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Abstract
Previous studies have shown a unique method to disrupt tumor vasculature using pulsed,

high-pressure amplitude therapeutic ultrasound combined with microbubbles. In this study,

we attempted to destroy the prostate vasculature of canine prostates using microbubble-

enhanced ultrasound (MEUS) and prothrombin. The prostates of 43 male mongrel canines

were surgically exposed. Twenty-two prostates were treated using MEUS (n = 11) or MEUS

and prothrombin (PMEUS, n = 11). The other 21 prostates, which were treated using micro-

bubbles (n = 7), ultrasound (n = 7) or prothrombin (n = 7) only, served as the controls. Pro-

thrombin was intravenously infused at 20 IU/kg. MEUS was induced using a therapeutic

ultrasound device at a peak negative pressure of 4.47 MPa and a microbubble injection.

Contrast-enhanced ultrasound was performed to assess the blood perfusion of the pros-

tates. Then, the prostate tissue was harvested immediately after treatment and at 48 hours

later for pathological examination. The contrast-enhanced ultrasound peak value of the

prostate decreased significantly from 36.2 ± 5.6 to 27.1 ± 6.3 after treatment in the PMEUS

group, but it remained unchanged in the other groups. Histological examination found

severe microvascular rupture, hemorrhage and thrombosis in both MEUS- and PMEUS-

treated prostates immediately after treatment, while disruption in the PMEUS group was

more severe than in the MEUS group. Forty-eight hours after treatment, massive necrosis

and infiltration of white blood cells occurred in the PMEUS group. This study demonstrated

that PMEUS disrupted the normal microvasculature of canine prostates and induced mas-

sive necrosis. PMEUS could potentially become a new noninvasive method used for the

treatment of benign prostatic hyperplasia.
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Introduction
Benign prostatic hyperplasia (BPH) is a common disease in aging men. It affects approximately
50% of men older than 50 years old and 90% of men older than 80 years old [1]. The gold stan-
dard for the treatment of BPH is transurethral resection of the prostate, which is effective but is
also an invasive operation with associated surgical risks [2]. Many minimally invasive thera-
peutic methods, such as transurethral microwave thermotherapy, transurethral needle ablation
and interstitial laser coagulation, have been developed over the past decade. However, these
minimally invasive methods are inferior to transurethral resection of the prostate due to their
limited relief of urodynamic obstruction [3]. Up to 62% of all patients treated by minimally
invasive therapeutic methods require either medical or surgical secondary treatment within 5
years [4]. Therefore, an effective and less-invasive method for BPH treatment is desirable.

BPH develops mainly in the inner gland of the prostate [5]. Contrast-enhanced ultrasound
(CEUS) has confirmed that contrast enhancement of the inner gland was much stronger than
that of the outer gland [6], consistent with the elevated angiogenesis level of the inner gland [7].

Acoustic cavitation is a major physical effect of ultrasound, referring to the formation of
bubbles and the oscillation of preexisting bubbles present in the propagation medium. It leads
to the oscillation, expansion, compression and collapse of bubbles in the medium. When the
bubbles collapse during cavitation, they can produce transient intense local heating, high pres-
sures, microstream, shock waves, light emission, etc. Cavitation can create localized surface
damage by forming fast-moving liquid jets [8, 9].

Previous studies have demonstrated that a microbubble ultrasound contrast agent can
increase the possibility of acoustic cavitation and cavitation-related vascular damage effects,
such as microvascular rupture and petechial hemorrhage [10–12], in which the microbubbles
serve as nuclei to induce cavitation [13]. These vascular effects could be therapeutically useful
in thrombolysis, disruption of the blood-brain barrier and gene or drug delivery [14–20]. At
high acoustic pressure amplitudes, microbubble-enhanced ultrasound (MEUS) could cause
severe mechanical damage to the endothelium of the capillaries or small vessels and could
result in single vessel occlusion with the help of an intravascular injection of thrombin [21].
We also have shown that the microvasculature of a rat Walker-256 tumor could be mechani-
cally disrupted by MEUS at a low acoustic intensity because tumor angiogenesis is a defective
and vulnerable target for intravascular acoustic cavitation [22]. Therefore, it may also be possi-
ble to destroy the microvasculature of BPH using MEUS.

