are represented the
only value in using a different notation are for reasons of user
ease and limitations associated with the choice of display. For
instance, representing KEs as circles—as AOP Wiki does—makes
it more awkward to put much text in them in an interactive dis-
play in computer software; our prototype uses tooltips for detail
(captured as labels in the subsequent figures) but, in practice, this
may be found to impede the ease of use of the software.

Graphical display of AOPs and networks

Figure 2 shows the display of the network for the AOP for skin
sensitization initiated by covalent protein binding [32]. Certain
labels are added to the network for identification purposes rel-
evant to this discussion; in the context of dynamic usage of a
software solution the labels would appear as pop-ups. One of
the issues in presenting AOPs and the information about them
in a graphical format is the trade-off between showing all the
information and the usability of the display. An alternative way of
identifying the network components is to label them all, though
this necessitates more zooming and panning by the user to find
areas of interest.

Covalent protein binding leading to skin sensitization is a
well-developed and accepted AOP [3, 32] which is relatively
straightforward in having only three intermediate KEs between
the MIE and the AO. Figure 2 shows the MIE, AO and intermediate
KEs as rounded squares and the KERs as directed lines (arrows)
between them. Note that the organizational level of the KEs
is indicated using swim lanes so that the initial covalent
protein binding MIE is shown in the molecular level swim lane
whereas the skin sensitization AO is shown in the organ level
swim lane and intermediate KEs are in the cellular level and
organ level swim lanes. Although the left-to-right ordering of
the KEs indicates their causal relationships, the size of the
distance between the KEs (and subsequent embellishments) is
arbitrary and optimised for display only; similarly, arrangement
on the vertical axis is arbitrary. The software prototype uses
an implementation of the Sugayama framework [33] in order to
layout the AOPs and KENs; the implementation is deterministic—
it will produce the same layout every time—though the addition
or deletion of nodes (representing KEs) from the network can
alter the layout extensively.

The thickness of the arrows representing the KERs is used
to convey the weight of evidence of the KERs and it can be
seen that the arrow representing the KER between keratinocyte
activation and dendritic cell activation—for which the evidence
is considered weaker than the other KERs [13]—is shown as being
narrower than other KERs in Fig. 2. Using arrow thickness to
convey the weight of evidence has some drawbacks: there will
only be a limited number of thicknesses which can be readily
distinguished by the user and, even then, they will only be clear if

there are a variety of thicknesses in the diagram for comparison,
or if there is an easily accessible legend by which the user can
interpret the arrow thickness and thus the weight of evidence it
represents. It nevertheless is probably the clearest visual cue for
representing the weight of evidence.

From AOPs to networks

Figure 3 shows our first step in elaborating the display of KEs
from a linear straightforward AOP, as it shows a network of two
AOPs towards a common AO: aromatase inhibition leading to
reproductive toxicity and androgen receptor agonism leading to
reproductive toxicity. These two pathways converge at the KE of
reduction in 17-beta oestradiol synthesis by ovarian granulosa
cells. The same notation is used in Fig. 3 for KEs and KERs as in
Fig. 2, however, there are two MIEs rather than just one in the
pure AOP view. Note that the information in Fig. 3 is now less
simple than the AOP in Fig. 2 and the issues mentioned above
concerning display of detail versus user scrolling and panning
are more accentuated. Note also the network nature of the
pathways—that KEs which are shared between individual AOPs
become nodes of splitting and joining in the network. In terms
of knowledge management it is important that KEs appearing
in multiple pathways are named consistently. The visualization
of AOP networks (AOPNs) has previously been made available
through Cytoscape [31, 34, 35] using the AOPXplorer extension
[9, 36].

Augmentation with assays

Assays are represented in Fig. 4 by circles and are associated with
KEs. Each line between an assay and a KE represents a partic-
ular type of measurement undertaken as part of the assay. For
example, the DPRA [37] has three lines connecting it to the cova-
lent protein binding MIE, one each for cysteine depletion, lysine
depletion and overall call. The LLNA [38] has two lines connecting
it to the T-cell proliferation and activation KE4, one each for EC3%
value and overall call. The other assays; KeratinoSens™ [39],
LuSens [39], h-CLAT [40, 41], U-SENS™ [41], LLNA and Observation
in human have differing numbers of lines related to how many
measurements are used in the assay. Other skin sensitization
assays are available which could also be mapped to the KE in
this AOP, however, as these were not present in our dataset these
were not included in this example. Information about assays
is further enriched by an expert-assigned reliability which is
represented by the thickness of the circle border: a fully filled
circle represents a highly reliable and reproducible assay. Circles
with thinner walls (i.e. larger amounts of white in the middle)
are less reproducible/reliable assays. In this diagram, the right-
most assay which is connected to the skin sensitization AO is for
human data and is (somewhat controversially!) considered less
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Figure 3: Network generated by combining several individual AOP’s for a common endpoint, reproductive toxicity.

Figure 4: Addition of assay information to the basic AOP diagram.

reproducible and therefore has a large white centre. In contrast
the left-most assay is the OECD-validated in chemico DPRA and
thus very reproducible indeed so is represented with a fully filled
circle.

