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Abstract

The present work covers the flow and heat transfer model for the Power-law nanofluid in the

presence of a porous medium over a penetrable plate. The flow is caused by the impulsive

movement of the plate embedded in Darcy’s porous medium. The flow and heat transfer

models are examined with the effect of linear thermal radiation in the flow regime. The Ros-

seland approximation is utilized for the optically thick nanofluid. The governing partial differ-

ential equations are solved using Lie symmetry analysis to find the reductions and invariants

for the closed-form solutions. These invariants are then utilized to obtain the exact solutions

for the shear-thinning, Newtonian, and shear-thickening nanofluids. In the end, all solutions

are plotted for the Cu-water nanofluid to observe the effect of different emerging flow and

heat transfer parameters.

Introduction

Dispersion of nanoparticles in the ordinary heat transfer fluids presents new heat transfer

innovations. These so called nanofluids enables the production and operations of smaller and

lighter cooling systems for use in micro-electro-mechanical systems (MEMS) and nano-elec-

tro-mechanical systems (NEMS). Nanofluids also have applications in fields like, targeted drug

delivery in patients during emergency treatment, manufacturing of energy efficient thermal

solar system, cooling of microprocessors, nuclear systems, smart glass manufacturing, oil

extraction, hydraulic braking systems [1–9]. In all mentioned processes, the ability to control

the transfer of heat is important because the final quality of the product depends on this.

Nanoparticles must be stable and are of appropriate shape and size to avoid clogging and sedi-

mentation within the heat transfer equipment. A wide range of applications of nanofluids in

thermal systems led researchers to study nanofluid flow and heat transfer processes under dif-

ferent thermophysical conditions and geometries. Ferdows et al. [10] studied the behaviour of
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viscous nanofluid in the presence of internal heat generation and suction by considering cop-

per and aluminium nanoparticles. The governing equations are solved numerically after utiliz-

ing the similarity transformations to see the behaviour of key parameters of flow and heat

transfer. The main findings of the research include the enhancement in the temperature with

augmentation in the Eckert number and reduction with rising values of radiation term. The

study of two dimensional stagnation point flow of nanofluid with heat transfer affected by

solar radiation is reported by Ghasemi and Hatami [11]. The numerical results presented here

establish that the temperature and thermal boundary layer thickness are increasing functions

of Biot number. The survey articles of Eastman [12], Wang et al. [13], Keblinski et al. [14],

Buongiorno [15], Das et al. [16], Vanaki et al. [17], Zhang et al. [18] and Okonkwo et al. [19]

and the references therein provide comprehensive literature on the flow of nanofluids over the

flat surface and characteristics of heat transfer processes.

Nanofluids are often believed to be Newtonian fluids in available studies. However,

recently the researchers are using non-Newtonian fluid models for analysis of nanofluids.

This is in line with the overall molecular behaviour/characteristics of nanofluids. The power-

law model is an easy-to-use model suitable for shear-thickening and shear-thinning fluids. If

fluid viscosity increases as the applied stress increase it is called the dilatant or shear-thicken-

ing fluid. Pseudo-plastics or shear-thinning fluids are defined by the opposite relationship

between the viscosity and the applied stress. Santra et al. [20] examined heat transfer in Cu-

water nanofluid when fluid is moving through a rectangular channel. They considered the

power-law model for the laminar non-Newtonian nanofluid and numerical solutions are

approximated using the finite volume method. Their results show an increase in the rate of

heat transfer because of the presence of nanofluids. Hojjat et al. [21] set up an experiment

that includes uniform distribution of nanoparticles in the base fluid. After the disbursement

of nanoparticles, the shear-thinning behaviour for nanofluid is observed. It is also observed

that the rheological properties of nanofluid differ with temperature variations and the con-

centration of nanoparticles. Khan and Golra [22] presented similar solutions for the tempera-

ture distribution and mass transfer of power-law nanofluid over a moving surface. This work

is extended by the Khan and Khan [23] for the case of MHD boundary layer flow of power-

law nanofluid. They have concluded that the velocity and temperature profiles are greatly

affected by variations in a power-law index. Aziz and Jamshed [24] later included the slip and

varying thermal conductivity effect in the model. Recently, Deng [25] and Deng et al. [26]

presented the thermal behaviour of power-law nanofluid in a rectangular microchannel. It is

concluded that the heat transfer rate of electro-osmotic flow is enhanced for shear thickening

nanofluids. The readers are also recommended to study the latest research on power-law

nanofluids [27–34].

The literature survey reveals that the mathematical models involving non-Newtonian nano-

fluids are mostly solved using numerical and experimental techniques. The nonlinear nature

of modelled differential equations makes them difficult to solve analytically. The exact (closed-

form) solutions are often preferred over numerical or experimental results to study the physi-

cal behaviour of the fluid flow. Moreover, these are also used to determine the reliability of

both computational and iterative approaches. There are few studies available in which exact

solutions are sought for the nonlinear models. Maghsoudi et al. [35] using the Galerkin process

studied the MHD flow and radiative heat transfer characteristics of non-Newtonian nanofluid.