The general hypothesis of this study was that the microvasculature of the prostate could be
disrupted using MEUS, and the vascular effects would lead to a significant reduction in prostate
blood perfusion. Hemostatic injection of an agent such as prothrombin might promote the
thrombotic effects. In this study, the initial successful disruption of the microvasculature of the
prostate using MEUS was reported.

Materials and Methods

Animals
Forty-three healthy, male, mongrel dogs from 2 to 4 years old and weighing 8–14 kg were
acquired from the Center for Experimental Animals of the Third Military Medical University.
The sample sizes were estimated according to previous studies [23, 24]. All dogs were housed
singly in stainless steel cages with a set temperature of 20–25°C and a relative humidity of
about 40% to 60%. The animals were maintained on 12-h light-dark cycles. The cages were
washed twice daily. Each animal was fed with the standard dog food and provided tap water ad
libitum. All dogs were permitted an acclimation period of approximately 1 week.
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The dogs were randomly assigned to five individual groups (Table 1) in the study. The pros-
tates of twenty-two canines were treated using MEUS (n = 11) or MEUS and prothrombin
injection (n = 11). The other 21 prostates were treated using microbubbles (MB, n = 7), ultra-
sound (US, n = 7) or prothrombin (n = 7) only and served as the controls.

Ethics statement
All of the procedures were performed in accordance with the approval of the Institutional Ani-
mal Care and Use Committee of the Third Military Medical University, Daping Hospital and
Xinqiao Hospital. All of the animals received care in accordance with the Guide for the Care and
Use of Laboratory Animals. The animals were monitored daily throughout the experiment for
heart rate, respiration rate and blood pressure. We administered an intramuscular injection of
dolantin (1 mg/kg) if there were signs of pain or distress in the animals. At the end of the experi-
ment, the animals were euthanized using an overdose of 2% sodium pentobarbital (5 ml/kg).

Therapeutic ultrasound device
The therapeutic ultrasound (TUS) was generated by a transducer, which was comprised of an
air-backed, spherically focused, 25 mm diameter concave disk (Kunshan Risheng Electronic
Co., Ltd., Kunshan, China) with a 160 mm radius of curvature [22]. This transducer was driven
by a wave generator and a power amplifier (Mianyang Sonic Electronic Ltd. Mianyang, China)
designed for it. The transducer had a 10 mm long front chamber between the disc and the poly-
imide membrane, and the chamber was filled with degassed water. The geometrical focus of
this transducer was exactly 150 mm from of the tip. To measure the acoustic output of the
transducer at a range of 1–4 cm from the tip, a needle hydrophone (TNU001A, NTR, Seattle,
WA, USA) was established, and it was adjusted by a precision 3D motion stage. This trans-
ducer was operated at the frequency of 831 KHz with a pulse length of 400 cycles and a pulse
repetition frequency of 9 Hz. The acoustic pressure (peak negative pressure) output was 4.47
MPa at 10 mm from the tip. This transducer worked in an intermittent mode, with 6 seconds
on and 6 seconds off. The working duty cycle was 0.22%, and the corresponding acoustic inten-
sity (spatial peak temporal average intensity, ISPTA) was 0.4 W/cm2.

Microbubbles
Zhifuxian [25, 26], a lipid-coated microbubble, was used for the nucleation of acoustic cavita-
tion, as well as for the contrast agent for CEUS. It was prepared by lyophilization of two lipid
suspensions, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and 1,2-distearoyl-sn–
glycerol-3-phosphoethanolamine (DSPE), followed by agitation with perfluoropropane gas
using a high-speed mechanical amalgamator. The size distribution and concentration of

Table 1. Animal group assignments and treatment protocols.