Further augmentation with (Q)SAR predictions

(Q)SAR predictions are shown in Fig. 5 by triangles; predictions
can be made for assay observations or for KE occurrence. In Fig. 5,
the predictions are exclusively Derek Nexus predictions and the
number next to each triangle shows how many bases for predic-
tion there are for that KE/AO. Typically, each basis for prediction
will be a Derek Nexus alert but this is augmented by other factors
that Derek Nexus takes into account, for instance the species
about which the prediction is made; furthermore, some Derek
Nexus alerts predict for more than one event. The association of
an alert (as a basis for prediction) with an assay indicates that the
assay data have informed the writing of the alert. The predictions
based solely on Derek Nexus alerts are asymmetrical in that the
presence of an alert indicates a positive (concerning) prediction
for an assay but the reverse is not true: the absence of an alert
does not indicate a negative (non-concerning) prediction for an
assay or KE. Furthermore, Derek Nexus can make negative pre-
dictions for the skin sensitization AO in the absence of an alert
and this is augmented with a confidence depending on whether
or not Derek Nexus is aware of features in a submitted molecule
that it are novel or are known to be associated with molecules

that it misclassifies. This means that although there are 100
alerts for skin sensitization in the Derek Nexus knowledge base
(version 2020.1), the numbers on all the arrows add up to more
than this. Different bases for prediction have different weights
of evidence associated with them; in this case the differences
are alerts which lead to a plausible outcome in Derek Nexus and
those which lead to an equivocal outcome. The difference in the
weight of evidence associated with the prediction is represented
in the line thickness. For example, in the dataset used, there are
35 bases for prediction which lead to a plausible outcome for
skin sensitization (the AO represented by the right-most square)
and these are connected by a thicker line than the 73 bases
for prediction which lead to an equivocal prediction for skin
sensitization.

Addressing the use cases

With assays and predictions connected to a network of KEs and
AOs it is possible to address the use cases above.

Use Case 1: What do compounds like mine do?
As stated above, the fundamental issue with this question is

defining compound similarity; this is a subjective concept and
the issues involved in using different measures has been dis-
cussed several times [42–44]. We illustrate the issue in the proto-
type software where there are several measures of similarity that
can be used: a structure fingerprint where similarity between
compounds is measured with a Tanimoto coefficient—that itself
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Figure 5: Further augmentation of the knowledge diagram by (Q)SAR predictions, shown as triangles.

can be based on several different structural fingerprints; sub-
structure and a simple biological fingerprint where compounds
are considered similar if they fire the same Derek Nexus alerts.
The other half of the question is then which activities is the user
interested in. In this case we can use the AOP concepts of MIE, KE
and AO to direct the user’s search.

Figure 6 shows a histogram of activity of the activity of com-
pounds similar to (+/−)-linalool in four assays associated with
KEs in carcinogenicity pathways with similarity measured using
a Tanimoto coefficient based on two different fragmentation
algorithms. The histogram has been normalized for the number
of compounds so that the distribution of positive and negative
assay calls can be more easily compared. In (a) a pharmacophore
reduced graph fragmentation algorithm is used, whereas in (b)
the in-house Ceres fingerprint algorithm [30, 45] is used. In (c)
a Venn diagram shows that a total of 76 compounds have been
selected with only 17 in both similarity sets. In (c) the most
similar compound in each sector is also shown. Clearly the
most similar compound that is in both sets is the compound
linalool itself, but unique to the Ceres fingerprint similarity is
the ring-containing structure—considered less similar by the
pharmacophore-based similarity measure. In contrast, the alde-
hyde is unique to the pharmacophore similarity set. In general,
the Ceres fingerprint does not discount similarity due to the
presence of rings whereas the pharmacophore reduced graph
favours skeletal similarity. It should be borne in mind, of course,
that the chemical space occupied by compounds which have
actually been tested will be innately ‘lumpy’ as tests may have
been reported for a series of similar compounds. It is outside

the scope of this discussion to consider how to normalize the
occupied chemical space to correct for this distribution bias, but
is another factor that users need to take into account when
looking for trends in compounds from data which are considered
similar. Notwithstanding these caveats, the difference in activity
of compounds considered similar can be seen in the proportion
of similar compounds testing positive in the assays, where the
greatest discrepancy is seen in the proportion of compounds
testing positive in the rodent carcinogenicity studies. Although
neither measure of similarity should be considered more ‘cor-
rect’, or even more appropriate, the figure does illustrate how
careful a user should be when using similarity measures.

Use Case 2: given this assay result, what AOs should I
be worried about?

Figure 7 shows the conclusions that might be drawn from a
positive Ames test result for the imine shown in the figure. The
Ames test is directly linked to the inherited DNA mutation KE
which leads to the genetic instability and cancer AOs.

In the figure, other assays related to inherited DNA mutation
are also shown, but there are no results for the imine concerned.

In some ways the result is trivial in that there is only one assay
result and no counter arguments so the positive Ames result
cascades through all KEs to the AOs of genetic instability and
cancer. Furthermore, the link between inherited DNA mutation
(the KE for which Ames test reports) and both of the AOs is
fairly well established, however in other cases the link between
an assay and an AO may not be so apparent. In answering the
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Figure 6: Activity of compounds considered similar to (+/−)-linalool in assays related to KEs in the carcinogenicity-related pathways. (a) Shows results for 42 compounds

considered similar by a reduced graph pharmacophore fragmentation. (b) Shows results for 51 compounds considered similar by the Ceres fingerprint. In (a) and (b)

dark blue represents overall positive assay results and pale blue represents overall negative results. In (c) the overlap between compounds in the two sets is shown: the

42 compounds shown in (a) are depicted in red and the 51 compounds shown in (b) are depicted in blue. The most similar compounds in the different areas are also

shown.

question ‘which AO(s) should I be concerned about’ the scheme
shown in Fig. 7 gives a qualitative answer, i.e. it gives information
about hazard rather than risk and is an expression of the assay
result and therefore is independent of the compound under
study. By the same token, this makes the conclusion of hazard
for the imine shown rather general and unsatisfactory and other
knowledge, e.g. about the mechanism by which imines cause
mutation, would be required in order that a user be satisfied that
the prediction of hazard is made with a full understanding of the
situation. We can enhance the hazard estimation by considering
a statistical relationship between any particular assay result that
we have and the occurrence of an AO—itself measured by an
assay: this is considered in Use Case 3.

