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In an evolving population, proliferation is dependent on fitness so that a

numerically dominant population typically possesses the most well adapted

phenotype. In contrast, the evolutionary “losers” typically disappear from the

population so that their genetic record is lost. Historically, cancer research has

focused on observed genetic mutations in the dominant tumor cell populations

which presumably increase fitness. Negative selection, i.e., removal of

deleterious mutations from a population, is not observable but can provide

critical information regarding genes involved in essential cellular processes.

Similar to immunoediting, “evolutionary triage” eliminates mutations in tumor

cells that increase susceptibility to the host immune response while mutations

that shield them from immune attack increase proliferation and are readily

observable (e.g., B2M mutations). These dynamics permit an “inverse problem”

analysis linking the fitness consequences of a mutation to its prevalence in a

tumor cohort. This is evident in “driver mutations” but, equally important, can

identify essential genes in which mutations are seen significantly less than

expected by chance. Here we utilized this new approach to investigate

evolutionary triage in immune-related genes from TCGA lung

adenocarcinoma cohorts. Negative selection differs between the two

cohorts and is observed in endoplasmic reticulum aminopeptidase genes,

ERAP1 and ERAP2 genes, and DNAM-1/TIGIT ligands. Targeting genes or

molecular pathways under positive or negative evolutionary selection may

permit new treatment options and increase the efficacy of current

immunotherapy.
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Introduction

Emergence of a clinical cancer population is typically a

prolonged Darwinian process in which the malignant cells

evolve phenotypic properties that adapt to tissue growth

constraints and host immune responses. These evolutionary

dynamics occur at the level of phenotypic interactions with

environmental selection forces and accumulating genomic

changes provide a record of this evolutionary arc. For

example, during immunoediting, mutations that protect tumor

cells from the immune system enhance proliferation and,

therefore, have increased prevalence in the population. In

contrast, mutations that increase recognition by the immune

system, because they decrease fitness and proliferation, are

typically lost from the population. Current molecular biology

techniques prioritize the study of “driver” mutations that are

observed within some large fraction of the tumor population.

These provide important insights into critical pathways and

potential therapeutic targets. However, prior theoretical

studies have found identifying mutations subjected to negative

selection can be equally informative. However, lost mutations

cannot be measured directly in a tumor sample and require novel

approaches.

In prior studies, the principle of “evolutionary triage

(Gatenby et al., 2014)”, which links the prevalence of any

gene mutation in a population with its contribution to cancer

cell fitness (Gatenby and Frieden, 2002; Gatenby and Frieden,

2004). A mutation that increases fitness will also increase

proliferation so that it is observed more frequently either

within a tumor population or in a cohort of patients with that

tumor. A mutation that does not alter fitness will not change

proliferation and, therefore, be observed with a frequency that

reflects the underlying mutation rate (Kimura, 1968; Gatenby

and Frieden, 2002; Gatenby and Frieden, 2004). These represent

the well-recognized dynamics of “driver” and “passenger”

mutations. Computer simulations also demonstrated some

FIGURE 1
Methodology applied to the TCGA data set to identify genes that are mutated more or less frequently than expected by chance alone. (A)
Evolution is a process of neutral (grey circle), positive (green circle), and negative selection (red x-mark) events resulting in the accumulation of
mutations that increase cell fitness and removal of mutations that decrease cell fitness. (B). A robust regression model was used to establish the
mutation rate based on the fraction of patients with a protein alteringmutation in each gene against the size of the gene. Distance from the line
for each gene was used to quantify conserved and hypermutated genes. Genes on the regression line have background levels of mutations. (C)
Distance from the regressionmodel for each gene. Geneswith an SR ≥ 1.0 are hypermutated and genes with an SR ≤ -1.0 are conserved genes (under
mutated). All others have an expected number of mutations (Background mutations).
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genes must continue to function normally for optimal cancer cell

fitness. In these genes, non-synonymous mutations cannot

improve function and, so, will frequently decrease fitness and

disappear from the population. These “essential” genes will

usually have an observed prevalence of mutations that is less

than expected by chance alone (i.e., less frequently than a

passenger gene of comparable size) (Figure 1A).