Groups TUS treatment Microbubbles Prothrombin

PMEUS (n = 11) 10 min 0.1 ml/kg 20 IU/kg

MEUS (n = 11) 10 min 0.1 ml/kg 0 IU/kg

US (n = 7) 10 min 0 ml/kg 0 IU/kg

MB (n = 7) 0 min 0.1 ml/kg 0 IU/kg

Prothrombin (n = 7) 0 min 0 ml/kg 20 IU/kg

PMEUS, microbubble-enhanced ultrasound and prothrombin; MEUS, microbubble-enhanced ultrasound; US, ultrasound; MB, microbubbles; Prothrombin,

sham ultrasound exposure and prothrombin; TUS, therapeutic ultrasound

doi:10.1371/journal.pone.0162398.t001
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microbubbles were determined using a RC-3000 Resistance Particle Counter (OMEC Technol-
ogy Co., Ltd., China). The microbubbles had a mean particle diameter of 2 μmwith 98% of the
particles smaller than 8 μm and a bubble concentration of 9×1010/mL. For CEUS, a bolus injec-
tion of 0.02 ml/kg of microbubbles was administered. For the nucleation of MEUS, a micro-
bubble suspension of 0.1 ml/kg was constantly infused during MEUS.

Treatment protocols
A 21-gauge needle was inserted into the veins of the upper extremities of the dogs for intrave-
nous injection access. Anesthesia was induced by intravenous injection of 3% sodium pento-
barbital at 1.0 ml/kg. After anesthesia was induced, the prostates of the animals were surgically
exposed.

In the US, MB andMEUS groups, prior to treatment, some exposed prostates were imaged
by two-dimensional ultrasound and CEUS using a commercial diagnostic ultrasound system
(iU22, Philips ultrasound, Bothell, WA, USA) equipped with an L12-5 linear probe. The depth,
gain, mechanical index and other settings were kept the same during the CEUS. In the MEUS
group, eleven prostates were directly contacted and insonated for 10 min using the TUS trans-
ducer coupled with gel, while the microbubble suspension was continuously intravenously
injected at 1 ml/min (0.1 ml/kg of microbubbles diluted in 10 ml of saline) at the same time.
The microbubbles were replaced by 10 ml of saline in the US group. Sham TUS insonation was
used in the MB group with a 10 ml microbubble injection. To prevent residual microbubbles in
the circulation, TUS treatment was administered 120 min after the initial CEUS study in the US
group. After treatment, CEUS was performed on the prostates again. Then, six animals in the
MEUS group and four animals in the US andMB groups were euthanized with an intravenous
injection of 3% sodium pentobarbital (1 ml/kg), and the prostates were harvested for acute path-
ological examination. The abdomens of the remaining eleven animals (including 5 from the
MEUS group) were surgically closed, and the animals were kept alive for 48 hours or 4 days
(MEUS, n = 2). Afterwards, those eleven prostates were collected for pathological examination.

In the PMEUS and prothrombin groups, prior to treatment, some exposed prostates were
imaged by two-dimensional ultrasound and CEUS using a commercial diagnostic ultrasound
system (S2000; Siemens Medical Solutions USA, Inc., Mountain View, CA, USA) equipped with
a 9L4 linear array probe (frequency ranged from 4 to 9 MHz). Depth, gain and other settings
were kept the same during the CEUS. Prior to TUS treatment, Human Prothrombin Complex
(Shanghai RAAS Blood Products Co., Ltd) at 20 IU/kg was intravenously infused in all of the
animals. In the PMEUS group, eleven prostates were directly contacted and insonated for 10
min using the TUS transducer coupled with gel, while the microbubble suspension was continu-
ously intravenously injected at 1 ml/min (0.1 ml/kg of microbubbles diluted in 10 ml of saline)
at the same time. Sham TUS insonation was used in the prothrombin group with a 10 ml saline
injection. After treatment, 2 animals in the PMEUS group were injected with Evans blue (EB)
for blood perfusion evaluation. In the other animals, CEUS was performed on the prostates
again. Then, five animals in the PMEUS group and four animals in the prothrombin group were
euthanized with an intravenous injection of 3% sodium pentobarbital, and the prostates were
harvested for acute pathological examination. The abdomens of the remaining seven animals
(including 4 from the PMEUS group) were surgically closed and the animals were kept alive for
48 hours. Afterwards, the seven prostates were collected for pathological examination.

