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Reaction time (RT) and RT variability are core components of cognitive performance
that can be captured through brief and easy-to-administer tasks of simple RT and
choice RT. The current study aims to describe age-related differences in cognitive
performance, toward better characterizing normative performance across the lifespan.
We examined mean and variability of response times on a simple RT and choice RT
tasks in a large and diverse web-based sample (10,060 visitors to TestMyBrain.org).
We also examined lifespan-related differences in response time variability using multiple
different approaches (raw variability, mean scaled variability, and mean residualized
variability). These analyses revealed significant heterogeneity in the patterns of age-
related differences in performance, across metrics and within different estimates of
the same metric. Based on segmented regression analysis, age of peak performance
differed significantly across metrics, with young adults having the best performance
based on measures of median RT, middle age adults at peak on certain measures of
RT variability (standard deviation and coefficient of variability), and older adults showing
the best performance based on accuracy and mean-corrected RT variability. Our results
indicate that no single measure of cognitive performance and performance variability
produces the same findings with respect to age related change, with further work
needed to establish the validity of particular metrics for different applications.

Keywords: variability, cognitive performance, lifespan, web, digital neuropsychology

INTRODUCTION

Performance variability has been linked with cognitive decline (e.g., Hultsch et al., 2000, 2008;
Williams et al., 2005; Haynes et al., 2018). However, given the normal reductions in cognitive
performance that occur with aging, it is unknown how much different aspects of cognitive
performance should vary within an individual, and to what degree impairments are pathological.
Cognitive performance on speeded, reaction-time-based tasks can be captured in three ways: first,
in terms of accuracy for measures that include correct/incorrect response options; second, in terms
of mean or median reaction time (RT); and third, in terms of RT variability (e.g., West et al.,
2002; Bunce et al., 2004; Deary and Der, 2005; Williams et al., 2005; Der and Deary, 2006; Gooch
et al., 2009). Although the vast majority of the literature in neuropsychiatry focuses on accuracy
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or mean RT, here we compare measures of accuracy and mean
RT to measures of RT variability to see to what degree age-
related differences in each of these metrics show distinct or
convergent patterns.

Variability in cognition may be a particularly important
metric, in that individuals with lower baseline performance
levels may be able to normally compensate across cognitive
domains, whereas when their performance becomes less stable
(more variable), such compensatory processes may fail (e.g.,
MacDonald et al., 2003; Bielak et al., 2010). For decades,
researchers have posited that RT variability is an important
component of intelligence (Jensen, 1992, 1993; Schmiedek et al.,
2007, 2009, 2013). RT variability has been found to be sensitive to
the cognitive changes that occur in psychiatric and neurological
disorders, normal development, and aging (MacDonald et al.,
2006, 2009; Esterman et al., 2013).

Lower RT variability (more consistent performance) has been
associated with better cognitive control (Vasquez et al., 2017)
and higher RT variability (less consistent performance) has been
associated with cognitive instability (Fjell et al., 2011), greater
mental noise (Ode et al., 2011), and poorer cognitive control
(Strauss et al., 2007; Papenberg et al., 2011; Vaughan et al., 2013).
Previous studies have found that RT variability follows a u-shaped
curve across development and aging (see Williams et al., 2005),
with variability being highest in childhood and older adulthood.
While most studies on RT variability within an individual use
cross-sectional data, longitudinal studies of aging show that RT
variability continues to increase linearly from early adulthood
into late adulthood (MacDonald et al., 2003; Lövdén et al., 2007).
Typically, variability within an individual is greater when the task
requires response selection or cognitive control, as opposed to
tasks that require minimal cognitive control, such as a simple RT
task (Bielak et al., 2010).

