Research

Transposons passively and actively contribute
to evolution of the two-speed genome

of a fungal pathogen

Luigi Faino,"-* Michael F. Seidl,' Xiaogian Shi-Kunne,' Marc Pauper,’
Grardy C.M. van den Berg,’ Alexander H.). Wittenberg,? and Bart P.H.]. Thomma'
' Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands;

?Keygene N.V., 6708 PW Wageningen, The Netherlands

Genomic plasticity enables adaptation to changing environments, which is especially relevant for pathogens that engage in
“arms races” with their hosts. In many pathogens, genes mediating virulence cluster in highly variable, transposon-rich,
physically distinct genomic compartments. However, understanding of the evolution of these compartments, and the
role of transposons therein, remains limited. Here, we show that transposons are the major driving force for adaptive ge-
nome evolution in the fungal plant pathogen Verticillium dahliae. We show that highly variable lineage-specific (LS) regions
evolved by genomic rearrangements that are mediated by erroneous double-strand repair, often utilizing transposons.
We furthermore show that recent genetic duplications are enhanced in LS regions, against an older episode of duplication
events. Finally, LS regions are enriched in active transposons, which contribute to local genome plasticity. Thus, we provide
evidence for genome shaping by transposons, both in an active and passive manner, which impacts the evolution of path-

ogen virulence.
[Supplemental material is available for this article.]

Genomic plasticity enables organisms to adapt to environmental
changes and occupy novel niches. Although such adaptation oc-
curs in any organism, this is particularly relevant for pathogens
that engage in coevolutionary “arms races” with their hosts
(Raffaele and Kamoun 2012; Seidl and Thomma 2014; Dong
et al. 2015). In these interactions, hosts utilize their surveillance
system to detect invaders and mount appropriate defenses, involv-
ing detection of invasion patterns by immune receptors, whereas
pathogens secrete so-called effector molecules to support host col-
onization and counteract immune responses (Rovenich et al.
2014; Cook et al. 2015). This tight interaction exerts strong selec-
tion pressure on both partners and incites rapid genomic diversifi-
cation (McDonald and Linde 2002).

Although sexual reproduction drives genotypic diversity, not
all eukaryotes regularly reproduce sexually, including many asexu-
al fungal phyla (McDonald and Linde 2002; Heitman et al. 2007;
Flot et al. 2013). However, in such asexual organisms adaptive ge-
nome evolution also occurs, mediated by various mechanisms
ranging from single-nucleotide polymorphisms to large-scale
structural variations that can affect chromosomal shape, organiza-
tion, and gene content (Seidl and Thomma 2014). Verticillium dah-
liae is a soil-borne fungal pathogen that infects susceptible hosts
through their roots and colonizes the water-conducting xylem ves-
sels, leading to vascular wilt disease (Fradin and Thomma 2006).
Despite its presumed asexual nature, V. dahliae is a highly success-
ful pathogen that causes disease on hundreds of plant hosts
(Fradin and Thomma 2006; Klosterman et al. 2009; Inderbitzin
and Subbarao 2014). Using comparative genomics, we recently
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identified genomic rearrangements in V. dahliae that lead to exten-
sive chromosomal length polymorphisms (de Jonge et al. 2013).
Moreover, the genomes of V. dahliae strains were found to contain
highly dynamic, repeat-rich, lineage-specific (LS) regions
(Klosterman et al. 2011; de Jonge et al. 2013). Intriguingly, these
LS regions are enriched for in planta-induced effector genes that
contribute to fungal virulence (de Jonge et al. 2013). Similarly,
many filamentous pathogens are considered to have evolved so-
called “two-speed” genomes with gene-rich, repeat-poor genomic
compartments that contain core genes that mediate general phys-
iology and evolve slowly, whereas plastic, gene-poor and repeat-
rich compartments are enriched in effector genes that mediate
virulence in interactions with host plants and evolve relatively
quickly (Raffaele and Kamoun 2012).

Plastic, fast-evolving genomic compartments in plant and an-
imal pathogen genomes concern particular regions that are either
embedded within the core chromosomes or reside on conditional-
ly dispensable chromosomes (Thon et al. 2006; Fedorova et al.
2008; Haas et al. 2009; Ma et al. 2010; Goodwin et al. 2011;
Klosterman et al. 2011; Rouxel et al. 2011; de Jonge et al. 2013).
Irrespective of the type of organization of the two-speed genome,
the fast-evolving compartment is generally enriched for transpos-
able elements (TEs) that are thought to actively promote genomic
changes by causing DNA breaks during excision or by acting as a
substrate for rearrangement (Seidl and Thomma 2014). Neverthe-
less, the exact role of TEs in the evolution of effector genes current-
ly remains unknown (Dong et al. 2015). We recently established
gapless V. dahliae whole-genome assemblies using a combination
of long-read sequencing and optical mapping (Faino et al. 2015;
Thomma et al. 2015). Here, we exploit these novel assemblies for
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in-depth investigations into the molecular mechanisms responsi-
ble for genomic variability, which is instrumental for adaptive ge-
nome evolution in V. dahliae.

