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with docking
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Behrouz Shamsaei1,5, Marcin Pilarczyk1, Mehdi Fazel-Najafabadi1, Rafal Adamczak6,  
Michal Kouril3,7, Surbhi Bhatnagar3,8, Sarah Hummel9, Wen Niu1, Ardythe L. Morrow1,  
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Yi Zheng7,12, David A. Hildeman7,9, Mario Medvedovic1,2, Andrew B. Herr7,9,13*, Jarek Meller1,2,3,6,7,8*

We present an in silico approach for drug discovery, dubbed connectivity enhanced structure activity relationship 
(ceSAR). Building on the landmark LINCS library of transcriptional signatures of drug-like molecules and gene 
knockdowns, ceSAR combines cheminformatic techniques with signature concordance analysis to connect small 
molecules and their targets and further assess their biophysical compatibility using molecular docking. Candidate 
compounds are first ranked in a target structure–independent manner, using chemical similarity to LINCS analogs 
that exhibit transcriptomic concordance with a target gene knockdown. Top candidates are subsequently rescored 
using docking simulations and machine learning–based consensus of the two approaches. Using extensive bench-
marking, we show that ceSAR greatly reduces false-positive rates, while cutting run times by multiple orders of 
magnitude and further democratizing drug discovery pipelines. We further demonstrate the utility of ceSAR by 
identifying and experimentally validating inhibitors of BCL2A1, an important antiapoptotic target in melanoma 
and preterm birth–associated inflammation.

INTRODUCTION
Accelerating drug discovery and repurposing are paramount for the 
development of targeted treatment options for precision medicine 
and the ability to respond to public health crises, such as the COVID-19 
pandemic. Systematic efforts for drug discovery rely on high-
throughput in vitro or ex vivo screening approaches, often in con-
junction with in silico screening of small-molecule libraries resulting 
in a large number of candidate compounds targeting the druggable 
part of the genome (1–3). Parallel advances in pharmacogenomics 
and large-scale candidate drug profiling in cell lines and other model 
systems, such as Connectivity Map (4), NCI60 (5) and Cancer Cell 
Line Encyclopedia (6), or Genomics of Drug Sensitivity in Cancer 
(7), have further revolutionized drug discovery, target and mode of 
action prediction, and repurposing (8). Transcriptional signature 
connectivity analysis has been used for drug target discovery and to 
identify drugs that may reverse a signature of a disease state or have 

the same mode of action because of the similarity of their signatures 
(4, 9–13).

With the goal of connecting drugs and their targets, the Library 
of Integrated Network- based Cellular Signatures (LINCS) consor-
tium has compiled a library of transcriptional signatures for over 
15,000 drug- like molecules and ~4400 gene knockdowns (KDs), as 
well as over 2000 overexpression constructs in multiple cell lines 
(12, 13). As a result, LINCS transcriptional signatures can be used to 
directly correlate downstream transcriptional responses induced by 
chemical perturbations with those induced by loss or gain of func-
tion of the target protein. Thus, LINCS enables direct exploration of 
drug- gene relationships on previously unattainable scales by con-
necting substantial subsets of both the drug- like universe of small 
molecules and druggable genome (13–15). While showing great 
promise as a unique big data resource for pharmacogenomics, we 
posit that systematic benchmarking and integrative methods are re-
quired to establish the extent to which LINCS can be used to iden-
tify compounds that directly target specific proteins.

Signature concordance–based identification of putative inhibitors 
has the advantage of not requiring the target protein structure. On 
the other hand, because of the nature of signal transduction path-
ways, similar downstream transcriptional signatures may result from 
the loss of function of multiple upstream proteins in signaling cas-
cades or pathways converging on the same transcriptional targets, 
such as signaling cascades involving multiple kinases and phosphor-
ylation events between a growth receptor and a transcription factor 
in many types of cancer (16). Thus, the analysis of concordance be-
tween signatures of small molecules and the target gene KD is likely 
to identify candidate molecules that serve as pathway inhibitors and 
not necessarily direct inhibitors of the target protein.

For example, a signature connectivity analysis to nominate putative 
inhibitors of SRC may identify compounds targeting the epidermal 
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growth factor receptor (EGFR)–SRC–JUN signaling cascade as 
“concordant,” i.e., positively correlated with the SRC KD signature, 
although only one of them targets SRC directly (Fig. 1). To achieve a 
higher specificity to a given target in a pathway, the predicted binding 
affinity to the target protein may be used to complement the signature 
connectivity–based approach and identify consensus candidates. In 
this context, in silico docking techniques have been widely used to 
computationally predict binding affinities between small molecules 
and their structurally resolved targets, often coupled with structure ac-
tivity relationship (SAR) analysis to reduce high positive rates in drug 
screening by considering a family of moieties sharing chemical simi-
larity and to further increase specificity for validated hits (17).

Here, we introduce an integrative approach for drug discovery, 
dubbed connectivity enhanced SAR (ceSAR), that combines the 
principles of transcriptional signature concordance and biophysical 
complementarity. Capitalizing on the LINCS library of transcrip-
tional signatures, ceSAR integrates drug and target transcriptional 
signature connectivity analysis with cheminformatic and virtual 
screening approaches. A library of candidate compounds is reduced 
via fast chemical similarity search to identify those candidates that 
are structural analogs to a concordant LINCS small molecule. For a 
target gene, concordant LINCS small molecules are identified as 
those compounds whose signatures are concordant with a gene KD 
signature. The resulting small subset of candidate compounds can 
be subsequently rescored in conjunction with docking, using con-
sensus ranking and machine learning (ML)–based models to com-
bine these two complementary approaches.

Building on this overall principle, we aim to accelerate drug dis-
covery by (i) demonstrating that the success rate in identifying can-
didate inhibitors of specific protein targets can be improved through 
the integration of transcriptional signature connectivity analysis 
with a targeted molecular docking; (ii) extending the signature 

connectivity analysis to an arbitrary set of user-provided candidate 
molecules that were not profiled as part of LINCS; and (iii) intro-
ducing an ultrafast method to compute chemical similarity and 
identify concordant LINCS analogs as a basis for efficient ranking of 
candidate molecules. By integrating these advances, ceSAR is shown 
to substantially reduce false-positive rates while greatly lowering the 
overall computational cost of virtual screening.

RESULTS
Benchmarking ceSAR
We systematically evaluate the performance of ceSAR and compare 
it with the results of AutoDock (18) and MTiOpenScreen (19) dock-
ing methods, using a diverse subset of targets from the DUD-E 
benchmark, which is widely used in the field to assess the perfor-
mance of docking and virtual screening methods (20). For each target, 
DUD-E contains a library of compounds to be scored, on average 
(see table S2) comprising about 550 known binders, i.e., true posi-
tives, and 20,000 carefully selected drug-like decoy molecules classi-
fied as true negatives. Thus, DUD-E benchmark provides the ground 
truth to determine the success rate of virtual screening methods and 
assess their ability to discriminate between the known binders and 
decoys (20). Here, we used a subset of 20 targets from the DUD-E 
benchmark that had gene KDs available within LINCS. For direct 
comparison and evaluation of consensus methods, we performed 
docking simulations for DUD-E libraries using AutoDock v. 4.2 and 
the original target conformations and binding sites from the DUD-E 
benchmark. For a subset of DUD-E targets and for the original 
DUD compound libraries, we also performed docking simulations 
using the MTiOpenScreen web server. The results of the latter are 
included in the Supplementary Materials.