Use Case 3: if I have this assay result, what assay
should I do next?
Figure 8 shows a set of simple heat maps of the correlation of
positive and negative calls in the assays associated with the
skin sensitization pathway. The heat maps show strong posi-
tive correlation in red, strong negative correlation in blue; pale
colours indicate little correlation and black indicates too few
points to make a correlation. Figure 8(a) shows the general trends
for all compounds in the data described above. Unsurprisingly,
assays which are designed to report about the same KE show a
strong correlation, with each other but there is good correlation
between all the assays for the chemical space of the compounds
in the database taken as a whole. Figure 8(b) takes a subset of the
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Figure 7: AO’s alerted from a positive Ames test result for the imine shown.

dataset in question where the compounds are considered to be
similar to the putative compound under study—in this case 2, 4-
dihydroxyaniline. The measure used for determining similarity
in this case is a structural similarity based on a Tanimoto coeffi-
cient of a Ceres fingerprint. It allows the chemical context to be
taken into account when considering assay response similarity.
It can be seen the correlations are more varied. For example the
correlation between DPRA and human results are very good for
the compounds like the one under study: the software allows
the user to hover over a square in the heat map to bring up
the value of the correlation (0.84 in this case) and the number
of compounds on which the correlation is based (N = 26 in this
case). On this basis we may consider that a positive DPRA result is
sufficient to conclude that the compound will be a skin sensitizer
in humans.

However, we can note that the correlations of LuSens results
for the compounds in this area of chemical space appear to be
weaker than those for all compounds shown in (a). In Fig. 8(c),
the data are pre-filtered so that only those compounds with a
positive result in the LuSens assay are considered; note that this
results in there being no correlations with LuSens in Fig. 8(c)
and the associated column and row are black. Now we see
strong correlations between DPRA, LLNA and human assays and
also between KeratinoSens™ and U-SENS™ assays, with weaker
correlations between assays outside these subgroups. In Fig. 8(d)
only those compounds which are similar to the one understudy
and with a negative LuSens result are shown. This reveals poor
correlation between DPRA and KeratinoSens™ with the other
assays, U-SENS™, h-CLAT, LLNA and human data, the four of
which correlate quite well together. In summary, although the
LuSens results as a whole correlate poorly for compounds similar
to 2, 4-dihydroxyaniline, a particular LuSens result indicates
which other assay might be untaken to get a good prediction of
the human skin sensitization response.

Further elaboration of KENs (i): Key event groups (KEGs)
and representing pathway knowledge at different levels
of detail

One of the challenging aspects of using both simple AOPs and
KENs to represent knowledge and aid utilization of it for decision
making purposes is capturing and expressing it to a user at an
appropriate level of detail. In particular, an acceptable level of

detail needs to be present to make a persuasive case that the
knowledge of the KEs and their relationships is sufficient to allow
regulatory decisions to be made. The level of detail associated
with AIOPs or KENs is necessarily less than that of, say, cell
signalling pathways but the underlying knowledge is connected
and the appropriate level of detail to display or express will vary
depending on the user’s needs. For instance, when describing a
cell-based KE, it is possible, and sometimes desirable, to consider
each of the sub-cellular KEs which together generate the event
at the higher level of organization. In terms of capturing and rea-
soning about KEs, it is essential to focus on what is measurable.
New and emerging methods and assays which measure things
at a much more precise level, relating to protein expression e.g.
commercially available biomarker assays, as well as omics data,
allow for the subcellular processes to be investigated and the
events that they report on captured within the context of a higher
level KE.

This hierarchical relationship in the KEs can be captured and
displayed and this is illustrated in Fig. 9, which shows that AOP of
Retinoid X receptor binding leading to carcinogenicity. In Fig. 9(a)
the whole network is shown; it contains several groups of KEs
which are displayed in their collapsed (i.e. condensed) state. One
of the KE groups, p38 Mitogen-activated protein kinase (MAPK)
signalling pathway dysregulation, is selected and highlighted in
red by the prototype software in the Figure; KEs leading to and
from this KEG are labelled in the Figure. In Fig. 9(b), the p38 MAPK
signalling pathway dysregulation KEG has been expanded and
it can be seen that it contains three sub-KEs, also highlighted
in red by the prototype software as belonging to the selected
KE group. Note that the algorithm for laying out the network
makes it difficult to compare the two networks by eye and the
complexity of the network illustrates the points made above
about the ease of getting an overview of the network whilst
simultaneously having access to the detail. Software to sup-
port investigation and understanding of such complex networks
must allow a user to focus on different areas in a dynamic
way.

In Fig. 9(c) the software shows a close up of the KE group, its
immediate neighbouring KEs and the sub KEs for easier investi-
gation by the user. Note that through Fig. 9 one of the neighbour-
ing KEs, cell proliferation increase, is itself an event group which
could be expanded as well as the p38 MAPK signalling pathway
dysregulation KE group.
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Figure 8: Simple heat maps showing the relationships between assay observations of different compounds. (a) The whole dataset (b) Compounds considered similar to

the one under study (c) Compounds similar to the one under study which have a known positive response in the LuSens assay (d) compounds similar to the one under

study which are negative in the LuSens assay.