There have been inconsistencies in the literature, however, in
terms of how RT variability differs across the lifespan. Different
measures of RT variability can produce different results (McAuley
et al., 2006; Dykiert et al., 2012). One of the sources of divergence
in results is the degree to which measures of RT variable
are adjusted for differences in mean RT. Since RT variability
(computed in terms of the standard deviation in RTs) tends
to increase with mean RT, differences in RT variability could
reflect differences in mean RT. In a systematic review and meta-
analysis, Dykiert et al. (2012) found that effect sizes were larger
for variability measures that did not adjust for differences in
mean RT than those that did, with some studies that used mean-
adjusted RT variability metrics showing little to no increase in
RT variability in older age. Here, we focus on variability in RTs
within a task, rather than variability across trials within the same
session (dispersion) or variability in scores at different timepoints
(e.g., longitudinal variability, measurement burst designs, or
ecological momentary assessment). While the latter forms of
variability are potentially important and informative (e.g., Bielak
et al., 2010; Stawski et al., 2019), they are related to fluctuations
along longer time scales (hours, days, years) rather than the
moment-to-moment variability we focus on for the purposes
of this study. Future work might clarify whether within task
RT variability that we examined here produces similar findings

to measures of variability examined along longer time scales
for choice and simple RT data (e.g., in ecological momentary
assessment designs).

Here, we sought to compare and contrast different measures of
cognitive performance and variability in a large, diverse sample
to better characterize patterns of age-related change, establish
updated norms, and compare across standard performance
metrics in a large, well-powered sample. Specifically, we wanted
to better understand the potential effect of aging on mean RT, RT
variability (raw and mean-adjusted), and accuracy in measures
of simple and choice RT. Our large sample size allowed us
to look at differences in performance year-by-year across the
lifespan, addressing sample size limitations of prior studies, and
allowing us to estimate potential trajectories of cognitive change
for different indices. We also compared different approaches to
capturing RT variability to see whether they produced similar
or discrepant results (Hultsch et al., 2002; Stuss et al., 2003;
Dykiert et al., 2012).

We hypothesized that older age would be associated with
increased mean RT and RT variability, for both raw RT variability
metrics and mean-adjusted RT variability metrics, consistent with
the literature described above. Like Fortenbaugh et al. (2015),
who used a similar type of sample, we expected to find a non-
linear relationship between age and variability in RT, distinct
from the relationship of mean RT with age. We were particularly
interested in the age and slope of increases in RT variability
in normal aging. Our study expands on the prior literature,
as it is the largest evaluation of RT variability in measures
of choice (Choice RT) and simple RT (Simple RT) across the
lifespan to date.

MATERIALS AND METHODS

Participants
Participants were 12,327 visitors to TestMyBrain.org, our citizen
science research platform where participants take part in research
experiments to contribute to science and learn more about
themselves through immediate and personalized return of
research results. The protocol was approved by the Harvard
Committee on the Use of Human Subjects. All data are
completely deidentified and all participants provided consent.
Participants were given feedback about their performance relative
to other individuals who had completed the same task. Data were
obtained from March 2017 to February 2018.

Participants’ ages ranged from 10 to 96 years old; the average
age was 27.36 (SD = 13.98). After binning ages for visualization,
we excluded ages that had fewer than 25 participants, which
restricted our age range from 10 to 70. The sample was
predominantly male (55%; female = 44%; unknown = 1%).
The majority of participants were from the United States
(33%) and other English speaking countries (21% from the
United Kingdom, Australia, Canada, and Ireland). The highest
percentage of participants identified as of European decent
(49.95%), followed by Asian decent (13.97%). A plurality of
our sample completed high school (n = 2693; 22.70%), with
the next largest groups completing some college (n = 2094;
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19.33%), college (n = 1982; 16.70%), and graduate school
(n = 1745; 14.70%).

Measures
Simple Reaction Time
Participants were asked to press the space bar or touch the
screen whenever a red WAIT sign changed to green GO!.
Participants completed three practice trials before 30 task trials.
The task takes approximately 1.5 min and estimates basic
psychomotor response speed with high reliability (split-half
reliability based on mean RT: 0.93). Participants had 2000 ms
to respond on each trial, with a variable inter-trial interval of
700–1500 ms between trials. The task was designed to capture
basic psychomotor speed. For each participant, we calculated
mean RT, median RT, standard deviation RT, intraindividual
coefficient of variability (ICV; standard deviation in RT/mean
RT), as well as mean residualized standard deviation in RT
(residualized SD RT).