Imaging analysis
In the MB, US and MEUS groups, CEUS was analyzed for acoustic quantification using QLAB
software, which was installed in iU22. A rectangular region of interest (ROI) included
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approximately two-thirds of the total cross-sectional area from the front of the prostate,
excluding the acoustically attenuated area (Fig 1). A time-intensity curve (TIC) was generated
automatically by the software. The data of peak intensity (PI) of the parenchyma, time to peak
enhancement (TTP) and area under curve (AUC) were derived for acoustic quantification.

In the PMEUS and prothrombin groups, for each CEUS study, a ROI of approximately
10 × 10 mm was set as the treated region (Fig 2) using Contrast Dynamics software directly on
the machine; in the treated region, a poorly enhanced area usually occurred in the PMEUS
group. The location of the ROI was kept at the same location for all subsequent images. After a
TIC was drawn by the software, the parameter of the peak was calculated automatically. The
peak was the incremental percentage of the peak contrast intensity compared with the baseline
intensity.

Fig 1. Analysis of contrast-enhanced ultrasound in the microbubble-enhanced ultrasound group. The
upper panels in A (before treatment) and B (after treatment) showed the contrast-enhanced ultrasound image
with two modes: contrast mode (left) and tissue mode (right). A rectangular region of interest was defined
inside the frontal prostate, excluding the acoustically attenuated area. The lower panels showed a time
intensity curve (TIC) generated automatically by QLAB software. (A) After a rapid ascension in acoustic
intensity, the TIC showed a relative plateau around peak intensity (representing microbubble diffusion to the
mesenchyme) and then a slow descent. (B) The ascension and descension of the TIC after treatment were
steeper, and the diffusion plateau became imperceptible or even disappeared.

doi:10.1371/journal.pone.0162398.g001

Fig 2. Analysis of the contrast-enhanced ultrasound in microbubble-enhanced ultrasound and
prothrombin treated prostates. Interface of the acoustic quantification software showing the contrast-
enhanced ultrasound and the 2-D images. (A) A spherical region of interest was set, and a time-intensity
curve was analyzed before treatment. (B) In the microbubble-enhanced ultrasound and prothrombin groups,
the curves after treatment show that the value of the peak decreased, compared with before treatment.

doi:10.1371/journal.pone.0162398.g002
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Evans blue dyeing
In the PMEUS group at approximately 20 min after EB injection, 2 treated prostates were har-
vested. Each prostate was cut into coronal sections along the urinary track and was visualized
for blood perfusion evaluation.

Pathological examination
All of the harvested prostates were first sliced into pieces approximately 4 mm in thickness for
gross examination. Then, all of the specimens obtained from the insonated prostate area were
fixed in formalin, embedded in paraffin and stained with hematoxylin and eosin. The sections
were observed using a light microscope.

Statistical analysis
All of the data are expressed as values of the mean ± standard deviation. Data were subjected to
Wilcoxon’s signed ranks test, which does not assume that population variances are equal. A p
value<0.05 was deemed a significant difference. All of the data were analyzed using SPSS soft-
ware, version 18.0.

Results
All of the animals survived the processes of anesthesia, handling, CEUS and TUS treatment.