Further elaboration of KENs (ii): use of ontologies in
relating KEs
As described above, KEs can be defined at different levels of detail
and when combining KEs from different pathways this will cause
some overlap between events. One way to capture the overlap

and other relationships between KEs is to use an ontology. Using
ontological annotations in organising KEs has been discussed by
others [46] and in Fig. 10, we illustrate how KEs in the database
of the software prototype relating to oestrogen receptors might
be organised. The prototype software equates some of the terms
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Figure 9: (a) The Retinoid X receptor binding leading to carcinogenicity AOP displayed with all KEGs collapsed; (b) the same AOP with expansion of the p38 MAPK

signalling pathway dysregulation KE group; (c) a close up of the p38 MAPK signalling pathway dysregulation KEG and its sub-KEs.

in the ontology, which is stored in an Ontobrowser instance [47,
48], with KEs and thus allows the user to select sets of KEs which
are related to a term in the ontology.

The ontological relationships in Fig. 10 as all ‘is a’ relation-
ships and we can see that, for instance, the term ‘oestrogen
receptor alpha binding’ has this relationship to be the ‘oestrogen
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Figure 9: Continued.

Figure 10: Ontobrowser display of an ontological relationship between KEs related to oestrogen receptors. Terms in dark blue represent KEs in the database, pale blue

terms are not in the database and capture appropriate aggregations of more the more specific terms. The figure is taken from an SVG file generated by Ontobrowser

with highlighting added separately.

receptor alpha event’ and the ‘oestrogen receptor binding’ terms.
In the prototype software ontology terms are linked to KEs in the
database so that the user can select groups of events which have
a link to an ontological term; the selected events can then be
viewed in the KENs using diagrams shown in previous figures.

Other groups have developed ontologies for use with AOPs
that are more extensive. Burgoon [49] created the AOPOntology
which is allied to a prediction system for AOs based on likelihood
of KEs; an ontology related to developmental toxicity leading to
spina bifida was developed [50, 51] and predictions for steatosis
were made using Bayesian methods [52]. A different ontology for
use with AOPs has been suggested by Ives et al. [53] in which
KEs are described using event components of Process, Action and
Object where each of these are populated by other ontologies or
controlled vocabularies. In this context, we present Fig. 10 only
as an illustration of how ontologies may be used for KEs and do
not advocate development of further conflicting or competing
ontologies.

We can also use an ontology approach to deal with assays.
In particular, where assays are non-standard or where there

may be many variations on in-house assays different by dosing
regimen or observations that are nevertheless closely related and
whose conclusions—rather than whose observations—might be
useful to compare. It may also be convenient to classify standard
assays according to an ontology. For example, a battery of tests
from Toxcast [54] for oestrogen agonist activity suggested by
Judson et al. [55] might be associated with terms in an assay
ontology shown in Table 1. The entries in Table 1 form a very
small bioassay ontology; EMBL-EBI provides a more extensive
bioassay ontology which is under active development [53].

The prototype software allows the use of ontologies to aid the
user in focussing on relevant knowledge. As both knowledge and
ontologies expand, this approach should become increasingly
beneficial for making the knowledge tractable and expandable.

Reasoning—incorporating assay observations and
compound predictions

AOPs were originally devised to be agnostic of chemistry, and
of chemical compounds in particular. The succession of events
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Table 1: Suggested ontology terms for a selection of assays for oestro-
gen agonist activity

Toxcast assay
identifier

Ontology term

ACEA_T47D_80hr_Positive Oestrogen receptor (ER)
activation assay

ATG_ERE_CIS_up Oestrogen receptor (ER)
activation assay

Tox21_ERa_LUC_BG1_Agonist Oestrogen receptor (ER)
activation assay

Tox21_ERa_BLA_Agonist_ratio Oestrogen receptor (ER)
activation assay

OT_ERa_EREGFP_0480 Oestrogen receptor (ER)
activation assay

OT_ERa_EREGFP_0120 Oestrogen receptor (ER)
activation assay

ATG_ERa_TRANS_up Oestrogen receptor (ER)
activation assay

NVS_NR_bER Oestrogen receptor (ER)
binding assay

NVS_NR_hER Oestrogen receptor (ER)
binding assay

NVS_NR_mERa Oestrogen receptor (ER)
binding assay

Tox21_ERa_BLA_Antagonist_ratio Oestrogen receptor (ER)
deactivation assay

Tox21_ERa_LUC_BG1_Antagonist Oestrogen receptor (ER)
deactivation assay

OT_ER_ERbERb_1440 Oestrogen receptor (ER)
dimerization assay

OT_ER_ERbERb_0480 Oestrogen receptor (ER)
dimerization assay

OT_ER_ERaERb_1440 Oestrogen receptor (ER)
dimerization assay

OT_ER_ERaERb_0480 Oestrogen receptor (ER)
dimerization assay

OT_ER_ERaERa_1440 Oestrogen receptor (ER)
dimerization assay

OT_ER_ERaERa_0480 Oestrogen receptor (ER)
dimerization assay

brought about by exposure to a particular compound is described
in the related concepts of the modes or mechanism of action
(MOA). Here, we seek to unite these two concepts by consid-
ering the sequence of KEs described in a network and moving
from the chemically agnostic knowledge shown in Figs 2–5 to
the specific knowledge concerning an individual chemical. In
doing so we consider how to assess the evidence both about KEs
and KERs and report a level of belief in them; reasoning about
evidence, applying weight of evidence approaches and use of
modified Bradford Hill criteria for assessing the evidence have
been proposed previously in this context [10, 56]. In this paper,
we consider categorical, rather than continuous, assignment of
outcomes; inevitably this can lead to some hard cut-offs and edge
cases which have a large impact on the conclusion. Although we
acknowledge this disadvantage inherent in such a scheme, we
think that the precision required to produce a continuous set of
values associated with outcomes cannot be justified given the
subjective nature of some of the arguments and evidence.