Results

Genomic rearrangements in Verticillium dahliae are associated
with sequence similarity

Whole-genome alignments between V. dahliae strains JR2 and
VdLs17 revealed 24 synteny disruptions (Fig. 1A; Supplemental
Fig. S1). To further increase their resolution, we aligned long (aver-
age ~9 kb) sequencing reads derived from strain VdLs17 (Faino
et al. 2015) to the strain JR2 assembly, and reads of which the
two sides aligned to two distinct genomic locations were used to
determine breakpoints at high-resolution (Supplemental Fig. S2).
After manual refinement, this procedure yielded 19 large-scale
chromosomal rearrangements; 13 inter-chromosomal transloca-
tions, and six intra-chromosomal inversions (Fig. 1; Table 1).
Although seven rearrangements were confined to regions smaller
than 100 bp, the remaining 12 concern larger genomic regions
that could not be further refined due to the presence of strain-spe-
cific or repeat-rich regions (Fig. 1A).

We subsequently assessed the occurrence of the 13 inter-
chromosomal rearrangements in nine other V. dahliae strains by
querying paired-end reads derived from these genomes for pairs
of discordantly mapped reads (i.e., both reads fail to map at the ex-
pected distance or location) when mapped onto the strain JR2 as-
sembly, revealing distinct rearrangement patterns (Supplemental
Fig. S3). Although some synteny breakpoints identified in V. dah-
lige strain JR2 are either specific to V. dahliae strain VdLs17 (Chr 1:
2,843,014-2,843,020) (Supplemental Fig. S4A) or common to all
other V. dahliae strains (Chr 1: 8,013,865-8,013,868) (Supplemen-
tal Fig. S4B), some are observed in only a subset of V. dahliae strains
(Chr 3: 3,130,776-3,130,781) (Supplemental Fig. S4C).

V. dahliae strains JR2 and VdLs17 are highly similar with only
8622 SNPs difference (0.024% nucleotide divergence). When fo-
cusing on the regions (10 kb) upstream of and downstream from
the 19 identified synteny breakpoints, we observe ~200 SNPs
(~0.05% divergence), indicating a moderate increase in proximity
of the breakpoints. Similarly, when considering all V. dahliae
strains, we observe a genome-wide average of 4.1 SNPs/kb; whereas
around breakpoints (10 kb upstream and downstream), 6.3 SNPs/
kb are found.

Genomic rearrangements are generally caused by double-
strand DNA breakages followed by unfaithful repair by mecha-
nisms that utilize homologous sequences to repair such breaks
(Hedges and Deininger 2007; Krejci et al. 2012; Seidl and
Thomma 2014). Repetitive genomic elements, such as transpos-
able elements (TEs), may give rise to genomic rearrangements by
providing an ectopic substrate that interferes with faithful repair
of the original break. Notably, of 19 chromosomal rearrangements
identified in V. dahliae strain JR2, 15 colocalize with a repetitive el-
ement (Table 1; Supplemental Table S1). Of the 13 inter-chromo-
somal rearrangements, 12 could be reconstructed in detail (Fig.
1A; Table 1; Supplemental Figs. S5, S6). Eight of them occur over
highly similar TEs in both strains, although they belong to differ-
ent TE families (Fig. 1B; Table 1; Supplemental Figs S5, S6). At two
of the breakpoints, a TE occurred in strain VdLs17 that was absent
at those breakpoints in the JR2 strain. For the final two break-
points, no association to a TE was found in either strain, but ex-
tended sequence similarity surrounding the rearrangement site
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Figure 1. Extensive rearrangements in Verticillium dahliae genomes are
mediated by repetitive elements. (A) Syntenic regions, indicated by rib-
bons, between chromosomes of the two highly similar V. dahlige strains
JR2 (chromosomes displayed in white) and VdLs17 (chromosomes dis-
played in gray) reveal multiple synteny breakpoints caused by inter-chro-
mosomal rearrangements, highlighted by red arrows for the JR2
genome. Red bars on the chromosomes indicate lineage-specific genomic
regions (LS) that lack synteny in the other strain. To facilitate visibility,
some chromosomes of V. dahliae strain VdLs17 have been reversed and
complemented (indicated by asterisks). (B) Detailed view of the genomic
regions surrounding selected synteny breakpoints. Rearrangements over
short homologous regions such as repetitive elements (black boxes) or
genes (colored boxes) resulted in inter-chromosomal rearrangements
(translocations). V. dahliae strain VdLs17 genes were inferred by mapping
of the V. dahliae strain JR2 genes to the genome assembly of V. dahliae
strain VdLs17. Dashed gray lines indicate rearrangement sites. The num-
bers correspond to rearrangement numbers in A and Table 1.