Signature concordance, chemical similarity, and docking derived 
features can be combined in multiple different ways. Therefore, we 
systematically evaluated several forms of ceSAR that are defined 
in Fig. 2, including the ultrafast ligand-based and consensus-based 
approaches. In the simplest and structure-independent form of the 
method, which is referred to as ceSAR-S (for signature-based), 
candidate molecules are ranked using a chemical similarity score, 
which is the Tanimoto coefficient (21) for the closest concordant 
LINCS analog. Here, concordant is defined as having a significantly 
positively correlated signature with a target gene KD signature (22). 
We also consider an alternative form of the method, referred to as 
ceSAR-S*, that combines signature concordance and chemical simi-
larity to the analogs using the Fisher consensus.

To combine signature connectivity with docking, we consider a 
simple form of consensus, referred to as ceSAR-C, which defines the 
combined rank of candidate molecules as the geometric average of 
signature connectivity and docking-based ranks. If docking is per-
formed for all compounds in the library, then the method is referred 
to as ceSAR-C100. When the library is first reduced using ceSAR-S to 
the top 5 or 1% of the library, consensus forms of the method are 
referred to as ceSAR-C5  and ceSAR-C1, respectively. The corre-
sponding ML consensus approaches are referred to as ceSAR-cML1 
and ceSAR-cML5.

We first compare ceSAR and docking methods in terms of com-
puting time. Figure 3 shows that ceSAR-S with the ultrafast minSim 
(minority Sim) algorithm to compute Jaccard similarity (here Tani-
moto coefficient) is about 50,000 times faster than docking. Thus, 
ligand-based and structure-independent ceSAR-S has a negligible 

Fig. 1. The overall principle of the ceSAR approach. Candidate molecules are 
first ranked by their chemical similarity to concordant LINCS analogs, i.e., drug-like 
molecules with transcriptional signatures concordant to a signature of the target 
gene KD (red box), and subsequently reranked by docking simulations to assess 
their biophysical complementarity with the target protein (blue box). By combin-
ing signature concordance and biophysical complementarity, the library of candi-
date compounds is reduced to a small subset enriched for true positives (TP) for 
further validation (yellow box). Here, a fictitious SRC KD signature consists of six 
genes, with blue indicating down-regulated and yellow indicating up-regulated 
genes. Signatures of three compounds targeting the EGFR-SRC-JUN cascade are 
concordant with that of SRC KD, but only the actual SRC inhibitor (green circle) is 
found to fit the binding pocket by docking.
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computational cost relative to docking simulations and can be exe-
cuted within minutes on a personal laptop for a typical DUD-E li-
brary of about 20,000 candidate molecules. On the other hand, 
ceSAR-C1 and ceSAR-cML1 reduce the computational time 100-fold 
compared to docking, as only the top 1% of the library, reduced by 
using ceSAR-S, needs to be screened by docking. Thus, performing 
targeted docking for a small subset of the entire library selected by 
the structure-independent and fast ceSAR-S still greatly reduces the 
computational cost. We next evaluate whether these gains in speed 
come at a cost in terms of accuracy.

The success of virtual drug screening is critically dependent on 
the ability to retain at least some true binders as the library is reduced 

to a small subset amenable to experimental validation. Therefore, we 
start the evaluation of ceSAR methods using the top true-positive 
rank as an important and easy to interpret metric of success (Fig. 4). 
While AutoDock performs well on four targets [ESR1, EGFR, Factor 
Xa (FXa), and Thrombin], nominating a true binder as the top-
ranking candidate, it also fails to identify at least one true positive 
in the top 100 compounds for four targets [mitogen-activated pro-
tein kinase 14 (MK14), dihydrofolate reductase (DHFR), peroxisome 
proliferator–activated receptor (PPARG), and heat shock protein 90 
(HSP90)]. Signature concordance–based ceSAR-S nominates a true 
positive as the top-ranking candidate for five targets [ESR1, vascular 
endothelial growth factor receptor 2 (VGFR2), glucocorticoid 

Fig. 2. The hierarchy of ceSAR methods. Dependencies and notation for the hierarchy of ceSAR methods introduced and benchmarked in this work (A) and the overall ceSAR-S 
workflow (B). Note that the methods highlighted in red in (A) do not depend on protein structure. ceSAR-S (and ceSAR-S*) workflow shown in (B) is implemented in sig2lead.net 
and stand-alone sig2lead application that combine signature connectivity analysis for LINCS compounds with chemical similarity analysis for user defined compounds. The latter 
is scored on the basis of their chemical similarity to concordant LINCS analogs. Note that sig2lead allows for user defined loss-of-function transcriptional signatures when a LINCS 
KD signature is not available.

http://sig2lead.net
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receptor (GCR), SRC, and HSP90], while failing to identify at least 
one true positive in the top 100 compounds for only two targets 
[Thrombin and purine nucleoside phosphorylase (PNP)].

ceSAR-S performs well on targets on which AutoDock fails, 
whereas AutoDock performs well when ceSAR-S fails. Thus, the 
two approaches are complementary, enabling the ceSAR consensus 
methods to perform better relative to individual methods. Both, 
ceSAR-C1 and ceSAR-cML1 are very robust, failing to identify at 
least one true positive in the top 10 compounds for only two and 
three targets, respectively. The number of “catastrophic failures” 

without a single true positive in the top 100 compounds is further 
reduced to only two targets (Thrombin and PNP) for ceSAR-C1 and 
one target for ceSAR-cML1 (Thrombin).

Even the simple ceSAR-C1 consensus method selects a true posi-
tive as the top-ranking candidate for 10 targets. While real-life 
applications typically require multiple compounds to be tested, the 
DUD-E benchmark shows that combining signature connectivity 
and docking yields a 50% success rate with just one compound to be 
tested experimentally, as opposed to a 25% success rate for ceSAR-S 
and 20% for AutoDock. When combining all methods evaluated 
here, one can further increase the sensitivity and achieve a 100% 
success rate on the DUD-E benchmark by selecting for further 
experimental validation the union of top 10 candidates nominated 
by each of the four methods.