Figure 11 represents all the knowledge about the compound
(+/−)-linalool in the underlying database associated with the
software prototype. Importantly—and for the purpose of illus-
tration—data which reported skin sensitization caused by an

oxidised form of linalool is observed frequently in human patch
tests and which caused a rewriting of the guidelines for linalool
[57, 58] were not made available to the prototype.

Figure 11 can be compared with the abstract case shown in
Fig. 5; potential predictions which have not been recorded are
removed and colour has been added to show the assay obser-
vations and predictions. Red indicates a cause for concern—
typically a positive response in an assay or a prediction of haz-
ard—with green representing no cause for concern. The presence
or absence of a cause for concern is evaluated at each node
(assay, KE or prediction) and is transmitted through the network
to the successive KEs via KERs. Where there are conflicting
observations, a simple conservative call is made, i.e. where a
KE has both cause for concern (red) and no cause for concern
(green) inputs an overall call of cause for concern (red) is made;
note that alternatives to this logic are discussed below. Figure 11
shows that for (+/−)-linalool, assay results relating to events
early in the pathway are negative—coloured green to indicate no
suggestion of hazard—whereas assays and predictions towards
the end of the pathway are positive—coloured red to indicate
a hazard. The lines between the assay and KE represent the
different measurements that are made in the assay and are only
coloured if they alone influence the colour of the downstream
event; in practice only the ‘overall calls’ are coloured. Where no
assay data are available, the assay is coloured grey and indicates
to the user a possible confirmatory assay if one were required.

It is important to be aware of what the representation shown
in Fig. 11 actually means. The colouring of the nodes and lines
on the graph indicate the empirical evidence of the assay and
prediction results. The assay results which do not indicate a
cause for concern, e.g. the green DPRA result, do not imply
that the mechanism of skin sensitization is other than through
covalent protein binding—merely that the assay which aims to
detect this event has suggested no cause for concern. This may
be a limitation of the assay (a ‘gotcha’) or some other aspect
of the mechanism of toxicity not captured in the knowledge. In
the case of (+/−)-linalool, it is known that the skin sensitization
comes from an oxidation product so the DPRA may not represent
conditions comparable to an in vivo exposure. Indeed an advan-
tage of the collation of assay results as presented in Fig. 11 is the
indication of inconsistency in the data and this implies that there
is more to the story than the assay results alone can tell.

In Fig. 11 all arguments are considered to contribute equally
when resolving the cause for concern at any KE. Note that, as
described above, the thickness of the lines representing the KERs
is an indication of the essentiality of the KER in the AOP. The
essentiality of the KE is one characteristic that we might like to
consider when considering the cause for concern at a point in the
network based on previously occurring KEs. Meek et al. [56] have
described a detail scheme for assessing the weight of evidence
relating to MOAs in terms of modified Bradford Hill criteria and
give examples of how these can be used to reason about the
believability of the pathway itself. These considerations can be
brought together to form an innate level of confidence that a
cause for concern at one KE in the pathway/network is passed
on to the next. For the particular case of the AOP in Fig. 11,
i.e. covalent protein binding leading to skin sensitization, the
KEs and KERs are considered well established and there is no
reason to reduce the contribution of the argument coming from
a preceding KE in this AOP due to uncertainty in the truth of
KER. Clearly this will not be the case in many AOPs, particularly
those under development, therefore any reasoning scheme must
be able to capture the weight of evidence at any KE and moderate
the strength of argument that comes from it by taking into
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Figure 11: Showing assay results and structure activity relationship predictions for (+/−)-linalool and reasoned conclusions of likelihood through the pathway.

account the level of confidence in the KER. In practice, though,
assuming there are no reasons for completely discounting an
indication of hazard, the user will always want to be informed
of it and may choose to use a conservative reasoning paradigm
by default.

Although the reasoning in Fig. 11 shows a simple conservative
call, as was outlined above, there are many facets to the rea-
soning that we might wish to consider—in particular the weight
given to the argument; whether individual pieces of evidence are
independent; whether the assay protocol has been run appro-
priately or is appropriate for the chemical class; the biological
complexity of the test system and possibly how far down the
pathway is the KE being measured. In other reasoning systems
the direction and magnitude of arguments for and against a con-
clusion are considered. For example, we can devise a system in
which a strong argument in favour of a conclusion can outweigh
a weak argument against, and so on [38].

A feature of the reasoning as shown in Fig. 11 that may cause
disquiet is the equanimity with which assay and predicted values
are treated, but this is not the only logic that can be used.
In Fig. 12, we illustrate an alternative approach in which assay
results are always used in preference to predicted results: here an
assay which is considered to have low confidence and illustrated
in green to indicate the assay result gives no cause for concern
overrules a prediction which does give rise to a cause for concern.
This case replicates that in Fig. 11 for the reasoning about the
skin sensitization AO. Furthermore we can weight assays by their
biological complexity, with results from in vivo assays overruling
those from in vitro assays and both overruling results from in silico
predictions [25, 26].

In Fig. 13, we illustrate a simple, visual way of weighting
arguments to come to a more nuanced conclusion. Different
arguments are weighted and represented as slices of a pie chart,
and an overall call is represented by the colour of the pie chart
centre; the figure shows how to consider arguments leading
directly to skin sensitization in humans by (+/−)-linalool shown
in the right-most step in Fig. 11. The weighting of the individual
components is made by a human expert and endeavours to
reflect how much their own belief in the overall assessment
would be influenced by the associated factors.