was identified (Fig. 1B; Supplemental Fig. S6). Therefore, we con-
clude that not necessarily TEs or their activity, but rather stretches
of sequence similarity, are associated with ectopic chromosomal
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rearrangements in V. dahliae, likely mediating unfaithful homolo-
gy-based DNA repair. Since TEs are more abundant compared to
other (types of) sequences, these are more likely to become sub-
strates for double-strand repair pathways.

Lineage-specific genomic regions in Verticillium dahliae evolved
by segmental genomic duplications

Whole-genome alignments between V. dahliae strains JR2 and
VdLs17 revealed four large (>10 kb) repeat-rich genomic regions
lacking synteny between the strains (Supplemental Table S2).
Mapping of reads from nine additional strains (de Jonge et al.
2012) onto the JR2 and VdLs17 assemblies revealed absence of
read coverage primarily at their respective LS regions (Supplemen-
tal Fig. S7). Notably, several inter-chromosomal rearrangements
colocalize with these LS regions (Fig. 1A), suggesting that genomic
rearrangements contributed to the formation of LS regions.

Although duplicated genes have previously been observed in
LS regions of V. dahliae (Klosterman et al. 2011), the extent of such
duplications and their role in the evolution of LS regions remains
unknown. To determine the extent of segmental duplications in
LS regions, we used two approaches. First, we performed whole-
genome nucleotide alignments of V. dahliae strain JR2 to itself to
identify highly similar (>80% identity), large-scale duplication
events, showing that the vast majority of highly similar large-scale
duplications occurs within LS regions (Fig. 2A; Supplemental
Table S3). Next, we performed homology detection between pro-
tein-coding genes in V. dahliae strain JR2, establishing a set of
approximately 1000 paralogous sequences (Supplemental Fig.
S8). Notably, 40% of the 418 genes located in LS regions have a
paralog, which is a 4.5x enrichment when compared to the core
genome, in which only 7% of the ~11,000 genes has a paralog (hy-
pergeometric test; P=1.31 x 10~%°). Therefore, duplications of ge-
nomic material are important for the constitution of LS regions
in V. dahliae.

The high level of similarity between sequences located at LS
regions (Fig. 2A; Supplemental Table S3) suggests that a significant
proportion of duplications occurred rather recently. To firmly es-
tablish when these duplications occurred during the evolution of
V. dahliae, we used the rate of synonymous substitutions per syn-
onymous site (K;) between paralogous gene pairs as a proxy for
time since these sequences diverged (Fig. 2B). Although the K, dis-
tribution of paralogous pairs located in the core genome displays a
single peak, indicating a single and distinct period in which the
majority of these duplications occurred, the distribution of paralo-
gous pairs in which at least one gene is located in the LS regions
displays two distinct peaks (Fig. 2B). Notably, the older of the
two peaks coincides with the peak observed for the core paralogs,
indicating that the expansion of core genes and a subset of genes in
LS regions occurred in the same period. The additional peak points
toward duplications that occurred more recently. To place these
periods in relation to speciation events, we estimated K; distribu-
tions for orthologous gene pairs between V. dahliae strain JR2
and a number of closely related fungi from the taxonomic class
of Hypocreomycetidae (Fig. 2C). Within this group of close rela-
tives, the tomato wilt pathogen Fusarium oxysporum f.sp. lycopersici
was the first one to diverge from the last common ancestor, where-
as the most recent split was the divergence of V. dahliae strains JR2
and VdLs17. The first duplication period that occurred before the
divergence of Colletotrichum higginsianum affected both the core
genome and LS compartments (Fig. 2C). The second duplication
event in V. dahliae strain JR2 that specifically concerned genes lo-
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Figure 2. Whole-genome alignments of Verticillium dahliae strain JR2 re-
veals two duplication events. (A) Circos diagram illustrating sequence
alignments within V. dahliae strain JR2. Black lines indicate genomic re-
gions with sequence similarity. The inner circle shows LS regions (red lines),
the middle circle indicates clusters of LS regions, and the outer circle shows
the identity between pairs of secondary alignments. Each cluster of LS re-
gion is color coded: LS1 in blue, LS2 in yellow, LS3 in magenta, and LS4 in
light blue (see Supplemental Table S2). (B) K; distribution of paralogs of
which both genes are located in the core genome (red) or at least one
paralog is located in an LS region (blue). (C) Duplication events are esti-
mated by calculating the K, value for paralogous gene pairs and displayed
in the line graph. Speciation events are estimated by calculating the K; val-
ue for orthologous gene pairs based on genes from V. dahlige strains JR2
and their respective orthologs in the other genomes and displayed in
the box plot. Distributions and median divergence times between 1:1:1
orthologous pairs, displayed by box plots, were used to estimate relative
speciation events.