The performance of ceSAR methods is further summarized in 
Fig. 5, using the median and individual precision curves for 20 tar-
gets. Precision curves show the percentage of true binders upon 
reducing the DUD-E compound libraries to small subsets amenable 
to further validation. Note that the precision, or positive predictive 
value, defined as PPV = TP/(TP + FP), where TP denotes the num-
ber of true-positive predictions and FP denotes the number of false-
positive predictions, captures the fraction of true binders as the 
library is reduced. Thus, PPV measures the likelihood of success-
fully identifying an inhibitor through experimental validation of a 
library subset.

AutoDock is successful in eliminating the most unlikely binders 
using biophysical small molecule–target protein complementarity 
and the predicted binding energies, leading to initial success and 
higher precision at the level of 5 to 10% of the original library size. 
However, docking struggles to correctly rank true positives and the 
remaining more challenging true negatives, resulting in a drop of 
accuracy as the size of the library is reduced further.

On the other hand, despite its negligible computational cost, 
ceSAR-S yields precision of 10% or more as the library is reduced to 
the top 2% or less, while outperforming AutoDock at the furthest 
library reduction, for which it yields a median precision of about 

Fig. 3. Average speedup (in logarithmic scale) on 20 DUD-E targets for meth-
ods relative to AutoDock. ceSAR The consensus approaches ceSAR-C1 (yellow) 
and ceSAR-cML1 (green) reduce the run time by 100× compared with docking. 
Structure-independent ceSAR-S reduces the run time by ~560× when using the 
fpSim function that represents current methods (see Materials and Methods) to 
compute the chemical similarity (ceSAR-S:fpSim, dark red) and by ~48,000× when 
using the ultrafast minSim (ceSAR-S:mSim, red) algorithm introduced in this work.

Fig. 4. Top true-positive ranks for 20 DUD-E targets. Results for AutoDock (blue), ceSAR-S (red), ceSAR-C1 (yellow), and ceSAR-cML1 (green) consensus approaches. Note 
complementarity of signature connectivity and docking approaches, with ceSAR working well when docking fails for the last five targets (SRC, MK14, DHFR, PPARG, and 
HSP90), while docking working well when ceSAR fails (Thrombin and PNP). Note also that the consensus methods are more robust and outperform both AutoDock and 
ceSAR-S in terms of the number of targets with a true positive as the top-ranking candidate or within the top 10 candidates. CDK2, cyclin-dependent kinase 2; COX2, 
cyclooxygenase 2.
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Fig. 5. Precision curves for 20 DUD-E targets. The median (A) and individual (B) precision curves for 20 DUD-E targets as a function of the library size. AutoDock is com-
pared with ceSAR-S and consensus approaches, ceSAR-C1, ceSAR-C5,and ceSAR-C100, and ML-based ceSAR-cML1 and ceSAR-cML5, and with a simple baseline method 
(Baseline) that ignores signature connectivity and accounts for compositional biases in LINCS compound library.
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20% compared to 10% for docking. Note that DUD-E target librar-
ies comprise, on average, ~20,000 candidate compounds, so reduc-
ing the library size to less than 1% is desirable to reduce the number 
of compounds for testing, reflecting real-life challenges. In addition, 
note that ceSAR-S improves consistently upon baseline, which ig-
nores signature concordance while identifying the closest LINCS 
analogs of DUD-E compounds. Comparison with this defined base-
line allows one to account for biases in LINCS coverage of different 
compound classes and to assess the signal due to signature concor-
dance, which is represented by the surface area between the red and 
black curves.

The consensus forms of ceSAR lead to further improvements, 
outperforming AutoDock for library sizes below 0.5%. At the most 
reduced library size, the median precision reaches about 30, 35, and 
40% for ceSAR-C1, ceSAR-cML1, and ceSAR-cML5, respectively. 
Thus, consensus ceSAR methods yield between three- and fourfold 
improvement over docking. ceSAR-C1 and ceSAR-cML1 consensus 
methods, which use docking for the top 1% of the library ranked by 
ceSAR-S, have the most significantly different distributions over 20 
targets with respect to the baseline, as well as to individual AutoDock 
and ceSAR-S methods, as measured by the Kullback-Leibler diver-
gence measure (fig. S14), while offering a substantial speedup since 
only a small fraction (1%) of the library needs to be rescored using 
consensus with docking. We conclude that ceSAR-C1 and ceSAR-
cML1 consensus methods provide the best trade-off between speed 
and accuracy on the DUD-E benchmark, while the performance of 
consensus-based methods is robust with respect to the choice of the 
top library subset for integration with docking.

Another metric of success in virtual screening is the enrichment 
into true positives as the library is reduced. Enrichment factor is 
defined as the ratio of true-positive fraction in a subset of the library 
versus the initial true-positive fraction in the entire library. Since for 
DUD-E compound libraries, the initial true-positive fraction is 
about 2.5% on average, at the furthest library reduction, AutoDock, 
ceSAR-S, ceSAR-C1, and ceSAR-cML1 yield about 4-, 8-, 12-, and 
14-fold enrichment on average, respectively (Fig. 6). However, there 
are considerable differences in the level of success for different tar-
gets, as also illustrated by individual precision curves in Fig. 5B, as 
well as receiver operating characteristic and precision-recall curves 
in fig. S18.

ceSAR performs very well on kinases and moderately well on 
nuclear receptors, while docking alone is less robust and fails for 
some targets in those classes. While the degree of success varies con-
siderably for other enzymes and miscellaneous targets (DUD-E 
definitions), the results are more robust for the two consensus meth-
ods, underscoring the complementarity of signature connectivity 
and docking-based scores. This is further highlighted in Fig. 6B by 
comparing the number of targets with at least fivefold enrichment as 
opposed to the number of targets with limited or no enrichment. 
The consensus ceSAR methods fail to enrich substantially for only 
four targets and ceSAR-S for eight targets, as compared with 11 such 
failures for AutoDock. A more detailed analysis of enrichment fac-
tors is included in table S7.

Overall, multiple metrics of success show that ceSAR is more 
robust in comparison with docking, which performs well on some 
targets while also failing completely for multiple targets in terms of 
enrichment at the extreme library reductions or top true-positive 
rank. Meanwhile, when combined with the initial reduction of 
compound libraries by ceSAR-S, targeted docking provides a 

complementary principle to rescore the candidate compounds 
identified through signature connectivity, resulting in increased 
performance of ceSAR consensus approaches.

To further investigate the sources of success and limitations of the 
method, we tested AutoDock Vina as an alternative docking method 
for rescoring a small subset of the library identified by ceSAR-S. In a 
direct comparison of AutoDock and AutoDock-based ceSAR results 
from this work with those reported in a recent evaluation of DOCK 
3.7 and AutoDock Vina on DUD-E benchmark (23) included in 
table S7, AutoDock Vina slightly outperforms AutoDock in terms of 
the adjusted log area under the curve while achieving substantially 
higher median enrichment at 1% library size, although further en-
richment is strongly target dependent, similar to AutoDock.