The nanofluid is assumed to flow between two infinite vertical flat plates. The study showed

that by increasing the magnetic force, the thermal efficiency decreases and there is a decreasing

effect of the radiation parameter on the skin friction coefficient and the Nusselt number. Lie

symmetry method is used to classify the closed-form solutions for the MHD flow and heat

transfer of third-grade nanofluid with thermal radiation [36]. The same method is used by
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Aziz et al. [37] to find the solutions for MHD Stokes’ flow and radiative heat transfer of

third-grade nanofluid with constant heat generation/absorption factor. The exact solution of

the Stokes’ flow of a non-Newtonian nanofluid in a porous medium by considering the

Navier’s slip condition is studied in [38]. Tahiri and Mansouri [39] form analytical solutions

for the flow of non-Newtonian nanofluid inside a circular tube by applying the Laplace-Ritz

variational method. The authors discussed the effect of different emerging parameters on the

velocity and temperature of nanofluid. Kezzar et al. [40] presented the model of natural con-

vection of non-Newtonian nanofluid flow between two vertical flat plates and solved the gov-

erning equations numerically by the fourth-order Runge-Kutta method and analytically by the

Adomian generalized method. Biswal et al. [41] reported the solutions for convective flow of

non-Newtonian nanofluid between two vertical parallel plates. They applied two different

techniques namely the Galerkin’s method and the homotopy perturbation method to obtain

the solutions. The Lie symmetry approach not only unified the existing approaches but also

provided a significant extension of these techniques, which ultimately led to the development

of the continuous transformation group theory known as the theory of Lie groups. The appli-

cations of Lie group approach were thus identified in classical mechanics, quantum mechanics,

general relativity, etc. The symmetry analysis was found to provide an algorithmic way of

obtaining the similar and self-similar solutions of nonlinear partial differential equations. The

unsteady two dimensional flow of magneto-Jaffery fluid in a porous semi infinite channel is

studied by Mekheimer et al. [42]. The authors applied the Lie group technique for the reduc-

tions of partial differential equation and then used the perturbation method. Nchabeleng and

Fareo [43], investigated the two dimensional fluid-driven permeable fracture. The Lie symme-

try approach is applied in this study and found the group invariant and numerical solutions.

The effects of oscillation and radiation for MHD Casson fluid in an asymmetric wavy channel

is studied by Tufail et al. [44]. The governing equations are solved using the group theoretical

method and the effects of different physical parameters of flow and heat transfer are discussed.

The application of symmetry approach for solving the non-Newtonian fluid flow problems are

not new but it is certainly young enough with scope to expand. Some recent studies in this

context are available in [45–51].

In this manuscript, the authors formulate the exact closed-form solutions for a mathemati-

cal model of flow and radiative heat transfer of a power-law nanofluid over a moving surface.

To the best of the authors’ knowledge, the exact solutions are not reported in the literature for

this problem. The flow is generated by the arbitrary motion of the boundary and the Navier’s

slip conditions are assumed at the boundary. The effects of linear thermal radiation and trans-

verse applied magnetic field are also included in the model. Tiwari and Das [52] model is

adopted for the thermophysical properties of nanofluid. Lie symmetry approach is utilized to

find the group invariant solutions. Numerical solutions are also computed and depicted for

the Cu-water nanofluid to observe the effect of governing thermophysical parameters on the

flow velocity and temperature distribution. The commercial application of the present model

makes it more considerable for thermal engineering. These applications are linked in the field

of nuclear reactors, automotive industry, electronics and medical industry and manufacturing

process.

Problem statement

Fig 1 represents the unidirectional time-dependent Stokes’ flow and radiative heat transfer of

electrically conducting power-law nanofluid. The fluid occupies the space over the infinite

rigid surface at x = 0. The flow is generated by the arbitrary motion of the rigid surface. The

interface of nanofluid and the surface admits the Navier’s slip conditions.
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The governing equations for the conservation of mass, momentum and energy under usual

boundary layer approximations as given by White [53]:

r � F ¼ 0; ð1Þ

rnf
DF
Dt
¼ � rpþ mnfrt � J� B; ð2Þ

ðrCpÞnfrT ¼ rðknfrTÞ � r � qr: ð3Þ

In the above equations, F is the velocity field, t is time, p is pressure, J is current density, B is

the magnetic field, T is temperature, qr is radiative heat flux, ρnf is density, μnf is viscosity,

(Cp)nf is specific heat capacity and κnf is the thermal conductivity of nanofluid. The velocity

field is assumed as

F ¼ ðFðy; tÞ; 0; 0Þ: ð4Þ

The continuity Eq (2) together with Eq (4) is identically satisfied. The uniform applied mag-

netic field have the strength B0 and is applied in the direction perpendicular to the flow. The

induced magnetic field is considered negligible in comparison to the applied magnetic field

[54]. Following Bird et. al. [55], the shear stress in x-direction for the power-law nanofluid is

written as:

txy ¼ KjFyj
n� 1Fy; ð5Þ

Fig 1. Flow geometry.

https://doi.org/10.1371/journal.pone.0258107.g001
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where K is the coefficient of consistency and n> 0 is a power-law index. For optically thick

nanofluid, the radiative heat can only travel a short distance, therefore the Rosseland approxi-

mations are applicable [56, 57]. Under these assumptions, Eqs (2) and (3) take the form

rnf Ft ¼ mnf@ytxy � snf B2
0
F; ð6Þ

ðrCpÞnf Tt ¼ knf Tyy þ
16s�T3

1

3k3
Tyy; ð7Þ

here σnf is electrical conductivity, T1 is ambient temperature, κ is mean absorption coefficient

and σ� is the Stefan Boltzmann constant.

