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Background:Whether multiple nutritional deficiencies have a synergic effect on mobility

loss remains unknown. This study aims to evaluate associations betweenmulti-nutritional

deficits and physical performance evolution among community-dwelling older adults.

Methods: We included 386 participants from the Multidomain Alzheimer Preventive

Trial (MAPT) (75.6 ± 4.5 years) not receiving omega-3 polyunsaturated fatty acid (PUFA)

supplementation and who had available data on nutritional deficits. Baseline nutritional

deficits were defined as plasma 25 hydroxyvitamin D < 20 ng/ml, plasma homocysteine

>14 µmol/L, or erythrocyte omega-3 PUFA index ≤4.87% (lower quartile). The Short

Physical Performance Battery (SPPB), gait speed, and chair rise time were used to

assess physical performance at baseline and after 6, 12, 24, 36, 48, and 60 months. We

explored if nutrition-physical performance associations varied according to the presence

of low-grade inflammation (LGI) and brain imaging indicators.

Results: Within-group comparisons showed that physical function (decreased SPPB

and gait speed, increased chair rise time) worsened over time, particularly in participants

with ≥2 nutritional deficits; however, no between-group differences were observed when

individuals without deficit and those with either 1 or ≥2 deficits were compared. Our

exploratory analysis on nutritional deficit-LGI interactions showed that, among people

with≥2 deficits, chair rise time was increased over time in participants with LGI (adjusted

mean difference: 3.47; 95% CI: 1.03, 5.91; p = 0.017), compared with individuals with

no LGI.

Conclusions: Accumulated deficits on vitamin D, homocysteine, and omega-3 PUFA

were not associated with physical performance evolution in older adults, but they

determined declined chair rise performance in subjects with low-grade inflammation.

Clinical Trial Registration: [https://clinicaltrials.gov/ct2/show/NCT00672685],

identifier [NCT00672685].
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INTRODUCTION

Decline in physical performance, as measured by lower extremity
function, often marks the early stage of disability in older age (1,
2). It is crucial to identify modifiable factors, such as nutritional
risk factors, and their underlying biological mechanisms leading
to impaired mobility in older individuals. Indeed, several blood-
based nutritional markers, such as homocysteine, vitamin D, and
omega-3 polyunsaturated fatty acids (PUFAs), have gradually
become the focus of research and clinical interventions (3, 4).
Hyperhomocysteinemia (HHcy) has been associated with faster
physical impairment, such as in walking test and chair rise test,
in several longitudinal studies (5–7). Vitamin D deficiency has
been cross-sectionally associated with poor physical performance
(8–10); however, similar associations were not discovered in
longitudinal studies (11, 12). Although the literature on omega-
3 PUFAs is mixed, some studies have found increased omega-
3 PUFAs was associated with low risk of mobility disability
(13), poor Short Physical Performance Battery (SPPB) score, and
slower gait speed over time (14).

Considering that the accumulation of deficits can be
related with the ability of an individual to respond to
stressors (15), it is possible that combined deficiencies in
homocysteine, vitamin D, and omega-3 PUFAs would work
synergistically to determine physical performance over time.
This concept had been supported by the findings of a
previous study, which have indicated that an increasing number
of nutritional deficits were associated with faster cognitive
decline (16). In another study, the nutritional index, which
was constructed with 41 nutrition-related parameters from
anthropometric, plasma, and nutrient intake measurements,
had shown a stronger prediction of frailty and mortality
risk compared with single nutritional parameters separately
(15). Furthermore, there is a lack of studies investigating
underlying mechanisms behind multi-nutritional deficits and
physical impairment. Indeed, several physiological deteriorations
that drive age-related mobility loss (17), including changes in
the central nervous system (CNS) and chronic inflammation,
have shown intimate associations with these nutritional markers
(18, 19). For instance, HHcy can promote inflammation
(20). Higher circulating levels of omega-3 were associated
with larger hippocampal volume (21); on the other hand,
smaller brain volumes were observed in people with low
vitamin D status (22). Therefore, exploring the interactions
between nutritional deficits and physiological alterations (i.e.,
chronic inflammation and CNS changes) might allow us to
understand better their shared biological pathways leading to
mobility decline.