cated at LS regions occurred much more recently, after the specia-
tion of Verticillium alfalfae. Genes in the LS regions have previously
been shown to be particularly relevant for pathogen virulence in
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V. dahliae (de Jonge et al. 2013), suggesting that recent gene dupli-
cations are contributing to the evolution of virulence.

The recent duplications that affected LS regions have generat-
ed raw genetic material that can be subjected to subsequent rapid
evolutionary diversification, leading to novel or altered gene func-
tionality, but can also be subject to differential loss of one of the
duplicated gene copies (Fig. 3; Supplemental Fig. S9). In general,
LS regions in V. dahliae strain JR2 display considerable gene loss,
because for about 100 of the approximately 400 genes located in
LS regions, no ortholog could be detected in V. dahliae strain
VdLs17. Thus, differential gene loss significantly contributed to
the diversification of LS regions. To determine if LS regions display
signs of increased gene diversification and selection pressure act-
ing on protein-coding genes, we used the rate of nonsynonymous
substitutions per nonsynonymous site (K,) as well as the ratio of K,
to K, values calculated between orthologous gene pairs of V. dah-
liae strain JR2 and the closest related Verticillium species, V. alfalfae,
as a proxy. Genes located at LS regions display moderately in-
creased K, values, as well as K,/K; values, when compared to genes
residing in the core genome (median of 0.07 compared to 0.03,
and 0.37 compared to 0.18, for LS and core genes, respectively).
Although these indicate accelerated sequence divergence of genes
located within LS regions, the moderate differences also corrobo-
rate previous results (de Jonge et al. 2013; Seidl et al. 2015), suggest-
ing that sequence divergence only plays a minor role in V. dahliae
genome evolution.

The Avel effector gene is located in a highly dynamic
genomic region

As shown above, highly dynamic LS regions are characterized by
frequent gene duplications and differential gene loss. Moreover,
effector genes located in LS regions play decisive roles in patho-
gen-host interactions (de Jonge et al. 2013). For example, Avel is
an important LS effector that determines V. dahliae virulence on
various host plants (de Jonge et al. 2012). As expected in a coevo-
lutionary “arms race” (Thomma et al. 2011; Cook et al. 2015), host
recognition evolved as host plants that carry the Vel immune re-

ceptor recognize this effector (Fradin et al. 2009; de Jonge et al.
2012). Whereas race 1 strains of V. dahliae are contained by the
Vel immune receptor, race 2 strains evade recognition due to
loss of Avel and are able to infect Vel host plants.

In V. dahliae strain JR2, Avel is embedded in a gene-sparse and
repeat-rich LS region on Chromosome 5 (approximately 550,000-
1,050,000) (Fig. 4). Notably, the average number of single nucleo-
tide polymorphisms (SNPs) inferred from three race 1 and eight
race 2 strains of V. dahliae is significantly reduced in the area sur-
rounding the Avel locus (between 680,000 and 720,000) when
compared with the surrounding genomic regions (Fig. 4B), but
also compared to genome-wide SNP levels in LS and core regions
(Supplemental Fig. S10), which may be explained by the relatively
recent acquisition of this region through horizontal transfer
(de Jonge et al. 2012).

V. dahliae race 1 strains do not occur as a monophyletic clade
in the V. dahliae population (Supplemental Fig. S3A; de Jonge et al.
2013). To assess if Avel was gained or lost multiple times, we stud-
ied the genomic region surrounding the Avel locus in the LS re-
gion. By mapping paired-end reads derived from genomic
sequencing of various V. dahliae strains onto the genome assembly
of V. dahliae strain JR2, we observed clear differences in coverage
levels between V. dahliae race 1 and race 2 strains that carry or
lack the Avel gene, respectively (Fig. 4C; Supplemental Fig. S11).
Although V. dahliae race 1 strains, including JR2, displayed an
even level of read coverage over the Avel locus, no read coverage
over the Avel gene was found in race 2 strains. Intriguingly, read
coverage surrounding the Avel gene revealed that race 2 strains
can be divided into three groups, depending on the exact location
of the read coverage drop (Fig. 4C; Supplemental Fig. S11B).
Whereas one group of isolates does not display any read coverage
over a region of ~40 kb flanking the Avel gene (Supplemental
Fig. S11B, colored lines from ~680 to ~720 kb), two groups display
distinct regions in which the read coverage around the Avel locus
drops (Supplemental Fig. S11B, red lines around 668 kb and green
lines around 672 kb). In conclusion, the Avel locus is situated in a
highly dynamic and repeat-rich region (Fig. 4C), and the most
parsimonious evolutionary scenario is that the Avel locus was
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Figure 3.