The appropriate boundary conditions for the present model are:

Fð0; tÞ ¼ U0VðtÞ; Tð0; tÞ ¼ vðtÞ þ T1 t > 0; ð8Þ

Fðy; tÞ ! 0; Tðy; tÞ ! T1 as y!1; t > 0; ð9Þ

Fðy; 0Þ ¼ HðyÞ; Tðy; 0Þ ¼ hðyÞ þ T1; y > 0; ð10Þ

where U0 is the reference velocity. The relationship between thermophysical properties of base

fluid and nanoparticles are given in Table 1 (for further details see [58–61]).

In Table 1, φ is the volume concentration of nanoparticles. The parameters ρf, μf, σf, (ρCp)f
and κf are density, viscosity, electrical conductivity, specific heat capacity and thermal conduc-

tivity of base fluid respectively. The parameters ρs, μs, σs, (ρCp)s and κs are density, viscosity,

electrical conductivity, specific heat capacity and thermal conductivity of nanoparticles. The

shape factor m is explained in Table 2 (see details in Jamshed and Aziz [62]).

To establish dimensionless form of the Eqs (6)–(10), the following non-dimensional param-

eters are introduced

�F ¼
F
U0

; �t ¼
U0

L
t; �y ¼

rf U2� n
0

Ln

K

� � 1

n � 1
y
L
; �t�x�y ¼ jFyj

n� 1Fy ¼
KU3� n

0
rf

Ln

� � � 1

nþ 1txy; sf B
2

0
¼ �M2

rf

L
U0;

�T ¼
T � T1
Tw � T1

:ð11Þ

Table 1. Correlations between physical properties of base fluid and nanoparticles.

Properties Nanofluid
Density (ρ) ρnf = ρf(1 − φ) + φρs

Viscosity (μ) mnf ¼
mf

ð1� φÞ2:5

Electrical Conductivity (σ)

snf ¼ sf 1þ
3

ss
sf
� 1

� �
φ

ss
sf
þ2

� �
�

ss
sf
� 1

� �
φ

2

4

3

5

Heat Capacity (ρCp) ðrCpÞnf ¼ ðrCpÞf ð1 � φÞ þ φ ðrCpÞs
ðrCpÞf

h i

Thermal Conductivity (κ) knf ¼ kf
ksþðm� 1Þkf � ðm� 1Þφðkf � ksÞ

ksþðm� 1Þkf þφðkf � ksÞ

h i

https://doi.org/10.1371/journal.pone.0258107.t001

Table 2. Values of empirical shape factor for different particle shapes.

Nanoparticle shapes Sphere Hexahedron Tetrahedron Column Lamina
m 3 3.7221 4.0613 6.3698 16.1576

https://doi.org/10.1371/journal.pone.0258107.t002
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Using the relations given in Eq (11) and neglecting bars, Eqs (6)–(10) take the form

Ft ¼ m�@yðjFyj
n� 1FyÞ � M�F; ð12Þ

Tt ¼
1

ðrCpÞ�Pr

ksþ ðm � 1Þkf � ðm � 1Þφðkf � ksÞ
ks þ ðm � 1Þkf þ φðkf � ksÞ

" #

þ Nr

 !

Tyy; ð13Þ

Fð0; tÞ ¼ VðtÞ; Tð0; tÞ ¼ vðtÞ t > 0; ð14Þ

Fðy; tÞ ! 0; Tðy; tÞ ! 0 as y!1; t > 0; ð15Þ

Fðy; 0Þ ¼ HðyÞ; Tðy; 0Þ ¼ hðyÞ; y > 0: ð16Þ

In the above system, m� ¼
1

φ�ð1� φÞ
2:5 is flow parameter, M� ¼

s�M2

φ�
is magnetic parameter, Pr ¼

kf

r

n� 1
nþ2
f U

3ðn� 1Þ

nþ1
0

L
1� n
1þnK

2
nþ1ðCpÞf

is local Prandtl number, Nr ¼
16T3
1s�

3k�kf
is thermal radiation parameter, with

φ
�
¼ 1 � φþ φ rs

rf

� �
and ðrCpÞ� ¼ ð1 � φÞ þ φ ðrCpÞs

ðrCpÞf

� �
. The boundary conditions in Eq (14)

indicate the Navier slip condition because the fluid particles attached with the boundary are

moving with a specific velocity.