For both tasks, we calculated mean RT and median RT. We
also calculated standard deviation RT, coefficient of variability
(ICV; standard deviation in RT/mean RT), and mean residualized
SD RT (Hultsch et al., 2002; Stuss et al., 2003; Dykiert et al.,
2012). The first measure (standard deviation RT; hereafter, SD
RT) provides a raw measure of RT variability. The second two
measures provide mean-adjusted measures of RT variability,
based on the observation that RT variability tends to be associated
with mean RT. For the intraindividual coefficient of variation
(ICV), the standard deviation is scaled by the mean (SD RT/mean
RT). We also calculated a residualized SD RT, using linear
regression to remove variance explained by mean RT to obtain
a mean residualized standard deviation (residualized SD RT).

Choice Reaction Time
Participants were asked to indicate the direction of an arrow that
is a different color from the rest, see Supplementary Material.
The task takes approximately 2.5 min, and produces highly
reliable scores (split-half reliability based on median RT: 0.81).
Participants had 5000 ms to respond on each trial, with a
variability inter-trial interval of 700–1500 ms between trials. This

paradigm was adapted from Maljkovic and Nakayama (1994).
Participants completed four practice trials before beginning the
scored portion of the experiment, 30 trials. They are instructed
to respond as quickly and as accurately as possible. This task
was designed to capture domains of psychomotor response speed,
response selection, and cognitive inhibition (due to interference
effects between trials).

For the choice RT, we also calculated accuracy (proportion
correct) and the inverse efficiency score (IES). IES provides
an accuracy-adjusted measure of response speed to account
for speed accuracy trade-offs (mean RT/accuracy) (Bruyer and
Brysbaert, 2011; Heitz, 2014). Finally, we looked at median RT for
choice RT controlling for differences in median RT for simple RT
(residualized median RT), to look at effects of age on the response
selection component of choice RT after removing variance better
explained by basic psychomotor response speed. Table 1 shows
summary scores for measures calculated. Scores are binned by
year of age in Figures 1, 2 for visualization purposes only.

Exclusions
We first excluded participants based on data quality. Choice
RT trials with very short response times (RT < 500 ms) were
trimmed, based on the finding that accuracy falls to chance for
trials <500 ms (see Supplementary Material). Simple RT trials
with very short response times (RT < 200 ms) were trimmed
based on theoretical minimum response times for visual simple
RT tasks (Thorpe et al., 1996). Our sample was reduced to 10,499
after excluding people who didn’t complete both simple RT and
choice RT. From there, we excluded 439 participants with more
than six trimmed trials on each task (out of 30) or with chance
performance or below on the choice RT (50% or below) as
indicators of careless or inattentive responders. Thus, our final
analytic sample size was 10,060.

Data Analyses
Data were analyzed in RStudio Team (2016). Effect sizes are
reported with 95% CIs. Given our interest in capturing cross-
sectional lifespan changes in performance and performance

TABLE 1 | Descriptive statistics and sex differences for all performance indicators.

Measure Simple reaction time Choice reaction time

Overall mean (SD) Female vs. male Cohen’s D [95% CI] Overall mean (SD) Female–male Cohen’s D [95% CI]

Mean RT 318 (64) 0.32 [0.28, 0.36] 919 (250) 0.24 [0.2,0.28]

Median RT 301 (60) 0.29 [0.25, 0.33] 869 (222) 0.24 [0.2,0.28]

Standard deviation RT 104 (61) 0.1 [0.06, 0.14] 246 (162) 0.19 [0.15,0.23]

Coefficient of variability (ICV) 0.33 (0.17) −0.004 [−0.04, 0.04] 0.25 (0.11) 0.14 [0.10, 0.18]

Residualized SD RT 0 (57) −0.011 [−0.05, 0.03] 0 (95) −0.015 [−0.05, 0.02]

Proportion correct NA NA 0.95 (0.07) 0.12 [0.09, 0.17]