The dynamics of negative selection are well recognized,

but prior investigations across multiple cancer types found

few genes are broadly conserved (Martincorena et al., 2018;

Zapata et al., 2018). However, computer simulations

demonstrated evolutionary conservation in cancer

populations varies depending on local tissue environment

selection forces and prior molecular changes in their

evolutionary arc (Gatenby et al., 2014; Cunningham et al.,

2015). Thus, genes conserved among cancers emerging from

different tissue types and/or through different initiating driver

genes are predicted to be uncommon. Recent studies of TCGA

data in EGFR-mut, KRAS-mut, and wild-type (no known

driver mutations) (WT) lung adenocarcinomas, confirmed

this prediction as few genes were found to be conserved

even among subtypes that shared a common tissue of

origin (Freischel et al., 2021).

Here we investigate evolutionary triage in genes associated

with tumor-immune interactions. Epithelial cells are active

participants in the host immune response (Schleimer et al.,

2007). Antigen presentation, immune-modulating protein

expression (e.g., checkpoint ligands), as well as cytokine and

chemokine secretion by epithelial cells can promote or reduce

host immune functions (Schleimer et al., 2007; Larsen et al., 2020).

Additionally, epithelial cells express surface and cytoplasmic

pattern recognition receptors (PRR), which recognize molecular

patterns derived from foreign pathogens and markers of stressed

cells triggering intrinsic immune responses within epithelial cells,

including release of inflammatory mediators and initiation of

pyroptosis (Amarante-Mendes et al., 2018).

We hypothesized that, within these diverse and complex

interactions, we could determine the most important cellular

functions and molecular pathways by identifying genes under

strong positive and negative evolutionary selection. Furthermore,

by investigating cancers arising from the same organ but with

different initiating oncogenic mutations, we could investigate

divergence in immune-evasion strategies arising from different

initiating genetic events.

Here we explore this hypothesis by investigating the

mutational frequency of genes with known or expected

functions in host-immune interactions in two cohorts of lung

adenocarcinoma patients in the TCGA database, mutant KRAS

(n = 163) and no known driver (WT) (n = 313). Evolutionary

selection of multiple genes with well-documented roles in LUAD

supports our hypothesis and encourages further investigation of

other evolutionarily identified genes and molecular pathways

that have not been extensively investigated.

Methods

Data collection

Mutations detected by the Multi-Center Mutation Calling in

Multiple Cancers (MC3) project on TCGA lung adenocarcinoma

samples were downloaded from the Genome Data commons

(file: mc3.v0.2.8.PUBLIC.maf.gz, site: https://gdc.cancer.gov/

about-data/publications/mc3-2017). Details of MC3 mutation

identification using tumor and matched normal samples are

provided here: [PMC6075717].

We identified one sample each frompatients belonging to the lung

adenocarcinoma cohort, and classified patients based on known driver

or recurrentmutations inKRAS (G12, G13, Q61, A146), BRAF (V600,

N581, G464, G466, G469, G596, D594), and EGFR (L858, S768, L861,

G719, T790, indels in exons 18–21). Samples were excluded if they

matched criteria formore than one of these genes. Samples that did not

meet any of the mutation criteria were classified as WT (no driver

mutations in EGFR, KRAS, or BRAF.) Cohorts with EGFR-mutant

LUAD (n = 58) and BRAF-mutant LUAD (n = 31) had fewer samples,

sowe elected to focus primarily on themKRAS (n = 163) andWT (n =

313) cohorts. Tumor andnormal sequence alignmentfiles (BAM)were

downloaded from the Genome Data Commons, and gene-level depth

of coverage was calculated by calculating bases covered by sequencing

from the above files across each of the RefSeq coding genes (with

25 base pair flanking regions). A base was considered sufficiently

covered if the depth of coverage was≥14 in tumor sample and≥8 in

normal samples (as has been previously described: https://www.

synapse.org/#!Synapse:syn1695394). The fraction of each gene’s

protein coding bases (using the longest RefSeq transcript) covered

by sufficient sequence data was calculated for each sample using the

Negative Storage Model [PMC7157186].