The main objective of this study was to investigate the
associations between multi-nutritional deficits (i.e., vitamin
D deficiency, HHcy, and low omega-3 PUFA index) and
physical performance in community-dwelling older adults
over 5 years. In addition, we explored if the nutrition-
physical performance associations varied according to
the presence of low-grade inflammation (LGI) and brain
imaging indicators.

METHODS

Design and Ethical Statement
This observational study used data fromMultidomain Alzheimer
Preventive Trial (MAPT), whose details have been described in
previous publications (23, 24). Briefly, MAPT was a multicenter,
3-year randomized controlled trial that aimed to evaluate
the protective effect of omega-3 PUFA supplementation and
multidomain lifestyle interventions (exercise advice, cognitive
training, and nutritional counseling), combined or alone, on
cognitive decline in community-dwelling older adults (23). No
significant effect of the interventions on cognitive function
(24) or muscle strength (25) was found over 3 years. In this
secondary analysis, 5-year follow-up data (3-year intervention
plus an additional 2-year observation period after the end of
interventions) were retrieved. The MAPT study was registered
at ClinicalTrials.gov (no: NCT00672685), was approved by the
French Ethical Committee located in Toulouse (CPP SOOM II),
and was authorized by the French Health Authority. All the
participants had signed informed consent.

Study Population
The MAPT study enrolled 1680 dementia-free adults aged ≥70
years, recruited from 13 memory centers in France and Monaco
between 2008 to 2011, presenting at least one of the following
conditions: spontaneous memory complaint, limitations in one
instrumental Activities of daily living (such as disability in using
telephone and transportation.), or slow gait speed (≤0.8 m/s). In
this study, 840 subjects who received the intervention of omega-
3 supplementation and 454 subjects without nutritional markers
measurement at baseline were not included; we finally considered
data from 386 subjects into this study.

Measures
Definition of Nutritional Deficits
Three nutritional markers were used to define nutritional deficits:
plasma 25-hydroxyvitamin D [25(OH)D], plasma homocysteine,
and erythrocyte membrane omega-3 PUFA concentration.
Details of nutritional marker assessment are described in
Supplementary Materials. Nutritional deficits were determined
at baseline according to the clinical cutoffs below: (1) vitamin
D deficiency, if 25(OH)D <20 ng/ml (26); (2) HHcy, if
homocysteine >14 µmol/L (27); (3) low omega-3 PUFA index,
defined as omega-3 index (28) [% docosahexaenoic acid (DHA)
+ % eicosapentaenoic acid (EPA)] below the lower quartile of
study population (≤4.87%) (16). The participants were then
classified into three groups based on the counting of nutritional
deficits: no deficit, 1 deficit, and ≥2 deficits.

Physical Performance
Three outcomes of physical performance were evaluated in this
study: 4-m usual pace gait speed (in m/s), 5-repetition maximal
chair rise time (in s), and Short Physical Performance Battery
(SPPB) (29) score. The SPPB consisted of a walk test, a chair rise
test, and a standing balance test with three challenging positions;
each component was scored ranging from 0 (inability to complete
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the test) to 4 (best performance). The overall SPPB score was
calculated by summing the three component results (ranging
from 0 to 12, higher score indicates better performance) (29). All
the measurements were assessed at baseline, and after 6, 12, 24,
36, 48, and 60 months of follow-up.

Low-Grade Inflammation (LGI)
In this study, 293 of the 386 participants had C-reactive
protein (CRP) measured at baseline, 6- and 12-month visits,
using immunoturbidity according to standard protocols.
LGI (dichotomous variable) was defined as having at least
two consecutively high CRP values (3–10 mg/L) between
baseline and the 12-month visit, according to previous
studies (30–32). Participants we could not categorize
as LGI or non-LGI (e.g., people with CRP value >10
mg/L in the intermediate 6-month measurement) were
excluded. Finally, we included 267 participants in the
exploratory analysis.