Inverse efficiency score (IES) NA NA 979 (305) 0.17 [0.13, 0.21]

Residualized median RT NA NA 0 (201) 0.13 [0.91, 0.17]

Reaction times are in milliseconds. SD, standard deviation; RT, reaction time. Italicized values give non-significant sex differences (all other ps < 0.0001). Sex differences
are shown for females compared with males (larger, positive values: females > males). Coefficient of variability scores were calculated as SD RT/mean RT. Inverse
efficiency scores were calculated as mean RT/proportion correct. Residualized SD RT scores were calculated by calculating residuals for SD RT after controlling for mean
RT. Residualized median RT scores were calculated by calculating residuals for median RT on the choice RT after controlling for median RT on the simple RT.
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variability, we performed segmented (piecewise) regression, a
method using multiple linear segments to model non-linear
changes (Muggeo, 2003, 2008) and implemented by others
investigating lifespan changes in large samples (see Yeatman
et al., 2014; Fortenbaugh et al., 2015). Within segmented
regression analyses, the point at which the effect of one variable
on another changes (breakpoint) is determined by a significant
change in slope magnitude and/or direction. We provide
breakpoints and discuss the ages at which the relationship
between age and coefficient of variability changes. We also
compared model fit of the segmented models using the Bayesian
Information Criterion (BIC) and Akaike Information Criterion
(AIC) to select the best model fit.

RESULTS

Simple Reaction Time
Table 1 gives results of descriptive statistics for all measures
of performance (median RT) and performance variability (SD
RT, ICV, residualized SD RT). Men were faster and had lower
standard deviations in RT than women (p < 0.0001). Neither
ICV nor residualized SD RT, however, differed between men and
women (Table 1).

To evaluate cross-sectional changes in performance across the
lifespan, we performed segmented regression analyses with age
as our independent variable and (1) median RT, (2) SD RT, (3)
ICV, and (4) residualized SD RT as dependent variables. We
chose median RT to minimize the effects of outliers. Results of
segmented regression are given in Table 2 and Figure 1.

We first examined the relationship between age
and median RT, with the goal of replicating previous

findings of improvements in speed-related aspects of
performance in adolescence, followed by declines through
most or all of adulthood. Segmented regression analyses
demonstrated that the relationship between age and
median RT was best fit by a two segment (one breakpoint)
linear function with a breakpoint at 14 years (age of best
performance). Median RT decreased before 14 years and
increased thereafter. These findings are consistent with
the notion that processing speed declines with age (e.g.,
Salthouse, 1996).

Age-related differences in measures of performance variability
for simple RT were largely convergent. Segmented regression
analyses for SD RT, ICV, and residualized SD RT all were best fit
by a two segment model, with reductions in variability from ages
10 to ages 18–21 years, and performance variability increasing
thereafter for the remainder of the lifespan.

Choice Reaction Time
Table 1 provides descriptive statistics for all measures of
performance (median RT, proportion correct, IES, residualized
median RT) and performance variability (SD RT, ICV,
residualized SD RT). Men again were faster and had lower
variability in their RTs than women (p < 0.0001). Women, on
the other hand, were more accurate (p < 0.0001). There were no
significant differences between men and women in residualized
SD RT (p = 0.42) (Table 1).

To evaluate cross-sectional changes in performance across the
lifespan, we again performed segmented regression analyses with
age as our independent variable and (1) median RT, (2) SD RT,
(3) ICV, (4) residualized SD RT, (5) proportion correct, (6) IES,
and (7) residualized median RT as dependent variables. We again
chose median RT to minimize the effects of outliers. Results of

TABLE 2 | Results of segmented regression.