Identification of over and under-mutated
genes

To identify over- and under-mutated genes, we calculated the

fraction of patients in each cohort with any protein-altering

(nonsynonymous, truncating, canonical splice-site) mutations in

each gene. To control for undercounting of mutations due to poor

coverage, we divided the fraction patients mutated by the median

fraction of coding bases with sufficient coverage. Genes with median

coverage <50%, ANNOVAR annotation errors, or gene

expression <2.0 log2 counts were excluded, as these genes either

have artificially low mutation rates or are not likely to be essential

due to low expression. Gene size was controlled by calculating a linear

model between corrected mutation fraction and gene size (protein

coding bases from largest RefSeq transcript.) (Figure 1B). Corrected

mutation rate and gene size were both square-root transformed. The

standardized residual of each gene to the regression line was

determined: the most positive genes are the classical over-mutated

or driver genes, and in each cohort the most highly mutated gene had
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the highest standardized residual (e.g., KRAS was the most over-

mutated gene in themKRAS cohort.)Geneswith an SR≥ 1.0 are over-
mutated and genes with and SR ≤ -1.0 are conserved genes

(Figure 1C). To minimize false positives, our analysis primarily

focuses on genes with standardized residual (SR) values for

conserved genes SR ≤ -2.0 to achieve p = 0.05 and SR ≤ -1.65 to

achieve p = 0.1.

Curated gene lists

Literature review and gene databases including Gene Set

Enrichment (Broad Institute) (GSEA) (Subramanian et al.,

2005), PathCards (Belinky et al., 2015), and Genenames.org

(Tweedie et al., 2021) were used to create lists of genes with

known or suspected functions in epithelial cell interactions

FIGURE 2
Epithelial cells and the immune response. Antigen processing and presentation of peptide antigens and lipid antigens occurs in malignant
epithelial cells and alters the anti-tumor immune response (A). Innate immune receptor signaling is triggered by a variety of ligands triggering
expression of inflammatory mediators and activation of pyroptosis (programed cell death) (B). Immune modulating proteins including checkpoint
ligands, co-stimulatory molecules, and suppressive tumor cells regulate the anti-tumor immune response (C). Created with Biorender.com.

Frontiers in Genetics frontiersin.org04

Luddy et al. 10.3389/fgene.2022.921447

http://Genenames.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.921447


with the immune response. Genes were divided into eight

functional processes: antigen presentation (Figure 2A),

immune-modulating proteins (checkpoint ligands)

(Figure 2C), innate immune receptor signaling

(Figure 2B), cytokine signaling, chemokine signaling,

Interferon signaling, complement, and programmed cell

death (apoptosis, necrosis, and pyroptosis). Complete

gene lists are provided (Supplementary Table S1).

Results

Gene conservation differs between the
wild-type and mutant KRAS cohorts

More genes were highly conserved (SR ≤ -2.0) in mKRAS than

WT cancers (160 and 248 respectively) (Supplementary Table S2).

Among the immune genes examined (n = 576) 19 were conserved

TABLE 1 Highly conserved genes in wild-type (top) and mKRAS (bottom) tumors. SR ≤ -1.65.

Function Gene symbol Gene name SR value wild-type

Immune Modulating Proteins PVRL2 Nectin Cell Adhesion Molecule 2 −2.054

PVR PVR Cell Adhesion Molecule −1.782

MICA MHC Class I Polypeptide-Related Sequence A −1.699

Antigen Processing ERAP1 Endoplasmic Reticulum Aminopeptidase 1 −2.797

TAP1 Transporter 1, ATP Binding Cassette Subfamily B Member −2.566

HLA-F Major Histocompatibility Complex, Class I, F −1.841

Innate Immune Receptor Signaling IRF3 Interferon Regulatory Factor 3 −1.865

Interferon Signaling IRF2BP1 Interferon Regulatory Factor 2 Binding Protein 1 −2.149

SOCS6 Suppressor Of Cytokine Signaling 6 −2.048

IRF5 Interferon Regulatory Factor 5 −2.003

IRF3 Interferon Regulatory Factor 3 −1.865

SIRT3 Sirtuin 3 −1.739

Cytokine Signaling IL1R1 Interleukin 1 Receptor Type 1 −2.118

IL17RB Interleukin 17 Receptor B −1.977

TNFRSF10A TNF Receptor Superfamily Member 10a −1.901

TNFRSF1A TNF Receptor Superfamily Member 1A −1.871

TGFB3 Transforming Growth Factor Beta 3 −1.770

IL6ST Interleukin 6 Cytokine Family Signal Transducer −1.753

Apoptosis/necrosis/Pyroptosis TNFRSF10A TNF Receptor Superfamily Member 10a -1.901