Newtonian nanofluid flow model: A case study

We first discuss the special case of the model by considering the Newtonian nanofluid prob-

lem. In this case Eq (12) takes the form

Ft ¼ m�Fyy � M�F: ð17Þ

The following transformation

~Fðy; tÞ ¼ Fðy; tÞexpð� M�tÞ; ð18Þ

reduces Eq (17) to

~Ft ¼ m�
~Fyy: ð19Þ

The use of transformation (18) in boundary and initial conditions (14)–(16) gives

~Fð0; tÞ ¼ VðtÞ; t > 0; ~Fð1; tÞ ¼ 0; t > 0; ~Fðy; 0Þ ¼ HðyÞ; y > 0; ð20Þ

where V(t) = v(t) exp(−M� t). Thus, the problem of Newtonian nanofluid flow reduces to the

Cauchy problem of the heat equation. To form the closed-form analytical solution of the Cau-

chy problem (19) and (20), we make use of the results for Cauchy problem of the classical heat

equation. The standard heat equation of the Cauchy problem is given by

~Ft ¼
~Fyy; with ~Fðy; 0Þ ¼ FðyÞ; ð21Þ

for some “well-behaved” function F, the fundamental solution of the problem (21) is
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(Hadamard, [63]) and is given by

~Fðy; tÞ ¼
1

2
ffiffiffiffiffi
tp
p

Zþ1

� 1

FðzÞexp �
ðy � zÞ2

4t

� �

dz: ð22Þ

The solution (22) can be transformed into the solution of (17) after using transformation (18).

The substitution of ~Fðy; tÞ from Eq (22) into Eq (18), gives

Fðy; tÞ ¼
m�

2
ffiffiffiffiffi
tp
p exp M�tð Þ

Zþ1

� 1

FðzÞexp �
ðy � zÞ2

4t

� �

dz; ð23Þ

where F(z) = H(z). Here V(t) is given by

�V ðtÞ ¼
m�

2
ffiffiffiffiffi
tp
p exp M�tð Þ

Zþ1

� 1

FðzÞexp �
z

2

4t

� �

dz: ð24Þ

The integral in Eq (24) can be solved in terms of the Kummer confluent hypergeometric

functions.

Lie symmetry analysis

A symmetry of a differential equation (DE) is a transformation of dependent and independent

variables. This is an invertible transformation that maps an equation to itself. The procedure

to find a local one-parameter group of transformation is available in literature (see details in

[64–67]). In case of PDEs, the symmetries reduces the number of independent variables and

transform PDE into an ODE.

Following procedure is adopted to find the local one-parameter group of transformation.

An infinitesimal transformation can be written as

�t � t þ �t1ðt; y; FÞ þ � � � ;

�y � yþ �t2ðt; y; FÞ þ � � � ;
�F � F þ �t3ðt; y; FÞ þ � � � ;

ð25Þ

here � is a small group parameter and it is a Lie point symmetry of Eq (12) if and only if

O
½2�
jFt � m�@yðjFyj

n� 1FyÞ þM�FjEq:ð12Þ
¼ 0; ð26Þ

where

O
½2�
¼ t1@t þ t2@y þ t3@F þ t

t
3
@Ft þ t

y
3@Fy þ t

yy
3 @Fyy ; ð27Þ

with

t3
t ¼ Dtt3 � FtDtt1 � FyDtt2;

t3
y ¼ Dyt3 � FtDyt1 � FyDyt2;

t3
yy ¼ Dyt

y
3 � FtyDyt1 � FyyDyt2:

ð28Þ
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The total derivative operators are given by

Dt ¼ @t þ Ft@F þ Ftt@Ft þ Fty@Fy þ . . . ; ð29Þ

Dy ¼ @y þ Ft@F þ Fyy@Fy þ Fty@Ft þ . . . : ð30Þ

In Eq (26), the undetermined functions τ1, τ2 and τ3 are independent of the derivatives of F.

Thus by separating this equation with respect to derivatives and their powers gives the over-

determined system of linear partial differential equations as follows

t1y ¼ t1F ¼ t2F ¼ t2t ¼ t3y ¼ t3FF ¼ 0;

t3t þM�ðt3 þ Fð� t3F þ t1tÞÞ ¼ 0;

nm�ðð� 1þ nÞt3F þ t1t � t2y � nt2yÞ ¼ 0:

ð31Þ

The above system can be solved for different values of n which gives the different symmetry

generator in each case.

Case I: n = 1, μ� 6¼ 0, M� 6¼ 0

In this case, the following six dimensional Lie algebra is obtained as

O1 ¼ @t; O2 ¼ @y; O3 ¼ 2t@t þ y@y � 2FtM�@F;

O4 ¼ e� tM�y@F; O5 ¼ e� tM�@F; O6 ¼ F@F:
ð32Þ

Case II: n 6¼ 1, μ� 6¼ 0, M� 6¼ 0

This case specifies the non-Newtonian fluid and the six dimensional algebra is found as

O1 ¼ @t; O2 ¼ @y; O3 ¼ y@y þ
nþ 1

n � 1

� �

F@F; O4 ¼ 2t@t þ y@y þ F@F;

O5 ¼ exp � M�tð Þ@F; O6 ¼
1

M�
� exp M�ðn � 1Þtð Þ@t þ exp M�ðn � 1Þtð ÞF@Fð Þ:

ð33Þ

The symmetries for the energy Eq (13) can be found under the same methodology as

observed for the flow equation. The symmetry condition for the Eq (13) is

O
½2�
jTt �

1

ðrCpÞ�Pr

ksþ ðm � 1Þkf � ðm � 1Þφðkf � ksÞ
ks þ ðm � 1Þkf þ φðkf � ksÞ

" #

� Nr

 !