Example of gene losses after segmental duplications within the V. dahliae strain JR2 genome. Example of a segmental duplication between LS

regions located on Chromosome 2. Red ribbons indicate regions of homology between the two loci. Blue arrows indicate gene models present only at one
of the two loci, whereas green and red arrows indicate common genes and transposable elements, respectively.
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Figure 4. Details of the Avel locusin V. dahliae strain JR2. (A) Genome as-
semblies of race 1 and race 2 V. dahliae strains were aligned to the reference
genome assembly of V. dahliae strain JR2. The red arrow indicates the loca-
tion of the Avel gene. (B) Single nucleotide polymorphism (SNP) density
(mean number of SNPs per 1 kb) over the AveT locus indicates depletion
of SNPs in the Avel region when compared with neighboring regions. (C)
A large genomic region on Chromosome 5 of V. dahlige strain |JR2 contain-
ing the Avel geneis characterized by presence/absence polymorphisms be-
tween strains. Lines indicate the corrected average read depth (per 5-kb
window, 500-bp slide) of paired-end reads derived from genomic sequenc-
ing of 11 V. dahliae strains. Different colors indicate distinct patterns of cov-
erage across the Avel locus. Genes (Avel is marked in red) and transposable
elements/repeats (excluding simple repeats) are indicated.

horizontally acquired once, followed by multiple losses in inde-
pendent lineages that encountered host plants that carried
Vel or functional homologs of this immune receptor (Thomma
etal. 2011; deJonge etal. 2012; Zhangetal. 2014; Song et al. 2016).

Lineage-specific genomic regions in Verticillium dahliae contain
active transposable elements

Although the activity of TEs is not associated with the formation of
extensive genome rearrangements, LS regions are highly enriched
for TEs, and their presence and potential activity may contribute to
accelerated evolution of these genomic regions. In V. dahliae, the
most abundant class of TEs are retrotransposons that transpose
within the genome using an RNA intermediate (Supplemental
Table S1; Wicker et al. 2007; Faino et al. 2015). We assessed TE
dynamics by querying the transcriptional activity of TEs using in
vitro RNA-seq data derived from V. dahliae strain JR2 (de Jonge
et al. 2012). Notably, the majority of TEs in V. dahliae are not
transcribed and thus likely not active (Supplemental Table S1),
whereas transcribed and therefore likely active TEs are found in
LS regions—171 of 280 TEs in LS regions (61%) are expressed
(log10[RPKM +1] >0) (Supplemental Fig. S12).

To further assess if and how TEs influence the evolution of LS
regions, we explored TE dynamics in the genome of V. dahliae
strain JR2. Each copy of a TE in the genome is derived from an ac-
tive ancestor that, once transposed and integrated into the ge-
nome, accumulates mutations that over evolutionary time will
render the TE inactive. The relative age of individual TEs can
thus be estimated based on sequence divergence from a consensus
sequence that can be derived from present-day copies of any given
TE. Using the Jukes-Cantor distance (Jukes and Cantor 1969),
which corrects the divergence between TEs and their consensus se-
quence for multiple substitutions, we estimated the divergence
times for TEs in the V. dahliae strain JR2 genome (Fig. 5). This anal-
ysis showed that TEs primarily transposed and expanded in two
distinct periods (Fig. 5A). Notably, a considerable amount of
“younger” TEs, i.e., with small Jukes-Cantor distance (Jukes and
Cantor 1969) to their consensus sequence, localizes in LS regions,
whereas the majority of “older” TEs resides in the core genome
(Fig. 5A). In line with this observation, 90 of 280 TEs in LS regions
(i.e., 32%) display <0.025 nucleotide divergence from the consen-
sus sequence, whereas 151 of 1101 TEs in the core (i.e., 14%) dis-
play such low levels of divergence. Similarly, genome-wide, 202
of the 390 transcriptionally active TEs (i.e., 52%) display <0.025
divergence, whereas only 39 of 991 transcriptionally silent TEs
(i-e., 4%) display such low levels of divergence (Fig. 5B). Addition-
ally, the relative age of individual TEs belonging to the LTR class
was estimated based on sequence divergence between the distal
LTR sequence motifs using the Jukes-Cantor distance (Fiston-
Lavier et al. 2012). Despite the relatively low amount of complete
LTR-type TEs found in the genome of V. dahliae strain JR2, this
analysis showed a similar age distribution (Supplemental Fig.
S13). Next, we attempted to determine the relative period in which
the majority of TEs in the genome of V. dahliae strain JR2 trans-
posed. To this end, we derived Jukes-Cantor distributions for
orthologous genes of V. dahliae strain JR2 and individual closely re-
lated fungi as a proxy of divergence between these species (Fig. 5C).
These distributions display the same pattern of species divergence
when derived from phylogenetic analyses (Supplemental Fig. S14)
as well as from the K distributions between orthologous gene pairs
(Fig. 2C). By comparing the Jukes-Cantor distributions derived
from TEs and from orthologous genes, we revealed that older TEs
transposed before the separation of V. dahliae and V. alfalfa, where-
as the younger TEs transposed after V. dahliae speciation (Fig. 5C).
Notably, younger TEs tend to be transcriptionally active, and
older, more diverged TEs tend to be transcriptionally silent (Fig.
5B). Thus, the expansion of younger TEs is recent and primarily
concerns the active TEs localized at LS regions (Fig. 5), strongly sug-
gesting that TE transpositions contribute to the genetic plasticity
of LS regions.