Measure Best fit model Age breakpoint
#1 [95% CI]

Age breakpoint
#2 [95% CI]

Slope (b): Age 10 to
breakpoint #1*

[95% CI]

Slope (b): Breakpoint
#1 to breakpoint #2*

[95% CI]

Slope (b): Breakpoint
#2 to Age 70 [95% CI]

Simple reaction time

Median RT Two segment 14.1 [13.4, 14.9] NA −5.7 [−8.5, −2.8] 1 [0.94, 1.1] NA

Standard deviation RT Two segment 17.8 [16.7, 18.9] NA −4.2 [−5.5, −3] 0.44 [0.33, 0.54] NA

Coefficient of variability (ICV) Two segment 20.1 [19.2, 21.2] NA −0.0091 [−0.011,
−0.007]

0.0039 [0.00005,
0.00072]

NA

Residualized SD RT Two segment 20.7 [19.2, 22.3] NA −2.7 [−3.54, −2] 0.11 [−0.004, 0.22] NA

Choice reaction time

Median RT Two segment 17.2 [16.6, 17.8] NA −21.1 [−9.7, −25.3] 5.2 [4.8, 5.5]

Standard deviation RT Three segment 16.5 [15.9, 17.1] 68 [66.7, 69.4] −17.3 [−21.3, −13.2] 1.2 [0.93, 1.5]

Coefficient of variability (ICV) Three segment 16.5 [15.3, 17.7] 35.7 [28.3, 43.1] −0.008 [−0.01,
−0.006]

−0.0008 [−0.0014,
−0.0002]

0.0006 [0.00017,
0.0011]

Residualized SD RT One segment NA NA −0.0008 [−0.00094,
−0.00069]

NA NA

Proportion correct Two segment 26.2 [24, 28.4] NA 0.0026 [0.0022,
0.0031]

0.00025 [0.00006,
0.00043]

NA

Inverse efficiency score (IES) Three segment 15.8 [14.9, 16.6] 28.8 [25.1, 32.5] −33 [−42.2, −23.8] 0.28 [−1.7, 2.3] 6.2 [5.5, 7]

Residualized median RT Three segment 16.2 [15.5, 17] 36.3 [31.4, 41.2] −20.2 [−25.2, −15.2] 1.35 [0.4, 2.3] 5.3 [4.4, 6.1]

*Slope to next breakpoint or age 70 years, whichever occurs earlier. A four segment model was never selected based on model fit parameters. For all models, addition of
a segment did not improve model fit. For model fit parameters of selected models, see Supplementary Material.
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FIGURE 1 | Simple reaction time performance. (Upper left) Simple reaction time (simple RT) median reaction time (RT) by age. (Upper right) Simple RT
intraindivididual coefficient of variability (ICV) by age. (Bottom left) Simple RT standard deviation reaction time (SD RT) by age. (Bottom right) Simple RT
residualized SD RT by age. Shaded regions indicate the 95% confidence interval around the breakpoints.

segmented regression for choice RT data are also given in Table 2
and Figure 2.

For median RT, segmented regression analyses again
demonstrated that the relationship between age and median
RT was best fit by a two segment (one breakpoint) linear
function with a breakpoint at 17 years (age of best performance).
Median RT decreased before 17 years and increased thereafter.
Proportion correct was also best fit by a two segment (one
breakpoint) model, with a breakpoint at 26 years, and
improvements in performance across the entire lifespan.

The opposite and opposing relationship between response
speed and accuracy indicates that speed–accuracy trade-offs play
a large role in lifespan-related differences in performance and,
individually, may not appropriately capture cognitive control
abilities. To account for speed–accuracy tradeoffs, we looked at
the relationship between age and IES (accuracy corrected RT:
mean RT/proportion correct). When looking at IES, a three
segment model provided best fit, with breakpoints at 16 and
29 years. IES improved from ages 10 to 16 years, increased

slightly from ages 16 to 29 years, and then increased more
sharply thereafter.

Median RT for choice RT controlling for median RT on simple
reaction gave results that were more similar to IES than to median
RT. A two breakpoint model best fit this data, with breakpoints
at 16 and 36, with improvements in residualized median RT from
ages 10 to 16 years, increases from 16 to 36 years, and then sharper
increases from 36 to 70 years.