In Fig. 13, the three different lines of argument leading to
the skin sensitization endpoint considered are: human data
for the exact compound, likelihood of preceding KEs and in

Figure 12: Alternative reasoning paradigm where assay results overrule predicted

results. An assay result showing no cause for concern conflict with a prediction

showing a cause for concern; the key event is not considered to be a cause for

concern.

silico predictions, and the relative weighting of each argument
is represented by its share of the outer ring. Although only
three lines of argument are shown in this example, others might
also exist; e.g. human data in related compounds, predictions
of skin penetration etc. In Fig. 13(a), the human data are given
the largest weighting over likelihood of preceding KEs and in
silico predictions 75:23:2, respectively; in Fig. 13(b) the weightings
are 50:40:10. The colour of each segment represents the level on
concern that arises from the associated evidence on a scale from
dark green indicating no concern to dark red indicating great
concern with yellow indicating equivocation. The overall call is
then represented by the colour of the centre circle: the variation
in weighting between Fig. 13(a) and (b) gives a different overall
call.

In practice, the user of the system might weight the argu-
ments on a case-by-case basis or implement a rule base in which
each possibly component is given a weight which might depend
on the presence of other arguments. Although the weighting
given to each argument is a numerical value, again in practice
only certain values might be allowed in order that unjustified
precision is not brought into the reasoning.

In Fig. 14, a more detailed, though more complex, representa-
tion of the arguments is shown, again for the argument leading
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Figure 13: Illustrating different weightings of arguments for and against a conclusion of skin sensitization by (+/−)-linalool and showing an overall call.

directly to skin sensitization in human by (+/−)-linalool, the
right-most step in Fig. 11. Here the arguments are shown as
weights on an arm balance and consist of the direction of the
argument (for or against), the intrinsic convincingness of the
argument as shown by the size of the weight and the reliability
of the evidence about that argument, as shown by the position
of the weight on the arm. The lines of reasoning in Fig. 14 can be
compared with how they are captured in Figs 11 and 13.

It is worth considering the representation of arguments and
how to combine and weight evidence from different (potentially
conflicting) skin sensitization assays as shown in Figs 13 and
14 with defined approaches for addressing this problem [59,
60]. There is, currently, no settled view on this, but the dif-
ferent approaches can nevertheless be represented using the
approaches shown in Figs 13 and 14.

In representing the differences in convincingness, whilst
ensuring there is no unjustified precision, the weights are of
three sizes: the most convincing, human data, being the largest
and the less convincing, in silico prediction, being the smallest.

The second dimension of the arguments, the reliability of the
evidence, is represented by the position of the weights on the
balance; as with convincingness there are only three possible
values on the scale large, medium and small. In this case, the
human data are considered poorly reliable as it is by nature
relatively irreproducible (and indeed, patch studies show about
2% of people do show skin sensitization by oxidation products
of linalool). In contrast, the evidence of the preceding KEs is
considered more reliable as the assays on which the conclusion
is drawn have known levels of repeatability and have been
performed several times. Finally, the in silico prediction—in this
case from Derek Nexus—is considered very repeatable. Figure 14
shows the balance of the arguments by the angle at which
the arm balance is deflected: in this case the evidence shows
a deflection towards considering linalool to be a human skin
sensitizer.

The advantage of considering the convincingness of the argu-
ment and the reliability of the evidence for it separately is that
they can be recorded and manipulated independently of each
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Figure 14: Cartoon representation of a balance of evidence. See accompanying text for description and interpretation of this Figure.

Table 2: Examples of large, medium and small levels of convincing-
ness of arguments

Convincingness of argument

Large A direct observation or measurement of the event or
AO by in vivo assay Measurement of an in vivo marker
An OECD or similarly approved AOP, KE or KER with
strong WoE A conclusion from an approved IATA

Medium An indirect In vivo measure. An in vitro measure An
OECD or similarly approved AOP, KE or KER with
strong WoE

Small An in silico measure

other. For instance, the convincingness of an argument may be
constant but the reliability of the evidence supporting it may
change. The disadvantage is that—as both qualities have a sub-
jectivity to them—it is necessary to define the values that these
qualities can take and how they interact with each other, as well
as how to calculate an overall conclusion. Furthermore, the defi-
nition of these values must be consistently applied throughout
the knowledge base, i.e. for both the innate level of belief in
the KEs and KERs and the conclusions to be drawn from assay
results and in silico predictions. Another disadvantage, particu-
larly important in communicating the overall conclusion to a
user of software, is that reasoning process is more complex than
in the simple conservative approach or a weighting scheme using
a single dimension as shown in Fig. 13.

Tables 2 and 3 describe examples of how values for the con-
vincingness of an argument and the consistency of evidence are
arrived at and Table 4 contains the positions of all the arguments
at all the steps in Fig. 11—though note that only those directly
relevant to coming to a conclusion about the level of belief in a
particular KE will be used at any one time. We have taken the
weights of evidence of the KERs from AOPWiki [8] and using the
criteria described in Meek et al. [56] to capture the innate KERs.

Once the values that each quality (convincingness of the
argument and reliability of the evidence) can take have been
defined, it is necessary to define how the two interact, how the
argument is transmitted through the network and how inde-
pendent arguments can be combined. We term the property

Table 3: Examples of large, medium and small levels of consistency of
evidence

Consistency of evidence

Large Repeated concordant measurements
Deterministic (i.e. non-stochastic) model prediction
A model prediction for an assay, KE or AO which has
high accuracy (as measured by Cooper statistics)

Medium Reproducible measurements with explainable and
interpretable differences
Stochastic model prediction with well-defined
parameters
A model prediction which has good accuracy

Small Single measurement of unknown reproducibility
A model prediction of moderate accuracy

from the convincingness of the argument and the reliability of
the evidence as the Strength of the argument. It is to be noted
that ensuring that arguments are indeed independent is quite
difficult. In our example of human skin sensitization by linalool,
it is possible that the in silico prediction is informed by the assay
data that have contributed to the conclusions about both the
hazard identified from preceding KEs and/or the human data for
linalool.