TyyjEq:ð13Þ ¼ 0; ð34Þ

where O[2] is given in Eq (27) and various expressions therein are the same as given in Eqs

(28)–(30) by replacing F with T. The separation of derivatives and powers of derivative of T
gives the following over-determined system of linear partial differential equations as

t1y ¼ t1TT ¼ t2TT ¼ t1T ¼ 0; t3TT � 2t2yT ¼ 0;

PrðrCpÞ�t3t � ðNr þ k�Þt3yy ¼ 0; ðPrðrCpÞ�t2T þ ðNr þ k�Þt1yT ¼ 0;

PrðrCpÞ�t2t þ ðNr þ k�Þð2t3yT � t2yyÞ ¼ 0;

� PrðrCpÞ�ðt1t � 2t2yÞ þ ðNr þ k�Þt1yy ¼ 0;

ð35Þ

here k� ¼
ksþðm� 1Þkf � ðm� 1Þφðkf � ksÞ

ksþðm� 1Þkfþφðkf � ksÞ

h i
is chosen for convenience. The above system of governing
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equations gives the infinite dimensional Lie algebra generated by

O1 ¼ @t; O2 ¼ @y; O3 ¼ t@t þ
y
2
@y;

O4 ¼ t2@t þ ty@y þ �
tT
2
�
PrðrCpÞ�Ty

2

4ðNr þ k�Þ

� �

@T;

O5 ¼ t@y �
PrðrCpÞ�Ty
2ðNr þ k�Þ

@T; O6 ¼ T@T; O7 ¼ Gðy; tÞ@T;

ð36Þ

where the function Γ(y, t) satisfies the equation

PrðrCpÞ�Gt � NrGðy; tÞyy � k�Gðy; tÞyy ¼ 0:

Group invariant solutions for flow model

In this section, the exact and numerical solutions to the problem formulated in section 4 are

found corresponding to their infinitesimal generators. Separate solutions are presented for the

Newtonian and non-Newtonian flow models. Graphs are also produced for the Cu-water

nanofluid to illustrate the effect of governing physical parameters.

Solution via subgroup generated by O4 in case II

The similarity variable corresponding to operator O4 is assumed as

Fðy; tÞ ¼
ffiffi
t
p

f1ðxÞ; x ¼
y
ffiffi
t
p : ð37Þ

Substitution of Eq (37) in Eq (12), gives a differential equation in f1(ξ), that is

nm�ðf 01Þ
n� 1f 00

1
þ
x

2
f 0
1
�

1

2
þM�

� �

f1 ¼ 0: ð38Þ

The boundary conditions (14)–(16) transform to

f1ð0Þ ¼ p0; f1ðxÞ ! 0 as x!1; ð39Þ

where p0 is some constant. The group-compatibility approach (see details in Aziz et al. [68]),

forms the exact solution of Eq (38) for n = 1 and is given as

f1ðxÞ ¼ p0expð� gxÞ; ð40Þ

where γ is given by

g ¼

x

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2

4
þ 4m�

1

2
þM�

� �s

2m�
:

ð41Þ

The backward substitution form the solution of PDE (12) as

Fðy; tÞ ¼
ffiffi
t
p

exp �

y
2
ffiffi
t
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

4t
þ 4m�

1

2
þM�

� �s

2m�

0

B
B
B
B
@

1

C
C
C
C
A

y
ffiffi
t
p

2

6
6
6
6
4

3

7
7
7
7
5
: ð42Þ
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The above solution satisfies the boundary conditions in Eqs (14)–(16) with VðtÞ ¼
ffiffi
t
p

and

H(y) = 0.

To find the numerical solution of Eq (38) along with the initial and boundary conditions

(39) for n 6¼ 1, MATLAB bvp4c numerical solver is used. In order to use the bvp4c solver one

has to convert Eq (37) into a system of first order ordinary differential equations, that is

f 0
1
¼ q; q0 ¼

1

2
þM�

� �

f1 �
x

2
q

nm�qn� 1
;

ð43Þ

f1ðxÞ ¼ p0; at x ¼ 0; f1ðxÞ ! 0 as x!1: ð44Þ

The system is solved using the appropriate initial values of q(ξ) at ξ = 0.

To validate the obtained results comparison is made from the results available in literature.

The ordinary differential equation (5.4) of [69] and Eq (38) in the absence of nanoparticles of

the present study are plotted numerically using the bvp4c solver. The graphs shown in Fig 2

shows the accuracy of the results.

Graphical results and discussion. Here, the exact and numerical solutions are depicted

to examine the effect of different physical parameters on the velocity of power-law nanofluid.

The graphs are produced for the water based Cu-water nanofluid. The thermophysical proper-

ties of cu-water nanofluid can be found in Aziz and Jamshed [24].