We used the MTiOpenScreen docking server that uses AutoDock 
Vina to compare the results with AutoDock. On a subset of eight 
DUD-E targets included in fig. S23, the consensus ceSAR-C1 with 
AutoDock Vina yields median precision of about 41 at 0.1% library 
reduction, compared with about 39% for ceSAR-C1 with AutoDock 
on the same subset of targets, indicating that both docking methods 
can discriminate false positives that remain after the initial, signature 
concordance–based library reduction. Similar trends are observed 
on the original DUD benchmark, using the MTiOpenScreen dock-
ing server. Together, these results demonstrate robustness across 
docking programs and different candidate compound libraries.

Identification of BCL2A1 inhibitors using ceSAR
Although such an approach is less efficient, ceSAR can be extended 
to incorporate signature connectivity–based rescoring after using 
docking to reduce the library size. Note that this is different from the 
consensus approaches considered above in that the order of library 
reduction is reversed. On the DUD-E benchmark, first, reducing the 
library to the top 1% using AutoDock and then rescoring using a 
simple consensus of AutoDock and ceSAR-S yielded median preci-
sion of about 27% at the furthest library reduction, i.e., better than 
individual methods but slightly worse than ceSAR-C1. The AutoDock 
first form of the combined approach is tested here to identify specific 
inhibitors of an important antiapoptotic target, namely, BCL2A1 
(A1). A1 has been implicated in a number of diseases, ranging from 
inflammation in preterm birth (24) to chemotherapeutic resistance 
in melanoma (25). To date, very few small-molecule inhibitors spe-
cific to A1 have been identified.

Most antiapoptotic proteins prevent apoptosis by binding and 
sequestration of proapoptotic proteins, achieved via binding to their 
“BH3” domain (26). A major success in targeting this family was the 
development of a Bcl-2 inhibitor ABT-737 (27), which was modified 
to a bioavailable version ABT-263 or navitoclax. Unfortunately, 
ABT-263 also bound Bcl-xL, whose role in promoting platelet sur-
vival leads to thrombocytopenia in humans (28). This observation 
spurned the development of ABT-199, which showed specificity for 
Bcl-2 without inhibiting Bcl-xL (29, 30). Thus, despite their struc-
tural similarity, it is possible to selectively target individual Bcl-2 
family members.

To address this, we screened a compound library of 90,087 drug-
like small molecules using AutoDock v. 4.2. The top 300 compounds 
found by docking were clustered, and representatives of each cluster 
were tested in vitro using a differential scanning fluorimetry (DSF) 
thermal shift assay to detect compound binding to BCL2A1, and a 
fluorescence polarization (FP) competition assay to test for inhibi-
tion of Noxa BH3 domain binding to BCL2A1 (Fig. 7A). The top 20 
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Fig. 6. Enrichment factors for DUD-E targets at 0.1% library. (A) Fold enrichment into true positives, defined as the ratio of true-positive fraction for full versus reduced 
library for AutoDock (blue) versus ceSAR-S (red) and consensus methods ceSAR-C1 (yellow) and ceSAR-cML1 (green). (B) The number of targets with ≥5-fold enrichment 
versus limited or no enrichment (gray) at 0.1% library reduction. Note that ceSAR approaches are more robust and consensus methods ceSAR-C1 and ceSAR-cML1 signifi-
cantly outperform docking (P = 0.02), reducing the number of targets with limited or no enrichment to four while greatly reducing the computational cost. Statistically 
significant differences are indicated by arrows with asterisks (*) in (B).
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compounds identified by the combination of DSF and FP assays are 
listed in Table 1; 15 of the top 20 hits showed Ki values in the low 
micromolar range.

ceSAR-S was subsequently applied to rescore the subset of com-
pounds selected for experimental validation. As before, ceSAR-S 
and docking results are combined into consensus ceSAR-C ranking 
using the geometric mean of AutoDock and ceSAR-S ranks. Com-
pounds were classified as inhibitors for the sake of benchmarking 
the AutoDock first ceSAR method if they caused a thermal shift 
upon addition to the BCL2A1-Noxa reaction and had a median in-
hibitory concentration (IC50), as defined by dose-response FP, of 
400 μM or less, which corresponded to a Ki of 20 μm or less. As 
shown in fig. S24, as the set of compounds is reduced to a subset, 

both ceSAR-S and ceSAR-C yield a higher precision and enrichment 
into experimentally validated inhibitors relative to AutoDock alone. 
These results provide support for the hypothesis that a set of puta-
tive weak binders identified experimentally (and guided by the ini-
tial virtual screening) can be successfully reduced to an enriched 
subset using ceSAR-S rescoring in conjunction with docking and 
thus reduce the number of compounds for more stringent validation.

Given the role of Bcl2A1 in the survival of T lymphocytes (31), 
we used an in vitro T cell survival assay to determine specificity of 
Bcl2A1 inhibition in a biologically relevant system. In addition, 
we took advantage of Bax/Bak-deficient T cells as these cells lack 
the ability to undergo apoptosis via the Bcl2-regulated pathway 
(32) and serve to control for off-target toxicity. Two compounds 

Fig. 7. Experimental validation of in silico candidate compounds targeting BCL2A1. A total of 116 compounds, identified initially by AutoDock and rescored using 
ceSAR, along with 23 structural analogs were tested experimentally by FP and DSF. These 139 compounds are shown in (A), with top 20 candidates ranked by AutoDock, 
ceSAR-S, and ceSAR-C highlighted in blue, red, and yellow, respectively. At a single high dose, several compounds showed inhibition of the BCL2A1-Noxa interaction, in-
cluding some of the most promising candidates nominated by the consensus ceSAR-C approach. Dose-response FP curves for two candidate compounds, with IC50 values 
indicated by vertical lines, are shown in (B). These compounds were predicted to bind within the BH3 peptide binding pocket (C and D) in a manner that would drive 
competitive inhibition of BH3 binding (E). These compounds were demonstrated to induce the death of wild-type, but not bax−/−bak−/− activated T cells, with a box dis-
playing the potential therapeutic window in (F and G).
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demonstrated a therapeutic window in the low micromolar range in 
which they induced the death of activated T cells while failing to kill 
T cells derived from bax−/−bak−/− mice, indicating specific inhibi-
tion without off-target effects in this concentration range (Fig. 7, F 
and G). More results of experimental validation, including detailed 
results of screening by FP and DSF, are included in figs. S25 to S27 
and tables S8 and S9.

Thus, rescoring candidate compounds obtained using docking 
simulations can yield further enrichment into true positives and lim-
it the compounds that need to be tested experimentally. Conversely, 
observed enrichment into true positives for an important and chal-
lenging target illustrates how a set of experimentally identified weak 
binders can be used to seed signature connectivity–based ceSAR 
search with the goal of identifying additional candidate compounds.