Magnetic Resonance Imaging (MRI) Variables
Several MRI variables that had been reported to be associated
with impaired mobility (18, 33, 34) were retrieved: total gray
matter volume (cm3), hippocampal volume (mm3) and white
matter hyperintensity (WMH) volume (cm3). Total intracranial
volume (TICV) was also collected for model adjustment. The
acquisition protocol for brain MRI has been detailed elsewhere
(23) and in Supplementary Materials.

Confounders
Several confounding variables were selected: age, sex, MAPT
intervention groups (i.e., multidomain intervention alone or
placebo), level of education (ordinal), and bodymass index (BMI;
kg/m²). We also controlled the baseline physical activity status
using a dichotomous variable (active or inactive) based on low
physical activity component in the Fried’s frailty criteria (35).
In the analysis for MRI variables, adjusted models included the
confounders mentioned above as well as TICV.

TABLE 1 | Baseline characteristics of the study population1.

Total population

(N = 386)

Number of nutritional deficits2

No deficit

(N = 84)

1 deficit

(N = 153)

≥2 deficits

(N = 149)

p-value3

Age (years) 75.6 (4.5) 74.8 (4.1)a 75.0 (4.3)b 76.7 (4.8)a,b 0.001

Sex (female) 263 (68.1%) 66 (78.6%) 111 (72.6%) 86 (57.7%) 0.002

MAPT groups

Multidomain intervention 191 (49.5%) 40 (47.6%) 77 (50.3%) 74 (49.7%) 0.922

Placebo 195 (50.5%) 44 (52.4%) 76 (49.7%) 75 (50.3%)

Education (n = 376)

No diploma or primary school certificate 80 (21.3%) 13 (15.9%) 30 (19.9%) 37 (25.9%) 0.407

Secondary education 122 (32.4%) 28 (34.1%) 47 (31.1%) 47 (32.9%)

High school diploma 58 (15.4%) 12 (14.6%) 29 (19.2%) 17 (11.9%)

University level 116 (30.9%) 29 (35.4%) 45 (29.8%) 42 (29.3%)

Body mass index (kg/m2 ) (n = 385) 26.1 (3.9) 25.1 (4.0)a 25.9 (3.9) 26.8 (3.8)a 0.003

CDR status: 0.5 (mild cognitive impairment) 155 (40.2%) 27 (32.1%) 64 (41.8%) 64 (43.0%) 0.234

Physical status: inactive (n = 384) 53 (13.8%) 5 (6.0%) 22 (14.5%) 26 (17.5%) 0.051

Nutritional risk factors

Vitamin D (ng/ml) 23.2 (12.5) 30.8 (12.2)a,b 25.2 (12.7)a,c 16.9 (8.8)b,c <0.001

Deficiency (<20 ng/ml) 163 (42.2%) 0 (0%) 57 (37.3%) 106 (71.1%) <0.001

Homocysteine (µmol/L) 15.64 (5.27) 11.32 (1.41)a,b 15.31 (4.88)a,c 18.41 (5.32)b,c <0.001

Hyperhomocysteinemia (>14 µmol/L) 220 (57.0%) 0 (0%) 85 (55.6%) 135 (90.6%) <0.001

Omega-3 index (%) 5.86 (1.44) 6.61 (1.13)a 6.21 (1.25)b 5.08 (1.41)a,b <0.001

≤4.87 (lower quartile) 98 (25.4%) 0 (0%) 11 (7.2%) 87 (58.4%) <0.001

Physical performance

SPPB score, 0–12 (n = 378) 10.7 (1.7) 10.9 (1.5) 10.7 (1.7) 10.5 (1.8) 0.156

Gait speed (m/s) (n = 383) 1.08 (0.25) 1.10 (0.25) 1.08 (0.25) 1.06 (0.25) 0.590

Chair rise time (s) (n = 367) 11.6 (3.9) 10.4 (2.4)a 11.6 (3.9) 12.3 (4.5)a 0.004

1Values presented in number (%) for categorical variables or mean (standard deviation) for continuous variables; CDR, clinical dementia rating scale; MAPT, Multidomain Alzheimer

Preventive Trial; SPPB, Short Physical Performance Battery.
2Cutoff of nutritional deficits: Vitamin D < 20 ng/ml, homocysteine>14 µmol/L, omega-3 index ≤ lower quartile (≤4.87%).
3P-value based on ANOVA or Chi-square test across groups; a,b,csame letters indicate significant differences between groups (p < 0.05).
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TABLE 2 | Linear mixed-effect regressions examining cross-sectional associations between nutritional deficitsa and physical performance at baseline.