Although it would be possible to convert the values of each
quality into numbers and use an operation such as multiplication
to combine them in order that an overall contribution from a line
of argument be arrived at, this can quickly lead to unjustified lev-
els of precision. It also begs the question as to whether any scale
that contains all the possible values for a quantity is linear, with
values evenly spaced along it, or irregular, where one value might
always outweigh any others (c.f. how ‘Certain’ and ‘Impossible’
in Derek Nexus can never be downgraded by weaker arguments
and when put against each other can only be resolved by invoking
contradiction rather than equivocacy [61, 62]).

In Table 5, a weighting scheme is suggested which produces
a value for a strength of argument from the two separate com-
ponents. Strength then can take one of five values from the set
(Very high, High, Medium, Low and Very low).
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Table 4: Knowledge and data about the skin sensitization of (+/−)-linalool expressed in terms of convincingness of the argument and consistency
of evidence

Convincingness of argument

Large Medium Small

Consistency
of evidence

Large Assay: DPRA result
AER: DPRA predicts for covalent
protein binding
KER: covalent protein binding
leads to dendritic cell activation
KER: covalent protein binding
leads to keratinocyte activation
Assay: KeratinoSens™ result
AER: KeratinoSens™ predicts for
keratinocyte activation
Assay: U-SENS result
AER: U-SENS predicts for dendritic
cell activation
Assay: h-CLAT result
AER: h-CLAT predicts for dendritic
cell activation
KER: dendritic cell activation leads
to T-cell activation and
proliferation
Assay: LLNA result
AER: LLNA predicts for T-cell
activation and proliferation
KER: T-cell activation and
proliferation leads to skin
sensitization
AER: Human data predicts for skin
sensitization in humans

KER: Keratinocyte
activation leads to
dendritic cell activation

Prediction: Derek
Nexus prediction

Medium PER: Derek Nexus
prediction reflects
skin sensitization in
humans

Small Assay: Human data

AER is assay event relationship; PER is prediction event relationship.

Table 5: A weighting schema for combining the convincingness of an argument and the reliability of the evidence supporting it

Strength Convincingness

Large Medium Small

Reliability of evidence Large Very high High Medium
Medium High Medium Low
Small Medium Low Very Low

Once the strength of an argument is arrived at, it needs to be
transmitted through the network. Using the classifications from
Meek et al. [56] to define the strength of arguments innate to
KERs we can then take the lower value of the argument and the
connection to the next event to transmit the argument through
the network. In our example of skin sensitization of humans by
(+/−)-linalool, the Derek Nexus prediction is considered to be
of medium strength, but the prediction event relationship for
Derek Nexus alert by themselves is considered to be low due to a
medium consistency of evidence (the accuracy of a Derek Nexus
prediction is actually quite high, but not correct enough to be
considered to have high consistency).

Next there is the issue of how independent lines of reasoning
combine with each other to produce an overall conclusion.
Table 6 shows a proposed method for combining values of

strength: small values of strength can combine into higher
ones, but only so far: arguments of very low strength do not
enhance arguments of medium strength and higher; arguments
of low strength also do not enhance arguments of high
strength.

When combining arguments, the method is to sort the
strengths from lowest to highest and combine them sequentially.
For example sequential VL strengths are combined in Equation
1 which shows with parentheses the order in which the pairs
of arguments are assessed. Equations (2)–(4) show successive
resolving of the innermost pair of arguments: Equation (2) shows
two VL arguments resolving to an L argument and Equation (3)
shows an L and a VL argument resolving to an M argument.
Equation (4) shows that an M argument and a VL argument
resolve to an M argument, i.e. there is no increase in the overall
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Table 6: Showing the combination of any two values of argument strength

+(Strength, strength) Very High High Medium Low Very Low

Very High VH VH VH VH VH
High VH VH VH H H
Medium VH VH H H M
Low VH H H M M
Very Low VH H M M L

Table 7: Showing the combination of opposing argument strengths

+(Strength, strength) Very High High Medium Low Very Low

−Very High 0 −H −VH −VH −VH
−High H 0 −M −M −H
−Medium VH M 0 −VL −L
−Low VH M VL 0 −VL
−Very Low VH H L VL 0

strength of the argument by additional VL arguments.

VL + VL + VL + VL = ((VL + VL) + VL) + VL (1)

((VL + VL) + VL) + VL = (L + VL) + VL (2)

(L + VL) + VL = M + VL (3)

M + VL = M (4)

When considering opposing arguments, the prototype soft-
ware will ‘cancel’ arguments of equal strength but in different
directions, combine the outstanding strengths in each direction
and then combine them using the difference.

For example in Fig. 14 the method of combining the argu-
ments is shown in Equation (5). Here the −M and +M arguments
are cancelled leaving only one +L argument.

Human data, strength = −M
Preceding KEs, strength = +M
In silico prediction = +L

− M + M + L− > (−M + M) + L = L (5)

As can be seen from Table 7, even very strong arguments
can be offset by equally strong arguments against and there are
no irrefutable arguments. In previous argumentation schemes
irrefutable arguments have had a place and combining them
can lead to contradiction [62]. Clearly therefore the suggested
argumentation scheme is not appropriate where irrefutable argu-
ments may be encountered; irrefutable arguments are rarely
encountered in the context of reasoning about toxicity pathways.