DISCUSSION
Accelerating drug discovery and repurposing are paramount for 
advancing personalized precision medicine. In this contribution, we 
introduce ceSAR, an efficient in silico method to accelerate drug dis-
covery and repurposing. ceSAR improves upon existing approaches 
by (i) extending the application of transcriptional signature connec-
tivity analysis to an arbitrary set of candidate compounds that are not 
included in LINCS; (ii) enabling ultrafast chemical similarity search 
for concordant LINCS analogs using the minSim algorithm intro-
duced here; and (iii) combining small-molecule docking simulations 

with signature connectivity analysis to increase the specificity for a 
target protein. By reducing false-positive rates while also greatly re-
ducing the computational cost of virtual screening, ceSAR addresses 
two major limitations of current virtual screening approaches.

Over the past two decades, transcriptional and other drug activ-
ity profiles have been increasingly used in drug design, mode of ac-
tion identification, and SAR analyses (4, 12, 33, 34). For example, 
identifying targets for small molecules, thus identifying these mol-
ecules as potential inhibitors, can be facilitated by comparing bioac-
tivity profiles or transcriptional signatures of a compound to known 
inhibitors (33). Another example is the use of the connectivity map 
approach to connecting gene expression profiles of disease states, 
such as drug-resistant forms of cancer, with discordant drug signa-
tures, allowing one to identify drugs that can potentially be used to 
reverse the disease signature (4, 12, 15).

In contrast to these previous efforts, ceSAR directly connects the 
transcriptional signatures of small molecules with the signature of a 
gene KD to identify antagonists of a specific target rather than a 
potential pathway inhibitor. To that end, ceSAR combines signature 
connectivity analysis with atomistic docking simulations and pre-
dicted binding energies to improve specificity. We would like to note 
that overexpression signatures could be used to identify agonists of 
a specific target, which is the subject of a future study.

ceSAR capitalizes on the LINCS transcriptional signature database 
that made available a large library of both small-molecule perturba-
tion signatures and genetic perturbation signatures, thus covering a 

Table 1. Top 20 compounds based on experimental validation using consensus of DSF and FP. Compounds are listed in rank order based on the geometric 
mean of ranks obtained using two complementary experimental assays: the absolute value of Tm change determined by DSF and high-dose degree of inhibition 
determined by FP. Note that the top three compounds by experimental consensus were identified within the top 10 ceSAR-C consensus ranks. Highlighted in 
bold are two compounds that induced cell death in an activated T cell death assay, consistent with inhibition of the prosurvival BCL2A1 protein. NA, not 
applicable.

ZINC ID Experimental rank AutoDock rank ceSAR-S rank ceSAR-C rank FP IC50 (μM) Ki (μM)

ZINC01717014 1 67 2 5 146 7.39

ZINC05930871 2 3 80 10 70.1 3.55

ZINC04974300 3 6 23 6 27.3 1.38

ZINC04934733 4 64 51 75 >400 >20.3

ZINC04804154 5 91 57 90 254 12.9

ZINC04803984 6 102 77 104 31.8 1.61

ZINC01679491 7 44 46 52 >400 >20.3

ZINC01673413 8 37 40 41 4.5 0.23

ZINC04758328 9 72 61 82 68.9 3.49

ZINC01592019 10 103 72 100 299.4 15.2

ZINC01593456 11 89 19 48 48.5 2.46

ZINC05839997 12 43 70 70 >400 >20.3

ZINC01650974 13 100 25 62 28.3 1.43

ZINC01600320 14 22 14 12 21.3 1.08

ZINC03194765 15 79 10 25 55.4 2.81

ZINC04366919 16 29 78 56 103 5.22

ZINC04409853 17 63 49 71 387 19.6

ZINC05840007 18 53 76 79 49.1 2.49

ZINC04367231 19 87 63 91 NA NA

ZINC00344612 20 31 45 39 >400 >20.3
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substantial subspace of the drug-like chemical universe and drugga-
ble subset of the genome in one or multiple biological contexts (12, 
13). While building on LINCS, the signature connectivity–based 
ceSAR-S method integrates chemical similarity and signature con-
nectivity analyses to increase overall success rates and expand virtual 
screening and SAR analysis to other suitable libraries of compounds, 
including those identified in high-throughput experimental screening.

Docking-based in silico screening, on the other hand, relies on 
shape, electrostatics and other interaction-based complementarity 
between putative inhibitors and target proteins, requiring structural 
information about the target and its relevant conformational states 
that may be unavailable (35). The results of docking simulations 
may also be sensitive to the choice of the target’s conformation, em-
pirical force fields, docking programs, and sampling depth (4, 12, 
15). In addition, traditional virtual screening approaches require 
substantial computing resources, so reducing the scope of docking 
simulations to a more targeted set of candidates, by applying ceSAR-S 
as the initial filter, is highly desirable.

ceSAR-S ranks candidate molecules based on their chemical 
similarity to concordant LINCS analogs, which involves computing 
pairwise similarities between user-provided candidate compounds 
and LINCS compounds. To address this computational bottleneck, 
we developed an efficient solution for computing the Tanimoto 
coefficient and retrieving concordant LINCS analogs with sparse 
binary fingerprints used here for fast chemical similarity search. The 
algorithm, dubbed minSim, reduces the computation to minority 
states and optimally exploits the sparse nature of binary fingerprints 
without using approximate techniques, such as those based on hash-
ing (36, 37). As shown in table S1, for the retrieval from the LINCS 
library for different DUD-E datasets, minSim provides between 60- 
and 150-fold speedup compared to fpSim function, which repre-
sents current approaches for exact chemical similarity search (38). 
Note that these speedups are consistent with the observed levels of 
sparsity in the LINCS dataset, while reflecting the varying degree of 
sparsity in DUD-E datasets of query molecules.

Overall, the average central processing unit (CPU) time per DUD-E 
target required to perform ceSAR-S search was about 3.7 CPU min-
utes on a laptop computer with two Intel i5-4200U @ 1.6-GHz cores. 
For comparison, the average CPU time per target required to perform 
AutoDock simulations, using the search depth and grid sizes defined 
in the Supplementary Materials, was on the order of 3000 CPU hours 
on a computational cluster consisting mostly of 16 Intel (R) Xeon (R) 
CPU E5-2667 v3 @ 3.20-GHz core nodes. Thus, ceSAR-S reduced run 
times by roughly 50,000-fold compared to AutoDock. This marked 
speedup makes it possible to perform in silico enrichment on large 
chemical libraries on a personal computer, without the need to use a 
high-end computing platform.