Age-related differences in measures of performance variability
for choice RT did not converge across measures. Both SD RT and
ICV across the lifespan were best fit by a three segment function,
with a first breakpoint at age 16 years. For SD RT, performance
variability decreased from 10 to 16, and then increased thereafter.
Segmented regression identified a second breakpoint for SD RT
at age 68 years, where variability increased very steeply after
age 68 years. ICV, on the other hand, decreased from 10 to
16, and then continued to decrease until a second breakpoint
at age 36 years, before increasing over the remainder of the
lifespan. Results for residualized SD RT were markedly different,
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FIGURE 2 | Choice reaction time performance. (A) Choice reaction time (choice RT) median reaction time (RT) by age. (B) Choice RT inverse efficiency score (IES)
by age. (C) Choice RT intraindividual coefficient of variability (ICV) by age. (D) Choice RT residualized standard deviation reaction time (SD RT) by age. (E) Choice RT
proportion corrected by age. (F) Choice RT residualized median RT by age. (G) Choice RT raw standard deviation RT by age. Shaded regions indicate the 95%
confidence interval around the breakpoints.
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however, with a linear decrease across the lifespan (i.e., decreasing
variability with increasing age) and no evidence of breakpoints
as identified by segmented regression. In other words, there was
no point at which variability increased based on analyses of
residualized SD RT from choice RT data.

Age × Sex Interactions
Men and women differed significantly across most measures of
performance and performance variability, although with small
effect sizes (Table 1). We further examined the interaction of
Age × Sex by comparing segmented models with and without
separate model lines for males and females. Results revealed no
significant difference in segmented models, for any measures,
indicating that the Age × Sex interactions were not significant
(ps all > 0.2).

DISCUSSION

This is the largest study to compare and contrast different
indices of performance and performance variability in simple
RT and choice RT tasks. Different measures of performance
capture different characteristics of human behavior, and here we
found that different measures, including measures that putatively
measure the same constructs, exhibited different patterns of
age-related performance. For example, we found that the peak
age for cognitive performance based on median RT was 17,
whereas based on coefficient of variability scores for choice RT, we
found highest performance at age 36 years. Interestingly, different
measures of RT variability also showed distinct patterns across
age. While measures of raw variability (SD RT) and coefficient of
variability (SD RT/mean RT) showed similar differences with age,
for choice RT mean residualized variability (SD RT controlling
for mean RT) showed a distinct relationship with age – with
apparent decreases in variability across the lifespan, contrary
to the literature. This contrasted with simple RT where mean-
residualized variability produced similar (but attenuated) age
effects when compared with other variability measures.

Our large sample size allowed us to finely characterize
variations in RT and RT variability across the lifespan. Such
results can provide normative models for cognitive performance
on such tasks across the lifespan, which could provide a basis
for revealing abnormal trajectories (Fortenbaugh et al., 2015).
Here, we were able to distinguish between different measures
of cognitive performance and variability across the lifespan,
demonstrating that different measures capture different aspects
of cognitive performance with respect to age. For instance,
our data clearly demonstrated the classic speed accuracy trade-
offs that emerge across the lifespan (Bruyer and Brysbaert,
2011; Heitz, 2014), with increasing median RT (even after
adjusting for basic psychomotor speed) as well as increasing
accuracy on our choice RT. IES, which adjusts for speed accuracy
trade-offs, showed minimal change during early adulthood,
with poorer performance not emerging until age 28 years.
Finally, RT variability seemed to increase around middle age
for raw variability, and mean adjusted variability (coefficient of

variability), although these effects were eliminated and reversed
after controlling for mean RT.