Complement C4B Complement C4B (Chido Blood Group) −2.864

C4A Complement C4A (Rodgers Blood Group) −2.863

Function Gene Symbol Gene Name SR value mKRAS

Antigen Processing CIITA Class II Major Histocompatibility Complex Transactivator −2.296

ERAP2 Endoplasmic Reticulum Aminopeptidase 2 −2.085

Innate Immune Receptor Signaling CIITA Class II Major Histocompatibility Complex Transactivator −2.296

NLRC3 NLR Family CARD Domain Containing 3 −2.217

DHX58 DExH-Box Helicase 58 −1.687

Interferon Signaling SIRT1 Sirtuin 1 −1.791

Cytokine Signaling LTBP3 Latent Transforming Growth Factor Beta Binding Protein 3 −2.496

IL17RD Interleukin 17 Receptor D −1.779

TGFBI Transforming Growth Factor Beta Induced −1.694

Apoptosis/necrosis/Pyroptosis CASP8AP2 Caspase 8 Associated Protein 2 −3.160

Complement C4B Complement C4B (Chido Blood Group) −1.711

C4A Complement C4A (Rodgers Blood Group) −1.711
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(SR ≤ -1.65) inWT cohort and 11 inmKRAS (Table 1). Many of the

conserved genes were unique to each cohort with only one

overlapping pair of genes. Complement genes C4A (WT SR =

-2.863, mKRAS SR = -1.711) and C4B (WT SR = -2.864,

mKRAS SR = -1.711), which encode the acidic and basic forms

of complement factor 4, an activator of the classical complement

pathway, were conserved in both cohorts. No genes from the list of

chemokines and chemokine receptors were highly conserved in

either cohort (Supplementary Figures S1A,B).

Differential conservation in antigen processing
genes

Endogenous proteins are degraded into antigen precursors in

the cytoplasm by the (immuno)proteasome. Transporter

associated with antigen processing (TAP) transports the

protein fragments into the endoplasmic reticulum (ER) for

further processing by aminopeptidases and loading onto

MHC-I proteins. Dysregulation of this process alters the

peptide pool presented and loss of integral component results

in diminished MHC-I expression. Transporter 1, ATP Binding

Cassette Subfamily B Member, TAP1 was conserved in the WT

cohort (SR = -2.566) but not in the mKRAS group (SR = -0.561)

(Figures 3A,B). TAP1 co-localizes with TAP2 and mediates the

flow of peptides from the cytosol into the endoplasmic reticulum

prior to cleavage by ERAP proteins. TAP2 gene expression and

conservation score could not be determined from our dataset.

The complexity of evolutionary selection is notable in the

endoplasmic reticulum aminopeptidase genes, ERAP1 and

ERAP2, which shape the peptidome by cleaving peptide

precursors after transport into the ER (Figure 3C). ERAP1 is

among the most conserved genes in WT cancers (SR = -2.797)

and ERAP2 among the most conserved in mKRAS (SR = -2.085)

(Figures 3A,B). Interestingly, no ERAP1 mutations were found in

any mEGFR tumors or comparable TCGA data from melanoma

patients (data not shown), suggesting its function is essential in

multiple cancer types.

Polio virus receptor gene conservation in wild-
type tumors

Tumor cells express immune modulating proteins that

activate or inactivate (checkpoint proteins) immune cells.

None of the immune modulating proteins were significantly

conserved in the mKRAS group. Polio Virus Like Receptor 2

(PVRL2, Nectin2, CD112) and PVR (CD155), conserved in WT

(SR = -2.054 and -1.782, respectively), were also conserved in

mKRAS cohort although did not reach significance (SR =

-1.458 and -1.234, respectively) (Figures 4A,B). The conserved

tumoral PVR proteins represent known tumor evasions strategies

and can activate or inhibit (Wu et al., 2021) NK cells and T cells

(Figure 4C).