Despite its negligible computational cost, the connectivity-based 
and target structure–independent ceSAR-S method achieves two-
fold improvement over AutoDock in terms of the median precision 
at the furthest library reductions. The initial ceSAR-S search can be 
subsequently combined with docking simulations to achieve higher 
specificity for a target by filtering out different subsets of likely false 
positives: those that fail to induce signatures concordant with a KD 
of the target gene versus those that are deemed as incongruent with 
the target protein binding site. The complementarity of these two 
principles is demonstrated in figs. S1 to S4.

ceSAR-C1 and ceSAR-cML1 consensus methods yield three- to 
fourfold increases in median precision and enrichment of true 

binders compared to docking alone, while still greatly reducing the 
overall computational cost compared to docking alone. In terms of 
the top true-positive rank, ceSAR-C1 yields a 50% success rate with 
just one (top ranking) compound to be tested experimentally, as 
opposed to a 20% success rate for ceSAR-S or AutoDock. The con-
sensus approach is also shown to be more robust, as docking and 
ceSAR-S fail on different targets. As a result, the fraction of targets 
with limited or no enrichment at 0.1% library size is 55% for 
AutoDock, 40% for ceSAR-S, and only 20% for consensus ceSAR-C1 
and ceSAR-cML1 methods. Likewise, the number of targets for 
which none of the true positives is ranked among the top 100 can-
didates is reduced from four for AutoDock to two for ceSAR-S and 
ceSAR-C1 and one for ceSAR-cML1.

Note that the success of ceSAR is not due to overrepresentation 
of known binders from DUD-E datasets among the LINCS com-
pounds. As can be seen from table S2, both true binders and decoys 
from DUD-E have a similar overlap with the LINCS library, as indi-
cated by similar distributions of Tanimoto coefficients for the closest 
LINCS analogs for both subsets. Furthermore, the baseline approach 
that ignores signature connectivity and simply uses the Tanimoto 
coefficient to the closest LINCS analog, irrespective of its “concor-
dance” with the target KDs, performs poorly as demonstrated in 
figs. S12 to S14 and S17.

AutoDock outperforms signature connectivity enhanced ceSAR 
methods in the case of three targets: HMGCR, Thrombin, and 
PNP. None of these three targets have robust coverage of close 
LINCS analogs of true binders in their respective DUD-E datasets 
(Fig. 8A and table S2); furthermore, they are characterized by rela-
tively weak concordance between LINCS small-molecule and KD 
signatures (fig. S9). These failures underscore current limitations of 
ceSAR, which are expected to be gradually alleviated as LINCS-like 
resources grow, while suggesting criteria that can be used to predict 
the likelihood of success.

In this context, it is instructive to highlight again the importance 
of expanding the applicability of signature connectivity analysis be-
yond compounds directly included in LINCS. Namely, although 
LINCS provides transcriptional signatures for a large set of mole-
cules, broadly covering the drug-like universe, not all classes of 
drugs are well represented. To analyze these biases systematically, 
for each target, we first consider the product of DUD-E and LINCS 
libraries, which is defined as a subset of DUD-E compounds that 
have a LINCS counterpart with the Tanimoto coefficient of 1.0.

In Fig. 8A, the per-target fractions of all true positives and true 
negatives (decoys) included in LINCS are contrasted with the frac-
tion of true positives versus true negatives retained in the subset of 
concordant LINCS compounds. For most targets, a clear enrich-
ment into true positives is observed and can be further explained by 
the shift toward higher values of concordance scores for true posi-
tives relative to true negatives that are directly represented in LINCS, 
as shown in Fig. 8B. This is further supported by the analysis of con-
cordance scores for true positives and true negatives in table  S2. 
However, for six targets (AHCY, HMGCR, GART, PNP, Thrombin, 
and FXa), the total number of true positives included in LINCS is 
three or less, limiting our ability to use signature connectivity di-
rectly and assess the performance.

To address this limitation, ceSAR effectively transfers signature 
connectivity–based signal from concordant LINCS analogs to candi-
date compounds by considering their chemical similarity. As shown 
in Fig. 8C, for relatively close analogs with Tanimoto coefficient of 
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>0.8, this principle allows one to extend the signature concordance 
filter to all targets considered here. Statistically significantly higher 
concordance values for true positives are observed for all but three 
targets. Results at Tanimoto of 0.9, which are included in fig. S10, are 
consistent with these trends as well. Together, these results support 
the assumption that despite possible caveats, including off-target ef-
fects both at the protein and short hairpin RNA levels, compensatory 
mechanisms due to protein isoforms, or regulatory feedback loops, a 
small-molecule inhibitor of a protein target is likely to phenocopy 
KD of the same target at a statistically significant level of transcrip-
tional signature concordance and that this signal can be effectively 
captured using LINCS data in conjunction with chemical similarity–
based transfer of concordance scores.

Note that some classes of targets and their antagonists, including 
kinase inhibitors, are already well represented in LINCS, contribut-
ing to high accuracy of ceSAR on the five kinases included in our 

evaluation, for which the ultrafast ceSAR-S outperforms docking in 
terms of all metrics considered here (figs. S17 and S18). These re-
sults indicate that overall results may improve substantially as data-
bases become more representative of the total drug-like chemical 
universe. In this regard, iLINCS (22), which provides the foundation 
for this work and the source of high-quality signatures and their 
precomputed concordance values, is expected to grow over time, 
contributing to increased accuracy of ceSAR.

While the current evaluation of ceSAR is limited to gene KD sig-
natures generated by the LINCS project to use consistently harmo-
nized data for benchmarking, the method can be applied to gene 
KD/loss-of-function signatures generated by the user as well. These 
signatures can be readily generated using either public or private 
gene expression data with standard bioinformatics pipelines. By 
enabling user-provided loss-of-function signatures as part of the 
sig2lead.net server and the stand-alone sig2lead app implementation 

Fig. 8. Performance of ceSAR-S on compounds directly represented in LINCS versus those with LINCS analogs. Enrichment into true positives by signature concor-
dance for compounds directly included in LINCS is shown in (A); distributions of concordance scores for true positives (TP) (red) versus true negatives (TN) (blue) included 
directly in LINCS are shown in (B); and distributions of concordance scores for those with LINCS analogs at Tanimoto coefficient of 0.8 or more are included in (C). ns, not 
significant; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001.

http://sig2lead.net
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of ceSAR-S (see also Fig. 2), the utility of the method is extended 
beyond the set of available LINCS KD signatures.

Last, in the past several years, there has been a flurry of deep learn-
ing methods, such as DeepVS (39) or Deep Docking (40) that aim to 
learn from databases of known active and inactive compounds, in-
cluding DUD-E, and are reported to outperform docking methods in 
cross-validation (39, 41). However, despite optimistic claims of im-
proved performance, challenges of overcoming biases in training sets 
and achieving robust generalization remain (42–44). In this work, 
molecular descriptors and ligand-protein features are not used direct-
ly. Instead, ligand fingerprint representation is simply used to identify 
LINCS analogs with the goal of transferring the signal captured by the 
concordance of small-molecule and target KD signatures. Hence, 
even in the ML-based consensus form of ceSAR that combines a very 
limited number of ligand and protein structure-independent features, 
the method does not pose a substantial risk of overfitting. Conversely, 
signature concordance and chemical similarity–based features eval-
uated here may contribute to future development of improved deep 
learning methods for virtual screening.