Discussion

It was previously shown that genetic rearrangements occur in fast-
evolving LS regions of the genome that are enriched in TEs
(Klosterman et al. 2011; de Jonge et al. 2013). We now show that
TEs are enriched near rearrangement breakpoints and play a role
in homology-based recombinations. We furthermore show that re-
cent genetic duplications are enhanced in LS regions, against the
background of an older episode of duplication events for the
“core” genome. Finally, we show that LS regions display signs of
TE activity that may contribute to plasticity of those regions.
Many plant pathogens contain a so-called “two-speed” ge-
nome, where effector genes reside in genomic compartments
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Figure 5. Dynamics of transposable elements in the genome of
Verticillium dahliae strain JR2. (A) The divergence time of transposable ele-
ments identified in the genome of V. dahlige strain |R2 (Faino et al. 2015)
was estimated using the Jukes-Cantor distance calculated between repeat
copies and their consensus sequence. The distributions of divergence
times between transposable elements located in the core genome (red)
and in the LS regions (blue) differ. Estimations of speciation events in the
evolutionary history of V. dahlige are indicated by triangles based on anal-
yses in C. (B) The distributions of divergence times between expressed/ac-
tive (log1o[RPKM+1] >0) transposable elements (red) and nonexpressed
(blue) transposable elements differ. Estimations of speciation events are in-
dicated by triangles. (C) Speciation events are estimated by calculating the
Jukes-Cantor distance for orthologous gene pairs based on genes from V.
dahliae strains JR2 and their respective orthologs in the other genomes.
Distributions and median divergence times between 1:1:1 orthologous
pairs, displayed by box plots, were used to estimate relative speciation
events.

that are considerably more plastic than the core genome, facilitat-
ing the swift evolution of effector catalogs that are required to
be competitive in the host-pathogen arms race (Raffaele and
Kamoun 2012; Dong et al. 2015). Generally, effector compart-
ments are enriched in transposable elements (TEs), and it has
been speculated that they promote genomic flexibility and drive
accelerated evolution of these genomic compartments (Gijzen
2009; Haas et al. 2009; Ma et al. 2010; Raffaele et al. 2010;
Rouxel et al. 2011; Raffaele and Kamoun 2012; de Jonge et al.
2013; Wicker et al. 2013; Grandaubert et al. 2014; Seidl and

Thomma 2014; van Hooff et al. 2014; Dong et al. 2015; Faino
et al. 201S5; Seidl et al. 2015). This phenomenon is not confined
to plant pathogens, as the genome of the ant Cardiocondyla obscu-
rior similarly contains large TE islands enriched for genes with roles
in adaptation to novel habitats that display elevated levels of
single-nucleotide polymorphisms and structural variations
(Schrader et al. 2014). In plants and animals, TEs are considered
significant drivers of genome architecture (Bailey et al. 2003;
Feschotte and Pritham 2007; Cordaux and Batzer 2009; Wicker
et al. 2010; Lisch 2013). Nevertheless, the exact role of TEs in ge-
nome evolution of filamentous pathogens remained unknown
(Raffaele and Kamoun 2012; Dong et al. 2015).