Fig 3(a)–3(c) display the behaviour of Newtonian nanofluid velocity affected by the varia-

tion in nanoparticles concentration in the base fluid, time and the magnetic field strength. The

Fig 3(a) illustrates that the nanofluid motion retards with an increase in the concentration of

nanoparticles. The solid nanoparticles are dense and an increase in their concentration causes

an increase in the overall viscosity of the fluid. This in turn reduces the fluid motion within the

boundary layer and causes a reduction of the momentum boundary layer. It is also clear from

the figure that the nanofluid attains maximum velocity at the boundary that gradually

decreases to the free stream velocity. This satisfies the assumed boundary conditions and also

verifies the validity of the solution. Fig 3(b) shows the velocity of nanofluid increases with time

Fig 2. Comparison with Mina et al. [69] in the absence of nanoparticles and for n = 1.

https://doi.org/10.1371/journal.pone.0258107.g002
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and causes thickening of the momentum boundary layer. The transverse magnetic field pro-

duces a resistive Lorentz force in the nanofluid. The increase in the strength of fluid resistance

is evident by the decreasing trend in the nanofluid velocity due to the augmentation of the

magnetic field parameter in Fig 3(c).
Fig 4(a) and 4(b) illustrates the combined effect of power-law index n, nanoparticles volume

concentration and magnetic field on the nanofluid velocity. The curves in Fig 4(a) show

decreasing trend in fluid velocity for the Newtonian (n = 1), shear thinning (n< 1) and shear

thickening (n> 1) nanofluids. The presence of nanoparticles leads to an increase in nanofluid

viscosity which in turn creates resistance to the fluid motion. Moreover, for the particular

value of parameter φ initially the velocity of shear thickening fluid is highest followed by the

Newtonian fluid and then the shear thinning fluid. This is due to the initial movement of the

boundary. Fig 4(b) elucidates the effect of magnetic parameter on the fluid motion for different

values of the power-law index. The general behaviour of nanofluid motion is consistent with

the fact that the applied magnetic field resists the fluid motion.

Solution via subgroup generated by O1 + αO4 in case II

In this subsection, Eq (12) is reduced to an ordinary differential equation under the operator

O ¼ O1 þ aO4 ¼ ð1þ 2taÞ
@

@t
þ a y

@

@y
þ F

@

@F

� �

; ð45Þ

Fig 3. Velocity profile (42) for various values of φ, t and M when ρs = 8933, ρf = 997.1 σs = 5.5 × 10−6 and σf = 5.96 × 107 are fixed.

https://doi.org/10.1371/journal.pone.0258107.g003
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where α 2 R. The invariants corresponding to Eq (45) are given by

Fðy; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2at
p

f2ðxÞ; x ¼
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ta
p : ð46Þ

Substituting Eq (46) in Eq (12) results in

nm�ðf 02Þ
n� 1f 00

2
þ axf 0

2
� ðaþ 1ÞM�f2 ¼ 0; ð47Þ

with conditions that follow from Eqs (14)–(16) are:

f2ð0Þ ¼ r0; f2ðxÞ ! 0 as x!1: ð48Þ

Fig 4. Velocity profile for various values of φ and M when ρs = 8933, ρf = 997.1 σs = 5.5 × 10−6 and σf = 5.96 × 107

are fixed.

https://doi.org/10.1371/journal.pone.0258107.g004
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By making use of the general compatibility analysis [68], the solution of the reduced ODE (47)

subject to the boundary conditions (48) for n = 1, is given by

f2ðxÞ ¼ r0 exp �
ax�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2x
2
þ 4m�M�ðaþ 1Þ

q

2m�

0

@

1

Ax

2

4

3

5: ð49Þ

This results in the solution of Eq (46) as

Fðy; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ta
p

exp �

ay
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ta
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m�M�ðaþ 1Þ þ
a2y2

1þ 2ta

r

2m�

0

B
B
B
@

1

C
C
C
A

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ta
p

2

6
6
6
4

3

7
7
7
5
; ð50Þ

with condition that 4m�M�ðaþ 1Þ þ
a2y2

1þ2ta � 0. We note that the solution (50) satisfies the ini-

tial and boundary conditions (14)–(16) with

Fð0; tÞ ¼ VðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ta
p

and Fðy; 0Þ ¼ HðyÞ ¼ 0: ð51Þ

To approximate the numerical solution of Eq (47) for n 6¼ 1 using MATLAB bvp4c, Eq (47)

is converted into the system

f 0
2
¼ q; q0 ¼

ðaþ 1ÞM�f2 � axq
nm�qn� 1

; ð52Þ

f2ðxÞ ¼ r0; at x ¼ 0; f2ðxÞ ! 0 as x!1; ð53Þ

and initial guesses are taken by using collocation method for q(ξ) at ξ = 0.

The comparison of the velocity profile is made to show the accuracy of the results that is

available in the literature. The ordinary differential equation (5.4) of [69] and Eq (47) in the

absence of nanoparticles of the present study are plotted numerically using the bvp4c solver.

The results given in Fig 5 shows the exact match.

Graphical results and discussion. In Fig 6(a)–6(c), the solution for nanofluid velocity

given in Eq (50) is plotted to study the effect of variation in the nanoparticles volume concen-

tration, time and the strength of the magnetic field. The general behaviour is consistent with

the fact that the increase in the concentration of nanoparticles and the strength of resistive

Lorentz force reduces the fluid motion in the boundary layer region. Fig 6(b) shows that with

time the fluid velocity increases and slowly it comes to the surface.