Contrast enhanced ultrasound
Contrast enhancement of all of the prostates usually began from the peripheral major prostatic
arteries and quickly spread throughout the entire gland. Before treatment, the enhancement of
all of the prostate was homogenous with no non-enhanced area or perfusion defects (Fig 3A
and 3C). All of the TICs obtained from digital clips before treatment demonstrated a quickly
rising slope, a relative plateau of the distribution phase around the peak intensity and then a
gradually descending slope (Fig 1A). In the MEUS group, the rising time shortened, and the
distribution phase became imperceptible or even disappeared after treatment, with a steeper
ridge of the curve (Fig 1B). The acoustic quantification of TICs resulted in the TTP being short-
ened by approximately 48% (p<0.05), while the AUC decreased by approximately 22%
(p<0.05) after treatment (Table 2). However, no significant changes in PI were found (p>0.05)
(Table 2). In contrast, in the PMEUS group, CEUS showed that a significantly non-enhanced
or poorly perfused region was formed in the treated area immediately after treatment (Figs 2B
and 3B). The ROI peak value decreased from 36.2 ± 5.6 to 27.1 ± 6.3 (Table 3). In the pro-
thrombin group, the blood perfusion in the prostate after treatment remained homogeneous as
before (Fig 3C). There were no significant differences regarding PI, TTP, AUC or the peak
before or after treatment in the MB, US and prothrombin groups (Tables 2 and 3).

Evans blue dyeing
In the PMEUS group, the ultrasound irradiated part of the prostate was dark red with severe
hemorrhage, and only a small amount of EB existed in the major blood vessels. In comparison,
the control portion without ultrasound irradiation was homogeneously dyed blue. The dividing
line of the urinary track demarcated the two parts (Fig 4H). This result showed that the blood
perfusion of the prostate was partially blocked by PMEUS, consistent with the above CEUS
results (Figs 2B and 3B).
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Histological examination
Immediately after treatment in the MEUS group, the surface of the prostates became dark red,
and the cross-sections showed severe hemorrhage (Fig 4D), especially in the surrounding ure-
thral area. In the histological examination, severe and diffuse disruption of the microvessels led
to an unidentifiable endothelium. A large number of red blood cells leaked from the vascular
lumen, resulting in diffuse distribution of the microthrombi and enlarging and/or squeezing of
the stroma and the glandular lumen (Fig 5D). In the PMEUS group, gross observation demon-
strated diffuse and more severe hemorrhage throughout the central prostate. The hemorrhage
was flaky and merged together through the prostate in the direction of the therapeutic sound
beam, usually occupying more than two-thirds of the prostate section (Fig 4F). In the histologi-
cal examination, we found more severe microvascular hemorrhage, hematoma and thrombosis
in the interstitial tissues. Some red blood cells broke into the glandular cavities (Fig 5G).

Fig 3. Contrast-enhanced ultrasound images of the microbubble-enhanced ultrasound and
prothrombin and prothrombin-treated prostates. (B) The microbubble-enhanced ultrasound and
prothrombin-treated prostate, demonstrating a significant blood perfusion decrease in the targeted area. (A,
C, D) The baseline in the microbubble-enhanced ultrasound and prothrombin group (A) and all of the
corresponding contrast-enhanced ultrasound images (C: before treatment, D: after treatment) of the
prothrombin-treated prostates, showing homogenous blood perfusion.

doi:10.1371/journal.pone.0162398.g003

Table 2. Acoustic quantification of the time-intensity curves derived from contrast-enhanced ultrasound.