Here, we identified ~2-Mb repeat-rich, lineage-specific (LS) re-
gions between two V. dahliae strains that are significantly enriched
in TEs and contain all thus far functionally analyzed effector
genes, including Avel. Moreover, we also determined a significant
number of synteny breakpoints that are associated with genomic
rearrangements to high resolution, most of which we could recon-
stitute in detail. Although the previously determined association
between LS compartments and the occurrence of genomic
rearrangements was overestimated due to major errors in the pub-
licly available genome assembly of V. dahliae strain VdLs17
(Klosterman et al. 2011), for which we recently revealed a consid-
erable number of erroneous chromosomal inversions (Faino et al.
2015), we still observed that three of four large-scale LS regions
are associated with chromosomal rearrangements. We were not
able to associate every LS region with a genomic rearrangement,
and we were also not able to exactly reconstitute each genomic
rearrangement. However, it can be anticipated that complex rear-
rangements occurred in which genetic material in close proximity
was lost. Furthermore, rearrangements may have occurred over lon-
ger evolutionary timescales, and subsequent rearrangement events
may have erased “scars” of previous rearrangements. Thus, al-
though not every genomic rearrangement can be associated to an
LS region, large-scale genomic alterations appear to be the driving
force for LS region formation in V. dahliae.

Intriguingly, although the majority of TEs in V. dahliae is
transcriptionally silent and thus inactive, transcriptionally active
and thus likely actively transposing TEs were observed in LS re-
gions. This observation was corroborated using a very conservative
approach to map RNA-seq reads to limit the effect of reads map-
ping to multiple locations in the genome. Transcription and spe-
cific induction of TE activity has been observed previously in V.
dahliae strain VdLs17 (Amyotte et al. 2012). These independent
observations are further corroborated by our dating analyses, sug-
gesting that TEs that localize in LS regions are significantly youn-
ger when compared with those residing in the core genome. We
propose that TEs and their activity contribute to genomic diversity
by, e.g., inducing large-scale genomic duplications, as observed
within the LS regions in V. dahliae. In plants, TE insertions into
chromosomes induce double-strand breaks, which are subse-
quently repaired using ectopic DNA as a filler, thereby leading to
the duplication of genomic material that can subsequently
diverge, often involving gene loss (Wicker et al. 2010). Intriguing-
ly, the LS effector Avel is located in an LS region with several TEs in
its direct vicinity (de Jonge et al. 2012), and clear evidence for re-
peated loss in the V. dahliae population was obtained in our study.
Similarly, it has been hypothesized that ectopic genomic rear-
rangements caused by homology-based DNA repair pathways, pos-
sibly passively mediated by TEs, drive the frequent loss of the Avr-
Pita effector gene in isolates of the rice blast fungus Magnaporthe
oryzae that encountered the Pita resistance gene of rice (Orbach
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et al. 2000; Chuma et al. 2011). Similar processes likely contribute
to the frequent recovery of Avr-Pita in M. oryzae strains relieved
from selection pressure of Pita, leading to translocation and dupli-
cations of this effector gene in dynamic genomic regions (Chuma
etal. 2011).

Genome-wide studies in several fungi aiming to study chro-
matin revealed that TE-rich regions are generally associated to
highly condensed chromatin that restricts transcription and TE ac-
tivity (Lewis et al. 2009; Connolly et al. 2013; Galazka and Freitag
2014). Therefore, TEs can influence the expression of neighboring
genes such as effectors, as they can direct the formation of hetero-
chromatic regions (Lewis et al. 2009). In the saprophytic fungus
Neurospora crassa, heterochromatin formation at TEs is directed
by remnants of Repeat Induced Point mutations (RIP), a premeiot-
ic process that actively induces point mutations in TEs (Selker
1990; Lewis et al. 2009, 2010). In the pathogenic fungus
Leptosphaeria maculans, effectors are located in TE-rich regions
that were subjected to extensive RIP mutations and display signa-
tures of nucleotide mutations caused by the RIP process, fostering
rapid effector diversification (Fudal et al. 2009; Daverdin et al.
2012). However, as Verticillium spp. are considered asexual, it is
not unexpected that effectors in LS regions do not display evidence
for RIP mutations. Despite the fact that LS regions do not show
overrepresentation of secreted genes, we previously observed
that effector genes residing in the LS regions are considerably over-
represented in the V. dahliae transcriptome upon plant infection
(de Jonge et al. 2013). Potentially, since several TEs in LS regions
are transcriptionally active, LS regions may either not yet be target-
ed by heterochromatin formation or carry different chromatin
marks as core genomic compartments. Chromatin-based regula-
tion of effector genes and genes encoding other virulence factors
has been observed in several pathogenic fungi (Connolly et al.
2013; Qutob et al. 2013; Chujo and Scott 2014; Soyer et al. 2014,
2015). Thus, further insight into chromatin biology of V. dahliae
will be instrumental to significantly enhance our knowledge of
the evolution of its two-speed genome and on virulence.