Fig 7(a) and 7(b) depict the effect of nanoparticles volume concentration and the magnetic

parameters respectively. Numerical computations are performed for different values of power-

law index n. Fig 7(a) shows that the fluid velocity decreases with increasing concentration of

nanoparticles, which causes the thinning of the momentum boundary layer. The thinnest

momentum boundary layer is observed for the dilatant nanofluid. The general behavior of

resistive Lorentz force can be observed from Fig 7(b). At any particular time the lowest velocity

is for the shear thinning fluid followed by the Newtonian and shear thickening fluid. The fluid

comes near to the surface rapidly which causes the momentum boundary layer to become

thick.
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Fig 5. Comparison with Mina et al. [69] in the absence of nanoparticles and for n = 1, α = 0.5, M� = 2 and μ� = 0.1.

https://doi.org/10.1371/journal.pone.0258107.g005

Fig 6. Velocity profile (50) for various values of φ, t and M when ρs = 8933, ρf = 997.1 σs = 5.5 × 10−6 and σf = 5.96 × 107 are fixed.

https://doi.org/10.1371/journal.pone.0258107.g006
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Solution via subgroup generated by O1 − cO2

The linear combination of time and space translation operators in Eqs (32) and (33) can be

written as

O ¼ @t � c@y; c > 0; ð54Þ

where c is the wave speed. The Eq (54) gives travelling wave solution for the fluid flow. The

Fig 7. Velocity profile for various values of φ, and M when ρs = 8933, ρf = 997.1 σs = 5.5 × 10−6 and σf = 5.96 × 107

are fixed.

https://doi.org/10.1371/journal.pone.0258107.g007
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invariants are found as

Fðy; tÞ ¼ f3ðxÞ; x ¼ yþ ct; c > 0: ð55Þ

The substitution of Eq (55) into Eq (12) reduces it to an ODE in f3(ξ), that is

cf 0
3
� nm�ðf 03Þ

n� 1f 00
3
� M�f3 ¼ 0: ð56Þ

The boundary conditions are transformed to

f3ð0Þ ¼ 1; f3ðxÞ ! 0 as x!1: ð57Þ

Following the same procedure used in the previous sections, the solution of boundary value

problem (56)-(57) for n = 1 is

f3ðxÞ ¼ expð� bxÞ; ð58Þ

with β is given by

b ¼
½� c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4M�m�

p
�

2m�
: ð59Þ

For real solution, we have the condition that c2 + 4M� μ� � 0. Therefore β is equal to

b1 ¼
½� cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4M�m�

p
�

2m�
; or b2 ¼ �

cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4M�m�

p

2m�

" #

: ð60Þ

The meaningful solution for the velocity field F(y, t) is obtained corresponding to β2. This solu-

tion can be written as

Fðy; tÞ ¼ exp �
ðcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4M�m�

p
Þ

2m�
ðyþ ctÞ

" #

; ð61Þ

subject to the specific values of arbitrary functions V(t) and H(y) as

Fð0; tÞ ¼ VðtÞ ¼ exp �
c2 þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4m�M�

p

2m�
t

 !

Fðy; 0Þ ¼ HðyÞ ¼ exp �
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4m�M�

p

2m�
y

 !

:

ð62Þ

It can be noticed from the above equation that V(t) and H(y) depends on the physical parame-

ters of the flow.

In order to find the numerical solution of Eq (56) for n 6¼ 1, Eq (56) is first reduces into a

system of first order ordinary differential equations

f 0
3
¼ q; q0 ¼

M�f3 � cq
nm�qn� 1

; ð63Þ

f3ðxÞ ¼ 1; at x ¼ 0; f3ðxÞ ! 0 as x!1: ð64Þ

The initial guess is necessary to approximate q(ξ) at ξ = 0. This can be made by using colloca-

tion method. The MATLAB bvp4c solver is used to approximate numerical solutions for the

Cu-water nanofluid.
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Graphical results and discussion. The solution corresponding to a linear combination of

time and spatial translation is plotted in Fig 8. The effect of nanoparticles volume concentra-

tion, time and magnetic parameters are the same as discussed in previous cases. Here, the

effect of the speed of traveling waves on fluid motion is of interest. The parameter c is inversely

proportional to the fluid velocity. This fact is evident from the curves in Fig 8(c).
The numerical solution computed through MATLAB bvp4c solver for the case of non-

Newtonian nanofluid flow model is plotted in the Fig 9. In Fig 9(a) the effects of nanoparticles

volume concentration is presented with the increasing values of the power-law index. The fig-

ure elucidates that, the increase in nanoparticles volume concentration parameter ϕ decreases

nanofluid velocity within the boundary layer. The thickening of a momentum boundary layer

is observed for shear thinning, Newtonian and shear thickening nanofluids. Fig 9(b) depicts

the behaviour of the magnetic field on the fluid velocity. It can be observed that the increasing

values of a magnetic parameter are responsible for the decrease in the fluid velocity. Fig 9(c)
illustrates the effect of the speed of waves on the velocity of the fluid. The augmentation in

wave speed c decreases the velocity of nanofluid for all three cases, i.e. pseudo-plastic, Newto-

nian and dilatant nanofluids.