Unadjusted model Adjusted modelb

β 95% CI p-value β 95% CI p-value

Outcome: SPPB score (0–12)

Nutritional deficits

No deficit Ref. – – Ref. – –

1 deficit −0.20 −0.60, 0.19 0.318 −0.16 −0.53, 0.21 0.391

≥2 deficits −0.59 −0.99, −0.20 0.004 −0.33 −0.71, 0.05 0.089

Outcome: gait speed (m/s)

Nutritional deficits

No deficit Ref. – – Ref. – –

1 deficit −0.01 −0.07, 0.05 0.703 −0.01 −0.06, 0.05 0.906

≥2 deficits −0.06 −0.12, −0.01 0.041 −0.02 −0.08, 0.04 0.525

Outcome: chair rise time (s)

Nutritional deficits

No deficit Ref. – – Ref. – –

1 deficit 0.70 −0.22, 1.61 0.137 0.60 −0.28, 1.49 0.182

≥2 deficits 1.58 0.66, 2.50 0.001 0.99 0.07, 1.90 0.036

CI, confidence interval; Ref, reference group; SPPB, Short Physical Performance Battery.
aCutoff of nutritional deficits: vitamin D < 20 ng/ml, homocysteine > 14 µmol/L, omega-3 index ≤ lower quartile ( 4.87%).
bAdjustments for age, sex, Multidomain Alzheimer Preventive Trial (MAPT) groups, education, body mass index, and physical activity status.

Statistical Analysis
Baseline characteristic comparisons across the nutritional
deficit groups were performed by Chi-square test for
categorical variables and ANOVA for continuous variables.
Linear mixed-effect regressions, including a random effect
at participant level and a random slope on time, were
conducted to evaluate the cross-sectional and longitudinal
associations between nutritional deficits and physical
performance outcomes.

A series of exploratory analyses were conducted to explore
the roles of LGI (among 267 subjects with available CRP
data) and imaging markers (among 164 subjects with MRI
measures) in the association between nutritional deficits and
physical performance. We first performed logistic regressions
to examine the association between nutritional deficits and
LGI. Then, an interaction term by LGI and nutritional deficits
was introduced into the same mixed-effect models for main
analysis; only assessments of the outcomes performed at 12
months and after were considered for this analysis. For imaging
markers, cross-sectional associations with nutritional deficits
were tested by linear mixed-effect regressions (with random
intercept for the center effect). Longitudinal analysis considering
the interaction effect (MRI variable × nutritional deficits)
on physical performance was examined by linear mixed-effect
regressions (three-level nested model, with the participants
nested into the center); for participants who received MRI scans
at 6-month visit and 12-month visit, measurements of physical
performances before MRI scans were excluded from the analysis.
Statistical significance was defined as p < 0.05; the p-values
of between-group mean differences are presented after false
discovery rate correction (36). All the statistical analyses were

performed with Statistical Analysis Software (SAS) version 9.4
(Cary, NC, USA).

RESULTS

Among the overall 386 participants, 21.8% (n = 84) had no
nutritional deficit at baseline, 39.6% (n= 153) presented 1 deficit,
and 38.6% (n = 149) presented ≥2 deficits. Participants with
more nutritional deficits tended to be older and male, and to
present with higher BMI (Table 1). At baseline, compared with
those without any deficit, having ≥2 deficits was associated with
longer chair rise time, i.e., poor chair rise performance (Table 2).
No cross-sectional associations were found with SPPB score or
gait speed.

After 5 years of follow-up, decreased SPPB score and gait
speed, and increased chair rise time were observed among the
participants with ≥ 2 nutritional deficits (Table 3). P-values for
linear trend for within-group change in physical performance
outcomes were all significant (p for trend <0.001). However,
no significant between-group differences were discovered for the
changes in SPPB, gait speed, and chair rise time when individuals
without deficit and those with either 1 or ≥2 deficits were
compared (Table 3).