Groups TTP PI AUC

PRE POST PRE POST PRE POST

MEUS 28.5±10.8 14.8±5.1* 16.9±1.8 17.1±1.9 2083.8±596.2 1635.6±524.6*

US 15.2±7.7 17.0±9.9 16.8±2.1 17.4±1.8 1933.8±604.8 2008.7±505.8

MB 20.7±3.1 20.9±4.3 16.3±2.3 16.1±1.5 2194.7±776.9 2175.6±688.1

Data are expressed as the means ± standard deviations. MEUS, microbubble-enhanced ultrasound; US, ultrasound; MB, microbubbles; TTP, time to peak,

unit in seconds; PI, peak intensity, unit in dB; AUC, means area under curve, unit in dB�s
* Indicates significant differences from the PRE values (p<0.05).

doi:10.1371/journal.pone.0162398.t002
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In the prothrombin, MB and US groups, gross observation showed almost intact prostate
tissue without hemorrhage immediately after treatment (Fig 4A–4C). In the histological exami-
nation, vacuolization of epithelial cells [black arrow] was found in the US group (Fig 5B). In
the MB and prothrombin groups, histological examination demonstrated normal prostate tis-
sue, in which the interstitial tissue and glandular cavities were arranged normally. There was
no microvascular disruption or leakage of red blood cells in the interstitial tissue or glandular
cavities or other abnormalities (Fig 5A).

Forty-eight hours after treatment, gross observation showed that the hemorrhage of the
prostates became thinner and inhomogeneous in the MEUS and PMEUS groups (Fig 4E and
4G). In the histological examination, focal necrosis and diffused infiltration of neutrophils
were found in the stroma and glandular lumen 48 h later in the MEUS group (Fig 5E). Further-
more, the glandular structure collapsed, accompanied by acellular substances (Fig 5F) 4 days
later. In the PMEUS group, the normal glandular structure almost disappeared 48 h later in the

Table 3. The contrast-enhanced ultrasound peak values in the prostates before and after treatment in
the microbubble-enhanced ultrasound and prothrombin group and the prothrombin group.

Groups PRE POST

PMEUS 36.2 ± 5.6 27.1 ± 6.3*

Prothrombin 38.1 ± 7.0 37.9 ± 7.9

Data are expressed as the means ± standard deviations. Peak, unit in %; PMEUS, microbubble-enhanced

ultrasound and prothrombin; Prothrombin, sham ultrasound exposure and prothrombin

* Indicates significant differences from the PRE values (p<0.05)

doi:10.1371/journal.pone.0162398.t003

Fig 4. Prostate samples of the different groups obtained after treatment (scale bar = 5 mm). (A-C) Pictures from the prothrombin,
microbubbles, and ultrasound-treated specimens (A: Prothrombin group, B: MB group, C: US group) demonstrated normal prostate tissue
without hemorrhage. (D, E) The microbubble-enhanced ultrasound (MEUS)-treated prostate showed severe hemorrhage, especially in the tissue
surrounding the urethra (D: severe hemorrhage immediately after treatment, E: hemorrhage with irregularly shaped and blurred boundaries 48
hours later). (F, G) The microbubble-enhanced ultrasound and prothrombin (PMEUS)-treated prostate showed more gross severe hemorrhage
than the MEUS group throughout most of the gland, and the color was darker (F: severe hemorrhage immediately after treatment, G: diffused
hemorrhage with irregular shape 48 hours later). (H) Coronal plains of the prostates with a dividing line of the urinary track demarcating the two
parts after Evans blue dyeing. In the presence of microbubbles and prothrombin, the control portion (left) without ultrasound irradiation was
homogeneously dyed blue. The ultrasound irradiated part (right) was dark red with severe hemorrhage, indicating that the Evans blue stain was
blocked by PMEUS.

doi:10.1371/journal.pone.0162398.g004
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treated area. In contrast, there was significant and diffused infiltration of inflammatory cells
such as neutrophils, which filled most of the interstitium and the glandular cavities. The resid-
ual glandular epithelium and the interstitial tissues were severely compressed between the neu-
trophils, with patchy or flaky necrosis (Fig 5H). In the prothrombin, MB and US groups, the
prostates presented as normal with no hemorrhage and with infiltration of white blood cells or
necrosis 48 h later, either grossly or by histological examination (Fig 5C).