MHC class I polypeptide–related sequence A (MICA) a

stress-induced activating ligand for Natural Killer Cell Lectin

Like Receptor, KLRK1 (NKG2D) was conserved in the wild-type

cohort (SR = -1.699). Ligation of NKG2D activates NK cells and

gamma-delta-T cells and co-stimulates CD8 T cells

(Holdenrieder et al., 2006). However, MICA can be cleaved

from the cell surface and inactivate distant NK cells,

NKT cells, gamma-delta T cells, and CD8 T cells (Uhlenbrock

et al., 2014). Numerous proteases, including MMPs, ADAM10,

and ADAM17, are involved in MICA cleavage. Additional

NKG2D ligands, RAET1E (ULBP4) and ULBP2, were also

conserved in the wild-type cohort but did not reach the SR

cutoff of -1.65 (WT SR = -1.37 and -1.32, respectively).

Conservation of cytokine signaling genes
Malignant epithelial cells secrete and detect cytokines in the

tumor microenvironment that regulate the immune response and

support pro-growth signals. The potential for false positives is

increased in genes with a conservation score above SR = -1.65.

However, we note that both subunits of the type I IFN receptor,

interferon-alpha receptor 1 (IFNAR1) and IFNAR2, are conserved

in mKRAS samples (SR = -1.490 and SR = -1.418, respectively)

(Figures 5D,E). Stimulation of IFNAR1/2 activates Janus kinase 1

(JAK1), (neutral inmKRAS) and tyrosine kinase 2 (TYK2) (mKRAS

SR = -1.070). Type II interferon-gamma receptors IFNGR1 and

INFGR2 were also conserved in mKRAS but did not meet the

-1.65 threshold (SR = -1.371 and SR = -1.069, respectively)

(Figures 5D,E). IFN-γ signaling in epithelial cells induces the

expression of multiple genes containing γ-interferon activated

sequences. MHC-I, checkpoint inhibitor PD-L1, and

immunosuppressive enzyme, IDO are upregulated on cancer cells

by IFN-γ treatment (21). All interferon receptor genes were neutral

in the wild-type cohort.

Two of the nine interferon regulatory factor (IRF) genes were

highly conserved and expressed in the wild-type cohort. IRF5,

conserved in WT (SR = -2.002) and neutral in mKRAS, regulates

type-I interferon genes and IFN stimulated genes (ISG) (Figures

5C,D). Similarly, activated IRF-3, conserved in WT (SR = -1.864)

translocates to the nucleus following phosphorylation by TKB1 (WT

SR = -1.010) and IKBKE (WT neutral) kinases and induces

expression of type I interferons and ISGs. IRF3 is activated by a

variety of pattern recognition receptors which are neutral in both

cohorts (Figures 5A,B,F) (Zhu et al., 2010). Interleukin 1 receptor-1

(IL1R1) is the most conserved among the cytokine signalling genes

in WT tumors (Supplementary Figure S1C). Following ligation by

either IL1A or IL1B, IL1R1 associates with interleukin-1 rector

accessory protein (IL1RAP) (WT SR = -1.116) and activates many

downstream proinflammatory pathways including NF-κB and

MAPK (44).

Over-mutated genes are shared between
WT and mKRAS cohorts

Mutations can inhibit or enhance protein function. Positive

selection occurs when the mutation increases fitness. WT and
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TABLE 2 Over-mutated genes in WT (top) and mKRAS (bottom) cohorts. SR ≤ -1.65.

Function Gene symbol Gene name SR value wild-type

Immune Modulating Proteins CD86 CD86 Molecule 1.693

Antigen Processing CD1E CD1e Molecule 2.513

CD1B CD1b Molecule 1.831

B2M Beta-2-Microglobulin 1.653

Innate Immune Receptor Signaling TLR4 Toll Like Receptor 4 3.626

NLRP3 NLR Family Pyrin Domain Containing 3 3.150

NLRP14 NLR Family Pyrin Domain Containing 14 2.404

NLRP5 NLR Family Pyrin Domain Containing 5 1.975

NLRP10 NLR Family Pyrin Domain Containing 10 1.936

NLRP7 NLR Family Pyrin Domain Containing 7 1.874

NLRP13 NLR Family Pyrin Domain Containing 13 1.865

NLRP12 NLR Family Pyrin Domain Containing 12 1.838

NLRP4 NLR Family Pyrin Domain Containing 4 1.836

NLRP8 NLR Family Pyrin Domain Containing 8 1.753

Interferon Signaling SMARCA4 SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin,
Subfamily A, Member 4