In the logistic regression for LGI and nutritional deficits,
people with ≥2 deficits had higher likelihood of having
LGI (adjusted OR = 2.53; 95% CI: 1.01 to 6.33; p =

0.006; Supplementary Table 1), compared with those without
deficits. Significant interaction effects by LGI and nutritional
deficits on chair rise time were observed in the linear
mixed-effect regression. Among people with ≥2 deficits, the
adjusted mean difference in chair rise time over 5 years
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TABLE 3 | Linear mixed-effect regressions examining variation in physical performance over 5 years according to nutritional deficitsa.

Within-group 5-year change

from baseline

β (95% CI); p-value

P for trend Between-group difference

Unadjusted model

β (95% CI); p-valuec

Adjusted modelb

β (95% CI); p-valuec

Outcome: SPPB score (0–12)

Nutritional deficits <0.001

No deficit, −0.43 (−0.86, 0.01); 0.057 Ref. Ref.

1 deficit, −0.47 (−0.84, −0.11); 0.011 −0.05 (−0.62, 0.52); 0.871 −0.03 (−0.59, 0.53); 0.921

≥2 deficits) −0.80 (−1.17, −0.42); <0.001 −0.37 (−0.95, 0.20); 0.411 −0.23 (−0.80, 0.33); 0.843

Outcome: gait speed (m/s)

Nutritional deficits <0.001

No deficit, −0.09 (−0.16, −0.02); 0.010 Ref. Ref.

1 deficit, −0.05 (−0.11, 0.01); 0.052 0.03 (−0.05, 0.12); 0.879 0.03 (−0.06, 0.11); 0.813

≥2 deficits) −0.08 (−0.14, −0.03); 0.005 0.01 (−0.08, 0.09); 0.879 −0.01 (−0.10, 0.08); 0.813

Outcome: chair rise time (s)

Nutritional deficits <0.001

No deficit, 0.77 (−0.08, 1.62); 0.075 Ref. Ref.

1 deficit, 0.46 (−0.24, 1.17); 0.198 −0.31 (−1.41, 0.80); 0.585 −0.18 (−1.26, 0.90); 0.739

≥2 deficits) 1.13 (0.39, 1.86); 0.003 0.36 (−0.77, 1.48); 0.585 0.40 (−0.71, 1.50); 0.739

CI, confidence interval; Ref, reference group; SPPB, Short Physical Performance Battery.
aCutoff of nutritional deficits: vitamin D < 20 ng/ml, homocysteine >14 µmol/L, omega-3 index ≤ lower quartile (≤4.87%).
bAdjustments for age, sex, Multidomain Alzheimer Preventive Trial (MAPT) groups, education, body mass index, physical activity status, and time interactions.
cP-value adjusted for multiple comparisons using the Benjamini-Hochberg procedure.

between those with and without LGI (reference group) was
3.47 s (95% CI: 1.03, 5.91; p = 0.017), indicating that LGI
reinforced the impact of ≥2 deficits on worsening chair rise
performance (Supplementary Table 2). On the other hand, no
association between imaging markers and nutritional deficits
was found (Supplementary Table 3). There was no evidence of
any significant interaction between each imaging marker and
nutritional deficits on physical performances in the linear mixed-
effect models (Supplementary Table 4).

DISCUSSION

To our knowledge, this is the first study to investigate
the associations between accumulated nutritional deficits and
physical performance in community-dwelling older adults. We
discovered that presenting two or more nutritional deficits (i.e.,
vitamin D deficiency, HHcy, and low omega-3 PUFA index)
was cross-sectionally associated with poor chair rise performance
at baseline. We did not observe associations of combined
nutritional deficits with mobility decline over 5 years; however,
our exploratory analysis found that the association of nutritional
deficits with chair rise performance could vary according to LGI
status, with a more pronounced increase in chair rise time (worse
performance; 0.69 s more per year) among older adults with ≥2
deficits and LGI compared with their non-LGI counterparts.