Discussion
We demonstrated the unique method of using microbubble-enhanced acoustic cavitation to
disrupt the microvasculature of the prostate. The vascular damage effects led to a significant
decrease in prostate blood perfusion, resulting in aseptic inflammation and partial tissue necro-
sis at 48 h due to the disruption.

The current treatments for BPH are physical ablation methods, which mainly attempt to
ablate or remove BPH tissues. To achieve this goal, invasive intervention is needed to deliver
high energy to the prostate. These operations are invasive and sometimes risky, and it is diffi-
cult to ablate bulk tissue [2–4, 27]. None of these techniques takes advantage of the BPH vascu-
lature as a target.

A previous study demonstrated that MEUS was capable of disrupting tumor vasculature
because the defective and vulnerable tumor angiogenesis became a sensitive target under
mechanic disruption by acoustic cavitation [22]. We hypothesized that MEUS could reproduce
the vascular disruption effects in BPH. The BPH vasculature consists of highly angiogenetic
vascularization [7] similar to tumor angiogenesis. The high microvessel density corresponds to
the highly contrasting perfused inner gland in CEUS [6], which could become a sensitive thera-
peutic target for MEUS because the high density of the microbubble contrast agent could pro-
vide sufficient cavitation nuclei for MEUS destruction.

Fig 5. Prostate samples harvested from different groups after treatment (scale bar = 25 μm in A-G and
100 μm in H). (A) Normal histological structures displayed in the MB group. (B) Vacuolization of epithelial
cells [arrowhead] was displayed in the US group immediately after ultrasound irradiation. (C) Almost
complete recovery of the affected cells 48 hours later in the US group. (D-F) Microscopic examination results
after microbubble-enhanced ultrasound (MEUS) treatment (D: Vacuolization of epithelial cells [arrowhead],
red blood cells filling the stroma [arrow], diffuse thrombosis, enlarging and squeezing of the stroma
immediately after MEUS; E: Areas of diffuse neutrophil infiltration [arrow] were observed frequently in the
stroma and glandular lumen 48 hours after treatment; F: Collapse of glandular structure [arrowhead] and
focal necrosis with pyknosis 4 days after treatment). (G, H) Microscopic examination results after
microbubble-enhanced ultrasound and prothrombin (PMEUS) treatment (G: More severe hemorrhage and
thrombosis than the MEUS group in the interstitial tissues immediately after PMEUS [white arrow]; H:
Significant squeezing and focal necrosis of prostatic tissues [black arrow] by the compression of neutrophil
infiltration 48 hours after treatment [white arrow].

doi:10.1371/journal.pone.0162398.g005
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In this experiment, MEUS was induced using a therapeutic ultrasound device, which had
previously been used in tumor vessel destruction. It is characterized by high acoustic pressure
amplitude with pulsed and intermittent ultrasound bursts. Because the device works with a low
duty cycle and at a low intensity level, the thermal effects of ultrasound are minimal and negli-
gible. Therefore, the mechanical effects (such as micro-jets, shock waves, etc.) released from
acoustic cavitation are considered to be the only possible mechanism of treatment.

The abnormal profile of the TICs after MEUS represented a lack of diffusion time, which
might indicate destroyed microcirculation, where contrast agents were distributed from major
arteries to capillaries. PI, representing the blood perfusion, showed no significant changes,
compared with before treatment. The shortened TTP showed that the blood inflow circulating
in the major arteries was accelerated, which caused a significant decrease in the AUC after
MEUS. These effects were expected to be the results of physical stimulation by cavitational
activity.