2.854

DOCK2 Dedicator Of Cytokinesis 2 2.378

Cytokine Signaling LTBP1 Latent Transforming Growth Factor Beta Binding Protein 1 2.766

IL7R Interleukin 7 Receptor 1.845

IL18RAP Interleukin 18 Receptor Accessory Protein 1.804

IL1RAPL1 Interleukin 1 Receptor Accessory Protein Like 1 1.758

Apoptosis/necrosis/Pyroptosis SERPINB4 Serpin Family B Member 4 2.140

Complement CSMD3 CUB And Sushi Multiple Domains 3 6.194

CSMD1 CUB And Sushi Multiple Domains 1 3.701

C7 Complement C7 2.656

ITGAX Integrin Subunit Alpha X 2.277

CSMD2 CUB And Sushi Multiple Domains 2 2.238

CFH Complement Factor H 1.940

CFHR5 Complement Factor H Related 5 1.926

C6 Complement C6 1.715

Function Gene Symbol Gene Name SR value mKRAS

Immune Modulating Proteins PVRL1 Nectin Cell Adhesion Molecule 1 1.653

Antigen Processing CD1E CD1e Molecule 2.329

CD1A CD1a Molecule 1.742

B2M Beta-2-Microglobulin 1.654

Innate Immune Receptor Signaling NLRP3 NLR Family Pyrin Domain Containing 3 3.508

NLRP5 NLR Family Pyrin Domain Containing 5 3.427

TLR4 Toll Like Receptor 4 3.331

NLRP14 NLR Family Pyrin Domain Containing 14 2.856

NLRP10 NLR Family Pyrin Domain Containing 10 2.449

BTK Bruton Tyrosine Kinase 2.057

NLRP12 NLR Family Pyrin Domain Containing 12 1.888

Cytokine Signaling LTBP1 Latent Transforming Growth Factor Beta Binding Protein 1 1.918

IL1RAPL1 Interleukin 1 Receptor Accessory Protein Like 1 1.805

LTBP2 Latent Transforming Growth Factor Beta Binding Protein 2 1.690

SERPINB4 Serpin Family B Member 4 2.325

(Continued on following page)
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mKRAS tumors averaged 348 and 300 total mutations per tumor

compared mEGFR LUADs with 86 (data not shown). Frequently

mutated genes, defined as genes mutated in greater than 10% of

patients in each cohort, numbered 208 and 157 in the WT and

mKRAS cohorts, respectively. Genes with the highest mutation

scores in our cohorts reflect known drivers and frequently

mutated genes including KRAS, TP53, KEAP1, and STK11

(Supplementary Table S3) (Gong et al., 2020), demonstrating

TABLE 2 (Continued) Over-mutated genes in WT (top) and mKRAS (bottom) cohorts. SR ≤ -1.65.

Function Gene symbol Gene name SR value wild-type

Apoptosis/necrosis/Pyroptosis BIRC7 Baculoviral IAP Repeat Containing 7 1.733
CSMD3 CUB And Sushi Multiple Domains 3 5.517

Complement CSMD1 CUB And Sushi Multiple Domains 1 4.948

ITGAX Integrin Subunit Alpha X 2.765

C7 Complement C7 2.391

MBL2 Mannose Binding Lectin 2 2.187

FCN2 Ficolin 2 2.101

MASP1 MBL Associated Serine Protease 1 1.952

COLEC11 Collectin Subfamily Member 11 1.900

CFHR4 Complement Factor H Related 4 1.758

CFH Complement Factor H 1.699

FIGURE 3
Gene conservation in antigen presentation genes. Gene conservation score, measured as the standard residual from the regression line (SR)
graphed against genes expression levels (Log2) for wild-type (no identifiable driver mutations) (WT) (A) and mutant KRAS (mKRAS) (B). Conserved
genes (SR ≤ -1.0) and over-mutated genes (SR ≥ 1.0) are colored and labelledwith text. ERAP1 and ERAP2 sculpt the peptide pool prior to presentation
by MHC-I proteins. Dysfunctional ERAP alters the peptides presented (C). Standardized residual (SR). Created with Biorender.com.
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the validity of this approach. Of the immune related genes we

examined (n = 576), 29 were over-mutated in WT (SR ≥ 1.65)

and 26 in mKRAS with 16 genes common between the subtypes

(Table 2).