The relationship between the nutritional markers investigated
in our study and physical performance has mixed findings in

the literature (8–13). In this study, although the between-group
differences did not reach significance, within-group changes for
all the three physical performance outcomes showed higher
overtime declines as the number of deficits increased (p for
trend <0.001). Noteworthy, after the 5-year follow-up, more
than half of the participants with ≥2 nutritional deficits became
octogenarians whose mobility tends to decline faster than in
younger people (17). On the other hand, our exploratory
analysis found that LGI, an important mechanism implicated
in both aging (37) and mobility disability (17, 38), contributed
to this accelerated decline of physical performance in older
individuals with combined nutritional deficits. This finding
suggests that both the presence of nutritional deficits and chronic
inflammation contribute to physical impairment. Indeed, omega-
3 PUFAs and HHcy had been proposed to affect mobility
outcomes through inflammatory pathway. Omega-3 PUFAs
can suppress chronic inflammation, further inhibiting muscle
catabolism (39); HHcy can lead to inflammation by causing
reactive oxygen species accumulation and pro-inflammatory
cytokine secretion (4, 20). Although vitamin D is well-known
for its metabolic roles in muscle synthesis and bone formation
(3), the recent evidence had suggested it has immunomodulatory
effects by regulating both innate and adaptive immunity (40).
On the other hand, it is plausible that LGI status is independent
of the presence of nutritional deficits, but that their joint effect
enhances the detrimental impact on physical function. For
example, accelerated muscle catabolism caused by inflammation
(41), combined with muscle weakness caused by vitamin D
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deficiency (10), can lead to faster decline in overall muscle
function and physical performance.

Our cross-sectional and exploratory analyses only observed
significant associations between nutritional deficits and chair rise
performance, suggesting nutritional deficits would affect physical
performance through a muscle quality-related mechanism rather
than changes in the central nervous system. This is also
supported by our findings related to MRI indicators, which
showed no significant interaction between brain volumes and
nutritional deficits on changes in physical performance over
time. Compared with gait speed, a functional vital sign (42)
relying on complex movement controls with executive function
involved (43), chair rise test is a more specific measure of
muscle function (44), strongly determined by muscle mass and
power in older adults (45, 46). Another possible explanation
for the limited findings on change in SPPB is that only
a few participants of this study had mobility limitation at
baseline, with 6% having SPPB ≤7 (1) and about 20%
having SPPB ≤9 (47). Although it is possible that people
who started having mobility limitations would decline faster
in mobility (48), the associations of nutritional deficits with
mobility limitation in mobility-impaired individuals require
further investigations.

A number of strengths should be mentioned in our study. We
evaluated multiple nutritional deficits, assessed by three blood-
based biomarkers, and several measures of physical performance
in older adults over 5 years. In addition, we explored the
potential role of inflammatory and neuroimaging markers in
nutrition-physical performance associations. However, some
limitations are worth mentioning. First, this is an observational
study with data retrieved from a randomized controlled trial.
Even though MAPT multidomain intervention did not affect
physical performance (25), our results need to be interpreted
cautiously, since the exercise advice and nutritional counseling
part of the multidomain intervention could have modified
the nutritional markers overtime. In order to minimize this
bias, MAPT group allocation was added as a confounder
in the models. Residual confounding may not be excluded,
since some other potential confounders, such as nutritional
supplementation (except for omega-3 PUFAs), inadequate
dietary protein intake, and smoking and drinking habits (12,
49), were not available. Finally, the MAPT study enrolled a
sample of community-dwelling older adults at risk of cognitive
decline, which might affect the generalizability of our findings to
other populations.

To conclude, this study did not observe prospective
associations between combined nutritional deficits (vitamin D
deficiency, HHcy, and low omega-3 index) and overtimemobility
decline in community-dwelling older adults. However, different
trajectories of chair rise performance were observed among
people with two or more deficits, once the presence of chronic,
low-grade inflammation was considered. Future studies that will
investigate nutritional deficits and physical impairment focused
on older adults with different conditions characterized by LGI,
including subjects with mobility limitation, could shed light on
this topic.
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