Fig 8. Velocity profile (61) for various values of φ, t, c and M when ρs = 8933, ρf = 997.1 σs = 5.5 × 10−6 and σf = 5.96 × 107 are fixed.

https://doi.org/10.1371/journal.pone.0258107.g008
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Fig 9. Velocity profile for various values of φ, M and c when ρs = 8933, ρf = 997.1, σs = 5.5 × 10−6 and σf =

5.96 × 107 are fixed.

https://doi.org/10.1371/journal.pone.0258107.g009
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Group invariant solution of heat transfer model

Travelling wave solution is the special kind of solution that remains invariant under the linear

combination of time and space translation. The solution was discussed previously for the flow

equation as well. Considering the combination of operators as O1 − cO2, with c as the constant

wave speed (c> 0). This combination gives the exact solution as

Tðy; tÞ ¼ gðZÞ; where Z ¼ yþ ct: ð65Þ

Using Eq (65) into Eq (13) gives the second order ordinary differential equation

cg 0ðZÞ �
ðNr þ k�Þ
PrðrCpÞ�

g 00ðZÞ ¼ 0: ð66Þ

The above equation admits the exact solution of the form

gðZÞ ¼ exp
� cðrCpÞ�Pr
ðNr þ k�Þ

Z

� �

: ð67Þ

The boundary conditions (14)–(16) for g(η) are

gð0Þ ¼ 1; gðZÞ ! 0 as Z!1: ð68Þ

Substituting back Eq (67) into Eq (65) gives

Tðy; tÞ ¼ exp
� cðrCpÞ�Pr
ðNr þ k�Þ

ðy � ctÞ
� �

; ð69Þ

which satisfies the boundary conditions with specific values of v(t) and h(y) as

Tð0; tÞ ¼ vðtÞ ¼ exp
c2ðrCpÞ�Pr
ðNr þ k�Þ

t
� �

;

Tðy; 0Þ ¼ hðyÞ ¼ exp
� cðrCpÞ�Pr
ðNr þ k�Þ

y
� �

:

ð70Þ

The above expressions of v(t) and h(y) depends on the physical parameters of heat transfer.

Graphical results and discussion

The heat transfer analysis for different parameters that affect the temperature of the fluid cor-

responding to the solution (69) are depicted in Fig 10(a)–10(f). The effect of nanoparticles vol-

ume concentration is shown in Fig 10(a). It is clear from the figure that the increasing values

of φ causes an increase in the temperature within the boundary layer. This happens due to the

increase in the overall thermal conductivity of the nanofluid. The time-lapse effects on the

temperature of the fluid are shown in Fig 10(b). The curves present an increase in temperature

with time. The effect of traveling waves speed c are plotted in Fig 10(c). The maximum temper-

ature of the fluid is near the boundary but when the waves propagates away from the boundary

the temperature falls. The effect of the nanoparticles shape parameter is also responsible for

heat transfer rate. These effects are visualized graphically in Fig 10(d). The graphical view

reveals that the spherical shape has the highest temperature. The spherical-shaped particles

tend to drag more heat from the boundary because of their maximum surface area. The

Prandtl number is the ratio of momentum to thermal diffusivity so it is obvious when there is

a high thermal conductivity the temperature will rise. This fact is evident from the curves in
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Fig 10(e). The presence of thermal radiation reduces the fluid temperature and decreases the

thickness of the thermal boundary layer as depicted in Fig 10(f).

Conclusion

The present model aims to find the exact (closed-form) solution of the unsteady unidirectional

flow and heat transfer model of power-law nanofluid. The fluid is triggered by the motion of

Fig 10. Temperature profile (69) for various values of φ, t, c, Pr, Nr and m when ρs = 8933, ρf = 997.1 σs = 5.5 × 10−6, σf = 5.96 × 107 Cps = 385, Cpf = 4197, κs = 400,

and κf = 0.613 are fixed.

https://doi.org/10.1371/journal.pone.0258107.g010
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plate. The uniform magnetic field is applied in the flow direction. The thermal motion of the

particles causes the radiation with in the fluid. The governing equations for the flow and heat

transfer model are solved using the Lie symmetry approach. The method leads to reductions

and closed-form solution for the different infinitesimal generators. The behaviour for shear

thinning, Newtonian and shear thickening fluids are discussed in each case for various physical

parameters. The graphs given in discussion section are separately described in all aspects. The

following deductions are made after the results:

• The increasing volume concentration of nanoparticles causes a decrease in velocity and

increase in temperature.

• The velocity of the fluid is decreasing with the increasing strength of the magnetic field.

• The fluid motion becomes slow and the temperature rises as time goes on.

• The shear thickening fluid has a thick momentum boundary layer as compared to Newto-

nian and shear thinning fluid.

• The increasing wave speed reduces the fluid motion and increases temperature.

• The higher thermal conductivity rises the fluid temperature.

• The increase in thermal radiation causes to lower the temperature of the fluid.

• The spherical shaped nanoparticles are more likely to drag additional heat within the fluid.

In the light of the above findings, the behaviour for different physical parameters admits

the same performance that fulfils the established facts. The methodology used in this study is

more systematic and general. This approach is very helpful in finding the exact solution espe-

cially related to non-linear partial differential equations. The generalized compatibility

approach aided this technique for the closed-form solutions. There is enormous space available

in the literature to use this technique in the fields like general relativity, aerodynamics and

wave and solid mechanics.
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