Mutations in driver genes with possible immune
consequences

TP53, a multifunctional tumor suppressor mutated in over

50% of human cancers (Ozaki and Nakagawara, 2011), may

regulate components of the innate and adaptive immune

response (Hellmann et al., 2018; Shi and Jiang, 2021).

TP53 mutations were found in 57% of WT patients and

35% of mKRAS patients. Mutations in liver kinase B1

(LKB1) gene, which encodes Serine/Threonine Kinase 11

(STK11), the 3rd most mutated gene in the mKRAS cohort

(after KRAS and TP53), regulates metabolism, energy sensing

and modulates the stimulator of interferon genes (STING)

pathway (Esteve-Puig et al., 2014; Kim et al., 2019). STK11

mutations are associated with immunologically cold tumors

(Schabath et al., 2016), increased neutrophil accumulation

(Koyama et al., 2016), high expression of LAG3 ligand, FLG1

(Wang et al., 2019; Lehtiö et al., 2021), and poor outcomes in

patients with mKRAS (Skoulidis et al., 2018). Anaplastic

Lymphoma Kinase (ALK) mutations, found in 7.7% (24/

313) of WT tumors, 4% (7/163) of mKRAS tumors, can

generate an immunosuppressive microenvironment

unresponsive to checkpoint blockade alone (Hellmann

et al., 2018; Sankar et al., 2021).

Common over-mutated genes reflect previously
identified pro-tumor pathways

Wild-type and mutant KRAS cohorts have many over-

mutated genes in common (SR ≥ 1.65). Beta-2-Microglobulin

(B2M) is a small gene (360bp) associated with resistance to

checkpoint blockade. B2M was mutated in 2% of the wild-type

cohort (6/313) and the mKRAS cohort (3/163) (WT SR =

1.653, mKRAS SR = 1.654). SERPINB4, (WT SR = 2.140,

mKRAS SR = 2.325) is a serine protease inhibitor that

inactivates granzyme M and promotes survival. Toll-like

receptor 4 (TLR4) is commonly overexpressed in barrier

epithelial cells and cancer (Luddy et al., 2014).

TLR4 mutations were found in 12% (37/313) of the WT

tumors and 11% (18/163) of the mKRAS tumors.

The NLRP family of receptors are under strong

evolutionary selection in both cohorts (Figures 5A,B).

NLRP3 has the highest expression level and is over-mutated

in both cohorts (WT SR = 3.150, mKRAS SR = 3.508). The

NLRP3 inflammasome alters the tumor microenvironment via

FIGURE 4
Gene conservation in genes encoding immunemodulating proteins highlights the important role of NK cells in lung cancer. Gene conservation
score, measured as the standard residual from the regression line (SR) graphed against genes expression levels (Log2) for WT (A) and mKRAS (B).
Conserved genes (SR ≤ -1.0) and over-mutated genes (SR ≥ 1.0) are colored and labelled with text. PVR, PVRL2, and MICA can activate or inhibit NK
cells depending on NK receptor expression and solubility of MICA (C). Standardized residual (SR). Created with Biorender.com.
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secretion of pro-inflammatory cytokines IL1B (neutral in both

cohorts) and IL18 (neutral in mKRAS, conserved in WT, SR =

-1.144) (Kelley et al., 2019; Swanson et al., 2019). Similarly, the

CD1 gene family is frequently mutated in both cohorts

(Figures 3A,B). CD1E had the highest mutational

prevalence (WT SR = 2.513, mKRAS SR = 2.329) and

highest expression level (Figures 4A,B). Similar to ERAP1/

2, CD1E and shapes the lipid antigen pool (Facciotti et al.,

2011). CD1 molecules are mostly expressed by antigen

presenting cells, however, aberrant expression of

CD1 proteins by malignant cells can activate anti-tumor

immune responses (Haraguchi et al., 2006; Hix et al., 2011).