The performance of ceSAR adds substantially to the utility of 
LINCS as a big data resource for pharmacogenomics and provides a 
strong rationale for continued large-scale transcriptional profiling of 
drug-like molecules and druggable parts of the genome. We anticipate 
that with further advances in the CRISPR technology, more accurate 
gene signatures will be obtained, leading to increased performance of 
the approach. To that end, we note that improving the quality of sig-
natures available via iLINCS through more rigorous quality control 
and benchmarking has led to substantial improvements in the perfor-
mance of ceSAR (fig. S21). At the same time, continued advances in 
determining three-dimensional structures of proteins and their 
complexes using cryo–electron microscopy and other techniques, in-
cluding artificial intelligence–based protein structure prediction, will 
further expand the protein targetable space, adding importance to 
accelerating the speed of virtual screening approaches.

Through the integration of signature connectivity analysis, fast 
exact chemical similarity search, and virtual screening approaches, 
ceSAR greatly reduces false-positive rates and improves accuracy 
while reducing run times by multiple orders of magnitude. Thus, 
ceSAR provides a fast, robust, and accurate platform for drug dis-
covery and repurposing that has a potential to further democratize 
drug discovery pipelines and accelerate advances in personalized 
precision medicine as illustrated in this work by the discovery of 
specific inhibitors of BCL2A1.

MATERIALS AND METHODS
ceSAR candidate molecule ranking
For a library of small molecules, Q, and a target gene t with at least 
one KD transcriptional signature available in LINCS, t ∈ L, the sim-
plest form of ceSAR considered here, referred to as ceSAR-S, ranks 
candidate compounds by identifying their closest chemical analogs 
in the LINCS library of transcriptionally profiled chemical pertur-
bagens, k ∈ L, that induce signatures concordant with those of the 
target KDs. Specifically, for a target gene t, with at least one KD tran-
scriptional signature available in LINCS, t ∈ L, and a library of small 
molecules to be ranked,  Q, the following similarity score is com-
puted for each q ∈ Q as a basis for ranking

where σ(q, k) is the Tanimoto coefficient (21) between compounds 
q and k ∈ L represented as binary fingerprints and, thus, a real num-
ber between 0 and 1, while c∗(k, t) is the maximum concordance 
over all cell lines for t, and cell line, concentration, exposure time 
LINCS tuples for k, Lk, between the signatures of chemical perturba-
gen k and genetic KDs of t

Conceptually, taking the maximum value of a signature concor-
dance score over all cell lines and concentrations for chemical 
perturbagens follows the assumption that genetic and chemically 
induced loss of function may result in the most pronounced signa-
tures and their concordance in some unknown biological contexts, 
as represented by different cell lines included in LINCS. Extreme 
Pearson correlation–based concordance measure used by iLINCS is 
adopted here (22), and the threshold for significant concordance is 
set to c0 = 0.162, which corresponds to Bonferroni-corrected P val-
ue of 0.05 (22). The performance of the method is robust with re-
spect to the choice of this threshold as demonstrated in figs. S19 to S21.

By increasing the similarity threshold, s0 ∈ [0,1], one can reduce 
the initial library to an enriched subset, while the concordance value 
is used to break ties, in particular resulting in concordance-based 
ranking of candidate molecules with direct LINCS analogs, i.e., 
those with the score s(q) = 1. Thus, ceSAR-S uses the signature con-
cordance primarily as an initial filter, while considering effectively 
only very close analogs when reducing the library to a small subset 
for further reranking and validation.

We also consider an alternative form of the method, referred to 
as ceSAR-S*, that finds the closest concordant analog in the LINCS 
library for each compound and then ranks the compounds by com-
bining signature concordance and chemical similarity to the analogs 
using the Fisher consensus. As discussed in the Supplementary 
Materials, while ceSAR-S* improves somewhat the performance in 
terms of separation of true positives and decoys, it achieves a lower 
precision at the furthest library reduction, as compounds with 
strongly concordant distant analogs, including potential pathway 
inhibitors, are also retained in this case.

ML-based consensus
We also consider more complex, ML-based models to combine sig-
nature connectivity–related features, including the strength of con-
cordance, with docking-generated features, including the predicted 
binding energy. Two alternative feature representations, with 11 or 
13 features derived from signature concordance, chemical similari-
ty, and docking predictions, are used (see the Supplementary Mate-
rials). Two random forest (11 features and 13 features) and two 
neural network (11 features and 13 features) models are trained 20 
times using leave-one-target cross-validation, with 1 of the 20 DUD-
E targets kept as the test set each time. The training is performed 
with a balanced approach in which all true positives are used for 
each DUD-E library, while the negative examples are sampled from 
two subsets of true negatives: one from the top 5% (ceSAR-S rank-
ing) and the other from the remaining 95% of the library. For accu-
racy assessment, only results on targets not included in the training 
are used, with the predictions generated by, first, using ceSAR-S to 
reduce to 5 or 1% of the library for ceSAR-cML5 or ceSAR-cML1, 
respectively, and then applying the four ML models. Each of these s
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four ML models generates a probability of being a true positive, and 
Fisher’s consensus approach is used to combine the individual prob-
abilities, representing the evidence of being a true positive versus 
true negative assigned by each of the models, to provide a meta-
consensus ML reranking of candidates selected by ceSAR-S.

Sparse binary fingerprints for chemical similarity search
Binary fingerprints are widely used in cheminformatics for efficient 
chemical similarity searches and SAR analyses (45–48). In this ap-
proximation, small molecules are represented as binary vectors in-
dicating the presence of substructures, subgraphs, pharmacophores, 
or chemical groups (45, 46). Here, we use the 1024-bit atom-pair 
fingerprint representation (45, 49), as generated by the ChemmineR 
package (38), which leads to a sparse binary vector representation of 
LINCS compounds. As shown in fig. S5, very few of the fingerprint 
features have a relatively balanced split between ones and zeros 
across the LINCS compounds. In addition, all LINCS compounds 
have less than 120 ones in their respective fingerprints with a length 
of 1024 bits, with a median of about 50 ones.

Fast exact chemical similarity search using minSim
Consider now a search for analogs of a query compound q ∈ Q 
against database compounds k ∈ L using binary fingerprints de-
scribed above. The formula for the Tanimoto coefficient, σ(q, k), 
which, for two binary fingerprints q and k, is defined as the ratio of 
the number of positions with ones in both q and k versus the num-
ber of positions with ones in either q or k, can be written in the fol-
lowing form

where m(q) and m(k) are the number of ones that can be precom-
puted for all database molecules, while sim(q, k) is the number of 
ones in common for q and k.