Finally, the value of the overall conclusion needs to be put
into the context of all possible values of conclusions. In Fig. 14,
this is shown by the deflection of the arm balance and the scale
of possible values of the overall conclusion can be considered
as a torque on the balance, with more powerful conclusions
tipping the balance more heavily. From the set of values the
argument strength can take, {VH, H, M, L VL, 0, −VL, −L, −M,
−H, −VH}, the balance arm can take of 11 positions: five levels of
deflection in either direction and perfectly balanced. The overall
conclusion for human skin sensitization by linalool, is the second
smallest possible value and this can be represented by the small
deflection of the scales in Fig. 14.

In this discussion we have presented only straightforward
arguments for or against a conclusion. The reality is more

complex though and includes such concepts as undercutting
arguments (‘gotchas’) where there is good reason to believe
that an argument does not apply—for example an assay being
used for compounds where it is known to be inaccurate or
inappropriate. Although these undermining arguments can be
‘wrapped up’ in a conclusion about a line of reasoning it would
be preferable if the user were made aware of them explicitly. In
the metaphor of the arm balance, such undercutting arguments
could be represented as reducing the convincingness of an
argument, but we have not illustrated them in this paper for
the sake of simplicity.

Discussion
In going beyond AOPs to produce reasoned networks for
understanding the influences on and likelihood of an AO being
observed we have considered three main areas: (i) considering
networks rather than single pathways which, though not novel,
is a prerequisite of the other aspects of the work; (ii) introducing
data and knowledge to the network and (iii) reasoning between
the different inputs. The approaches reported in this paper are
designed to enable decisions to be made and defended: both
low risk (prioritization of resources) and high risk (to defend
a decision to a regulatory body when considering the level of
risk if exposed to a human). In order to do so, evidence must be
curated, organised, and consistently processed in a pre-defined
logical and transparent manner so that the user focusses on the
data and knowledge and not on the reasoning.

Visualization is important because must allow a holistic and
a detailed view depending upon the interest of the user—ideally
where it is intuitive and informative, so the focus is on the details
and not on how to manipulate it—this becomes increasingly
important as the complexity of the network increases.

Going from single pathways to networks causes issues to
do with levels of complexity which we have to overcome if the
data and knowledge are to be presented to the user in a way
i.e. useful rather than cumbersome. Simple scroll and zoom to
allow the user to focus in on the area of a network that they are
interested in only goes so far: even with an accompanying overall
view window that allows the user to keep track of their location
within the network, it is likely that the user will get lost in any
network than goes beyond the very straightforward. The most
noteworthy feature then is the defining and handling of event
groups which allows a scientific simplification of the displayed
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information yet allows the user to drill down where necessary.
Event groups—like KEs themselves—have a certain subjectivity
to them in where they begin and where they end but well-defined
KEGs should make scientific sense.

The use of event groups also allows the better sharing of KEs
between networks/pathways. Where similar events are defined
in networks leading to different AOs—and therefore will likely be
defined by different scientists—whether or not a KE, represented
by its name, is the same in two different pathways is a difficult
decision to make and a likely source of error and misunderstand-
ing when sharing data and knowledge about KEs. One example
might be oestrogen receptor binding, which, notwithstanding
the level of detail needed for regulatory acceptance, may, when
studied by one group be appropriate to consider at a coarse level,
but when studied by a different group needs to be considered
at a higher level of refinement/precision (e.g. oestrogen receptor
alpha, beta etc.) the use of event groups allows us to do this and
to create overlapping event groups which will contain different
sub-events as is appropriate for the endpoint under study. To
some extent, the use of event groups mirrors the hierarchical
and specialization relationships that can be captured with an
ontology. We have not developed ontologies for KEs as it is
currently beyond the needs of the work we are doing, whilst also
finding that public ontologies related to KEs are not yet suffi-
ciently developed for the purposes of arranging and displaying
KEs appropriately. We note that, while KEGs may contain onto-
logical relationships, the network or pathway connectedness of
the lower level groups is not easily expressed in ontologies where
the concept of the ordering of the sequence of the lower level
events cannot be captured.

The method of combining weights of evidence from different,
ideally independent, lines of reasoning about the likelihood of
a KE demonstrates the need for expert opinion on how con-
vincing a line of reasoning might be. This is realised with a
weighting scheme that must be well defined in order that it
can be applied in different situations. The components of the
weighting scheme—which in the case presented are the direction
of the argument, the convincingness of the argument and the
number of observations of the argument are not the only possible
ones, but our experience is that more components to the model
does not lead to more convincing conclusions: the user needs
to understand the reasoning behind a conclusion whilst being
comfortable with the mathematics behind it. The different com-
ponents of the reasoning model have very restricted values: large,
medium and small. This is because a greater degree of precision
is not merited in the arguments that are being advanced. By
extension, the number of possible values that the reasoning
outcome can take is similarly restricted, and again the precision
of the value of the reasoning outcome needs to be understood to
be small. A comparison can be made with a Bayesian model in
which the final reasoned value can be any number in the set of
reals. We feel that the arguments advanced in these models do
not qualify for that degree of precision—a Bayesian model built
with a restricted number set would be needed.

Although in this paper the software support for using AOPs
and KENs etc. is demonstrated with a prototype tool, some of
the functionality described herein is available through Lhasa
Limited’s Kaptis software [63].

Conclusions
We have shown how we can augment AOP concepts of MIEs, KEs,
KER’s and AOs with knowledge about, and data from, assays and
(Q)SAR predictions. The knowledge and data allow us to consider

which assays might be of particular interest when making an
assessment of the toxicity of a chemical, and which assays might
be considered to be the most informative to perform next. The
construction of prototype software to allow the user to leverage
the knowledge and data to hand presents its own challenges in
appropriate display and usable interactions by the user.
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