For the first time, we discovered that the microvasculature of the prostate could be substan-
tially disrupted by MEUS. Severe microvascular rupture, hemorrhage, hematoma and throm-
bosis were observed in the prostate tissues as the results of disruption. Prothrombin was added
to induce more thrombosis. Hematoma and thrombosis were distributed mainly within the
interstitial tissues, and they sometimes broke into the glandular cavities due to vascular rupture
and glandular epithelial damage (Fig 5D and 5G). These histological changes could form joint
compression that reduced the blood perfusion of the prostate. EB is an azo dye with a high
affinity for serum albumin, and it can be applied to assess blood perfusion. The blood perfusion
reduction could be confirmed by the results of CEUS and EB dyeing, which were the visually
poorly enhanced targeted area, the significant decrease in the peak value and the poor EB dye-
ing in the PMEUS-treated prostates. In this experiment, we did not acquire a complete shut-
down of prostatic blood perfusion like we did with tumor treatment [22]. Tumor angiogenesis
develops rapidly with many intrinsic defects [28], and it proved to be a sensitive and vulnerable
target for MEUS attack. Human BPH also overexpresses vascular growth factors and grows
with similar angiogenesis [7]. However, the prostates in this experiment appeared to be normal
without BPH. Normal vessels evolve with an integrated and robust wall. MEUS-induced vascu-
lar effects on normal vessels were limited to endothelial malformation or microvascular wall
rupture and not vasculature destruction or blood flow obstruction [21, 29]. Nevertheless, the
effects did induce a flow reduction and flaky necrosis of the prostates. We expect that MEUS
could produce more severe vascular disruption in human BPH and prostate cancer because
their vasculatures are angiogenetic.

In our experiment, we did not obtain a significant flow reduction in only the MEUS-treated
prostates, as we expected. Therefore, prothrombin was added to the formal experiment to
induce more thrombosis and flow reduction when the vascular damage occurred. It was obvi-
ous that no such effects occurred in the three control groups. For US treatment, there was not a
sufficient amount of microbubbles to nucleate the acoustic cavitation. The cavitation activity
was expected to be weak without injected microbubbles. Prothrombin injection without MEUS
could not find the vascular injury to cause its activation.

Prothrombin is a combination of several blood clotting factors, including factors II, VII, IX
and X. It facilitated intravascular thrombosis by activating more coagulation in this study.
However, there are risks associated with high dose prothrombin use, such as pulmonary embo-
lism, myocardial and renal infarction, limb ischemia and deep vein thrombosis [30]. Therefore,
prothrombin at a dose of 20 IU/kg, which is clinically approved for intravenous injection, was
used in our study.

This combined PMEUS treatment is different from histotripsy. Histotripsy uses a large
focusing device and a much higher acoustic pressure of 4.5 to 22 MPa [31, 32]. Our device is
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small and portable, and it operates with much less acoustic intensity. Histotripsy destroys the
entire target tissue, while MEUS disrupts only the vasculature.

PMEUS is also distinguished from high intensity focused ultrasound and other thermal
ablation techniques. These techniques ablate BPH using high local heat deposits, usually
greater than 60°C [2, 33, 34]. However, our device could not generate a temperature increase
because of the low duty cycle and the low acoustic intensity. Therefore, we believe that cavita-
tion was the only mechanism of vascular damage. This technique exploits the prostate neovas-
culature as a target, overcoming the side effects of thermal ablative techniques.

Due to the flow reduction and vascular trauma, PMEUS led to prostatic ischemia and asep-
tic inflammation, resulting in patchy necrosis and the infiltration of neutrophils. We presume
that BPH tissues could be partially ablated, relieving obstruction of the urinary tract, along
with the absorption of necrotic tissues or inflammation.

Despite the findings, this preliminary study had many limitations. For example, two differ-
ent types of ultrasound equipment were used to evaluate blood perfusion of the prostate in this
experiment. Additionally, we did not evaluate the long-term histological effects of PMEUS
treatment on the prostate, which are future steps of this study.

Conclusions
In summary, we found that MEUS could disrupt the microvasculature of the prostate, resulting
in massive prostatic necrosis. This simple and presumably noninvasive therapeutic method
could become a new physical therapy for BPH.
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