FIGURE 5
Gene conservation in pro-inflammatory genes. Gene conservation score, measured as the standard residual from the regression line (SR)
graphed against genes expression levels (Log2). Innate immune signaling genes in WT (A) and mKRAS (B). Interferon signaling genes in WT (C) and
mKRAS (D). Conserved genes (SR ≤ -1.0) and over-mutated genes (SR ≥ 1.0) are colored and labelled with text. Type-I and Type-II interferon
receptors are conserved in mKRAS (E). Interferon regulatory factor 3 (IRF3) is a central component in multiple pattern recognition receptor
pathways (F). Standardized residual (SR). Created with Biorender.com.
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Discussion

The evolutionary arc of each tumor is likely unique with

variations resulting from molecular properties of the initiating

cells, heterogeneity in host responses, and stochastic variations in

accumulated genetic events (Toki et al., 2018; Wang et al., 2021).

However, prior theoretical studies have suggested commonalities

should be found among tumors originating from the same tissue

and/or initiation driver genes. Here, we demonstrate mKRAS and

WT lung cancers generally exhibit convergent evolutionary

selection among broad mechanisms of immune interactions

and some gene families, but the specific genes selected,

particularly those conserved, are frequently subtype specific.

Such convergence of broad (phenotypic) properties through

divergent molecular pathways is observed in nature. For

example, cavefish develop a characteristic phenotype (no eyes

or pigment) but through diverse genetic pathways depending

on the genomic state of the founder population and stochastic

perturbations (Gatenby et al., 2011).

Magalhães (Magalhães, 2021), in a PubMed analysis, found

virtually every human gene has been associated with cancer.

Within this vast data set, how can clinically important genes be

selected? Here we propose a “Darwinian road map” can identify

critical genes under evolutionary selection in clinical cancer cohorts.

We examine gene conservation in immune related genes. Several of

the genes identified in our studies have been noted previously. Pre-

clinical and clinical work targeting many of these pathways are

ongoing. The divergence of evolutionary selection in mKRAS and

WT suggest pre-clinical experiments and clinical investigations with

targeted drugs should be carefully designed with an understanding of

the Darwinian importance of specific genes in specific tumor

subtypes. For example, among immune modulators, common

targets for immunotherapy (e.g., CD274, CTLA4) show neutral

patterns of evolutionary selection. PVR, PVRL2, and MICA, which

likely regulate NK cell function, are conserved in wild-type cohort.

Nine anti-TIGIT (PVR and PVRL2 receptor) antibody therapies are

currently being evaluated in 43 trials of advanced solid tumors,

including NSCLC (Ge et al., 2021).

Each cohort conserves only one of two ERAP genes, which

modify peptides for presentation by MHC class I. Clearly, the

ERAP function is critical for optimal fitness in each cohort, and

we note ERAP1/2 expression was detected in all 9,125 tumor

specimens in The Cancer Genome Atlas database (TCGA), and

deep deletions are rare (0.6–0.8%) (Compagnone et al., 2019.

Targeting ERAP has been suggested by others and ERAP

modulators are under development to modulate the anti-

tumor immune response (Stratikos, 2014). However, our data

raise an intriguing question: why do WT tumors highly conserve

ERAP1 while mKRAS tumors equally highly conserve ERAP2?

IRF3, conserved in wild-type cohorts, regulates the expression of

type I IFN genes and IFN stimulated genes (ISG) through

binding interferon-stimulated response elements (ISRE) in

their promoters. IRF3 is activated by several innate immune

receptors (Figure 5F), including the cGAS/STING pathway, a

novel immunotherapy target with ongoing clinical trials in

cancer (Jiang et al., 2020).

Finally, in prior theoretical studies, computer simulations

predicted therapies that disrupt conserved genes can have similar

therapeutic efficacy to targeting driver genes (Gatenby et al.,

2014). Thus, conserved genes in this study may be valuable

clinical targets. Furthermore, simulations predicted

combination therapy targeting a driver gene and a driver-

specific conserved gene was highly lethal and often produced

an evolutionary state in which no adaptive strategy was available,

resulting in population extinction (Gatenby et al., 2014).
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