Our findings of different ages of peak performance based
on mean RT and RT variability suggest that different measures
of variability might yield different information about lifespan-
related processes. What is most striking about our data here
was how remarkably consistent the linear changes in residualized
variability were across the lifespan for choice RT, with an almost
entirely linear decrease across age that could not be explained
by differences in accuracy. We are not certain why the unusual
residualized SD RT result appears only in the choice RT task
but not simple RT; however, we suspect that it is due to the fact
that responses in the choice RT reflect a more complex cognitive
process than simple RT that contributes to increases in the
mean with age but not SD. Although mean residualized standard
deviations have become the primary method of quantifying RT
variability, it may be that adjusting for the mean can sometimes
obscure true differences in variability. If mean RTs increase
with older age due to multiple additive processes, not all of
which are associated with changes in variability of RTs, then
removing variance associated with the mean could result in an
overcorrection that might explain the results observed here. For
example, a tendency to respond less impulsively with age would
tend to offset greater variability in RTs in a way that is due to
shifts in strategy that increase response time without concomitant
increases in RT variability. The fact that our finding contrasts
sharply with the literature may be due to task differences,
file drawer effects (due to violation of a priori expectations),
or unmeasured confounds. Our findings of reduced mean
residualized variability with age should therefore be interpreted
with caution until it has been replicated in another sample.

We found a small effect for differences in variability (based
on raw variability and coefficient of variability) between men
and women, with men demonstrating slightly more consistent
performance. We cannot assume that the differences are due
to sex differences in processing speed alone [men are typically
faster than women, see Roivainen (2011) for a review], as
variability within an individual takes average processing speed
into account. Some researchers have suggested that differences
in cognitive performance processes are related to differences in
symptom trajectories between men and women, namely the idea
that women are more vulnerable to depression while men are
more vulnerable to impulse control disorders (Li et al., 2009)
that may be related to differences in variability and speed–
accuracy trade-offs.

There are several limitations of the current study. First, our
cross-sectional design unfortunately prohibits us from making
any strong conclusions related to individual lifespan trajectories
as findings could be due to cohort effects or ascertainment
biases that vary by age. Interpretation of correlations (slopes in
segmented regression) is problematic with such unequal age bins,
and thus, we emphasize patterns of change in terms of changes in
slope (breakpoints) rather than correlations as point estimates.
Second, given that our sample was self-selected, it is possible
that our results are biased toward higher functioning older adults
with more expertise using computers. The expectation is that this
would cause us to underestimate performance decrements with
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age and potentially overestimate any performance improvements
(e.g., increased accuracy). Additionally, selection biases in older
adults due to mental and physical fitness has been well-
documented (Ganguli et al., 1998; Golomb et al., 2012). On the
other hand, our self-selected sample allows for a larger outreach
to individuals from communities that are typically harder to
reach including working adults, people in rural areas, or those
with limited mobility or resources to participate in research
studies. Third, while prior TestMyBrain.org sample studies have
been replicated compared to traditionally collected and nationally
representative US samples (Germine et al., 2011; Hartshorne
and Germine, 2015), further validation work is recommended.
Finally, our very brief measures of simple and choice RT were
sufficient to produce reliable measures of psychomotor response
speed, but did not allow us to employ more sophisticated model
fitting techniques to trial-by-trial data that have been used in
other studies of RT variability, such as estimation of multiple
components of variability using an ex-Gaussian distribution
(see McAuley et al., 2006; Matzke and Wagenmakers, 2009) or
estimation of variability over longer time intervals, such as in a
measurement burst design (Stawski et al., 2019).

Despite these limitations, our study provides a potential
foundation for future research on lifespan performance and
performance variability, how best to conceptualize variability,
as well as a richer characterization of how performance metrics
differ even in relatively simple task designs. Findings from
web-based samples such as this one have been shown to
match traditional findings from the literature, and are being
used more often to recruit larger, more diverse samples (i.e.,
Nosek et al., 2002; Soto et al., 2011; Fortenbaugh et al.,
2015; Hartshorne and Germine, 2015). Additionally, our
pattern of mean RT across the lifespan, which peaks in the
early 20s, replicates gold standard longitudinal work (e.g.,
Deary and Der, 2005), as we have previously shown that
lifespan patterns of change in processing speed replicate
work from these gold standard studies (Hartshorne and
Germine, 2015). Given the utility and ease of web-based
cognitive tests [see Koo and Vizer (2019) for a recent
review], an approach that integrates multiple metrics may
be useful for clinicians and researchers to study cognitive

performance and performance variation at many stages
across the lifespan.
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