Methods

Genome annotation and dynamics

Gene predictions for the genome assembly of V. dahliae strain JR2
(Faino et al. 2015) was performed using Maker2 software (Holt and
Yandell 2011) with multiple independent evidence, including
transcriptomic data, to support gene annotation (Klosterman
etal. 2011; de Jonge et al. 2012, 2013; Seidl et al. 2015). For details,
see Supplemental Methods. Homology between protein-coding
genes of 13 fungal species was assessed using OrthoMCL (Li et al.
2003). Orthologous gene pairs between fungal species and paralo-
gous gene pairs within each individual species were extracted
from the OrthoMCL gene families. K, values between gene pairs,
as defined by OrthoMCL families, were calculated using the
K,K;_Calculator 2.0 package (Wang et al. 2010).

Repetitive elements were identified as described in Faino et al.
(2015). Expression of repetitive elements was assessed based on
RNA sequencing data derived from V. dahliae strain JR2 grown in
in vitro media (Czapek Dox) (de Jonge et al. 2012). Paired end reads
were mapped onto the genome assembly of V. dahliae strain JR2 us-
ing TopHat2 (Trapnell et al. 2009), summarized, and reported as
reads per Kkilobase of transcript per million mapped reads
(RPKM). To estimate divergence time of transposable elements,
each individual copy of a transposable element was aligned to
the consensus of its family. The sequence divergence between

transposable elements and the consensus was corrected using
the Jukes-Cantor distance, which corrects the divergence (p) by
the formula d=-3/4log.(1-4/3p) (Jukes and Cantor 1969). For
more details, see Supplemental Methods.

Identification of genomic rearrangements

The genome assemblies of V. dahliae strain JR2 and VdLS17
are available from NCBI wunder the assembly number
GCA_000400815.2 and GCA_000952015.1, respectively (Faino
et al. 2015). Whole-genome alignments between chromosomes
of the genome assemblies of V. dahliae strains JR2 and VdLS17
were performed using MUMmer (Kurtz et al. 2004) and mined
for genomic rearrangements and associated synteny breakpoints
in V. dahliae strain JR2. Synteny breakpoints were further refined
by mapping PacBio long-sequencing reads derived by genomic se-
quencing of V. dahliae strain VALS17 to the genome of V. dahliae
strain JR2 using BLASR (Chaisson and Tesler 2012), followed by
manual refinement. To assess the presence or absence of genomic
rearrangements in other V. dahliae strains, paired-end reads de-
rived from genome sequencing (PRJINA169154) (de Jonge et al.
2012) were mapped onto the genome of V. dahliae strain JR2 using
BWA (Li and Durbin 2010), and genomic regions surrounding the
identified genomic rearrangements (+4 kb) were visually evaluated
for the quantity of concordantly and discordantly mapped reads as
well as orphan reads. For more details, see Supplemental Methods.

Identification and analyses of highly dynamic genomic regions

Whole-genome alignments between chromosomes of the com-
plete genome assemblies of V. dahliae strains JR2 and VdLS17
(Faino et al. 2015) were performed using MUMmer (Kurtz et al.
2004). LS regions were manually defined by identifying regions
accumulating alignment breaks and TEs. The presence/absence
analysis of the Avel locus was performed by aligning paired-
end reads from DNA sequencing of 11 V. dahlige strains
(PRJINA169154, including JR2) (de Jonge et al. 2012) to the assem-
bled genome of V. dahliae strain JR2 using BWA (Li and Durbin
2010). Raw read depth per genomic position was averaged per ge-
nomic window—window-size 5 kb, slide 500 bp (Fig. 4C), and win-
dow-size 500 bp, slide 100 bp (Supplemental Fig. S11), respectively
—and subsequently G+C corrected as previously described (Yoon
etal. 2009). Genomic reads of each individual additional V. dahliae
strain were assembled using AS pipeline (Tritt et al. 2012), and ge-
nome assemblies were subsequently aligned to the genome assem-
bly of V. dahliae strain JR2 genome using MUMmer (Kurtz et al.
2004). For more details, see Supplemental Methods.

Single nucleotide polymorphisms (SNPs) were identified us-
ing GATKv2.8.1 (DePristo et al. 2011). SNPs derived from different
strains were summarized in nonoverlapping windows of 1 kb, and
the number of SNPs derived from individual strains was averaged
per window. Absence of a SNP in a particular strain was only con-
sidered if the corresponding position displayed read coverage. For
more details, see Supplemental Methods.
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