Note that the computation of sim(q, k) can be limited to only 
those columns in the binary fingerprint where q is in the minority 
state, which is assumed to be 1. Furthermore, using preprocessing of 
the reference dataset of compounds (here, LINCS library), one can 
optimally exploit the sparsity in each column by precomputing indi-
ces of database compounds in the minority state at each column, as 
illustrated in fig. S7. Namely, the following list of database vectors ki 
is precomputed for each column j in the fingerprint

The minSim algorithm computes all Tanimoto coefficients for a 
query molecule q by updating integer counters sim(q, k), which 
are set to zero for all k at the beginning of the search, in a simple loop 
over minority columns in q and minority lists in each minority column:

We posit that minSim optimally exploits the sparse nature of 
binary fingerprints by considering only those fingerprint columns 
(positions) where the query molecule q is in the minority state and 
by using precomputed lists of all database compounds k that are 

in the minority states at these positions. The implementation of the 
algorithm in R is included in fig. S8. Note also that minSim com-
putes the exact Jaccard similarity, without using approximate tech-
niques, such as those based on hashing (36–38).

Statistical analysis
The median difference of the precision and top true-positive rank 
between benchmarked methods was assessed using the two-sided 
Wilcoxon test. The difference of the whole distribution of the preci-
sion values at different sizes of the reduced libraries between meth-
ods was assessed by using the Kullback-Leibler divergence measure 
and the chi-square test.

BCL2A1 protein purification
BCL2A1 (A1) protein, residues 1 to 152, P104K, C113S, was ex-
pressed in the BL21 strain of Escherichia coli in an H596 vector with 
a hexa-His-MBP tag provided by A. Evdokimov. All purification 
steps were performed in 20 mM tris (pH 7.0) and 500 mM NaCl. 
Cells were induced with 0.2 mM isopropyl-β-d-thiogalactopyranoside 
overnight, pelleted, and lysed via sonicator. After cell lysis, cell de-
bris was pelleted out, and the supernatant was filtered and run 
through Ni-affinity chromatography. Protein-containing fractions 
were pooled, and the tag was removed with TEV protease rocking at 
room temperature. The cleaved proteins were run through a sub-
tractive Ni–nitrilotriacetic acid column and lastly through an S75 
size exclusion column.

Thermal shift assay
A total of 100 μM compounds were applied to purified A1 at 4.4 μM 
in triplicate. Sypro Orange dye was added at a final dilution of 1:1000 
to protein- and compound-containing wells. An Applied Biosys-
tems StepOnePlus was used to perform DSF by elevating the tem-
perature from 20° to 99°C, measuring fluorescence at every half 
degree. Melting temperature (Tm) was recorded as the maximum of 
the first derivative, indicating that half of the protein population was 
unfolded. Compounds observed to induce a change in Tm that was 
greater than three SDs compared to the control were included for 
further validation.

FP assay
FP was subsequently used to test for specificity of binding by dis-
placement of fluorescein isothiocyanate (FITC)–labeled mouse Nox-
aB peptide (Peptide 2.0). FP assays were performed in two steps: 
single-point high-concentration compounds and dose response of 
FP hits. BCL2A1 was added at 3 to 100 μM of each compound in 
20 mM tris (pH 7), 500 mM NaCl, and 0.005% Tween 20 buffer. After 
adding 375 nM labeled Noxa, 96-well plates were incubated over-
night at 20°C in the dark to achieve equilibrium before FP was mea-
sured with a BioTek Synergy H2. Autofluorescent and fluorescent 
quenching compounds were corrected via ratiometric correction as 
previously described (50). Compounds that showed a substantial 
shift in polarization, along with those identified in the thermal shift 
assays, had dose response measured via FP.

Dose-response curves
Dose-response curves were measured in triplicate by adding 3 μM 
BCL2A1 to a serial twofold (and, for further validation, 1.33-fold) 
dilution series of each compound ranging from 400 μM to 781 nM 
in 20 mM tris (pH 7), 500 mM NaCl, and 0.005% Tween 20 buffer, 
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following the same FP protocol described above. Dose-response 
curves were fitted with the four-paramater logistic equation using 
SigmaPlot 12.5 (Systat Software Inc. San Jose, CA) to determine IC50 
values. To optimize reproducibility and signal-to-noise ratio in the 
FP data, we used relatively high concentrations of FITC-Noxa, 
which resulted in elevated IC50 values. Fitted IC50 values were 
converted to Ki values using the Cheng-Prusoff equation (51)

where Ki is the inhibition constant of the compound, IC50 is the con-
centration of compound in the FP assay that results in 50% maximal 
binding, [A] is the concentration of FITC-Noxa peptide, and KD is 
the dissociation constant for peptide binding to BCL2A1. The pub-
lished KD (20 nM) for BCL2A1 binding to mouse NoxaA (52) was 
used as the value for the affinity when calculating Ki values.

T cell death assay
T cells were isolated from C57BL/6 mice or LckCreBaxfl/fl/Bak−/− mice 
(32) using a pan–T cell isolation kit (Miltenyi Biotech) and stimulated 
with anti-CD3/CD28 for 24 hours. Single-cell suspensions from the 
spleen were generated by maceration through a 100-μm nylon mesh, 
followed by LympholyteM Ficoll gradient separation (CEDARLANE 
Labs). Purified cells were then cultured on anti-CD3–coated (3 μg/ml; 
coated overnight, BioLegend) six-well plates in the presence of soluble 
anti-CD28 (2 μg/ml; Bio X Cell) and interleukin-2 (IL-2) (10 ng/ml; 
R&D Systems Inc.) in RPMI medium (Life Technologies) for 24 hours 
at 37°C. Cells were then washed and cultured again in IL-2 (10 ng/ml) 
for 24 hours at 37°C. Cells were harvested and cultured for 24 hours on 
anti-CD3–coated 96-well plates at 500,000 cells per well with soluble 
anti-CD28 (2 μg/ml), IL-2 (10 ng/ml), 0.125 μg of purified anti-mouse 
FasL (BioLegend), and various concentrations of BCL2A1 inhibitor 
compounds ± polybrene (2 μg/ml; EMD Millipore). Live versus dead 
cells were enumerated by trypan blue staining using the TC20 auto-
mated cell counter (Bio-Rad Laboratories).
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dud38. The LINCS library of small molecules can be downloaded from the LINCS Data Portal 
(http://lincsportal.ccs.miami.edu/dcic-portal/), while its preprocessed counterpart for fast 
chemical similarity search and SAR analyses, as well as ML models trained as part of this work 
and scripts to combine ceSAR-S and docking scores into consensus predictions, can be 
downloaded from https://github.com/sig2lead. The gene KD and chemical perturbation LINCS 
signatures, as well as their precomputed concordance scores, are available through iLINCS and 
its API programmatic interfaces (www.ilincs.org). All other data needed to evaluate the 
conclusions in the paper are present in the paper and/or the Supplementary Materials. 

ceSAR-S has been implemented as an R Shiny app, dubbed sig2lead, which is a public domain 
package that can be downloaded from https://github.com/sig2lead, and it is also available as a 
web server at http://sig2lead.net.
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