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Abstract: This work reports the synthesis of novel 1,4,3,5-oxathiadiazepanes 4,4-dioxides 

from the reaction of N’-benzyl-N-(2-hydroxyethyl)-sarcosine or proline sulfamide with 

aromatic aldehydes under acid catalysis. To prepare the starting materials N-Boc-sulfamide 

derivatives of sarcosine or proline were alkylated with benzyl alcohol under Mitsunobu 

reaction conditions, the Boc group was removed chemoselectively by acidolysis, and the 

resulting product reduced to the corresponding alcohol in good yields. 
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1. Introduction 

Sulfamides and their analogs have a rich chemical and biological history and have emerged as a 

promising class of compounds in drug discovery [1,2]. Sultams (cyclic sulfamides), although not found 

in Nature, have also shown potent biological activity, including several displaying a wide spectrum of 

activities [3,4]. The more prominent include a number of benzodithiazine dioxides and benzoxathiazepine 

1,1-dioxides displaying anti-HIV-1 activity [5] and the ability to activate glucokinase [6] (type II 

diabetes), respectively. 

In addition, pyrrolo[2,1-c]benzodiazepine antibiotics and some of their heterocyclic analogs show 

anticancer activity [7–10], it has been proposed that the cytotoxicity and antitumour activity of these 
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compounds results from the formation of a covalent bond between the azomethine unit of the diazepine 

ring and the C(2)-amino group guanine nucleus in the minor groove of the DNA double spiral [11–14]. 

In a continuous of previous work [15–19], we have described a convenient access to a series of  

n-membered cyclic sulfamides A and heterocyclic constrained peptides containing sulfamide groups B, 

starting from natural amino acids, chloroethylamine and chlorosulfonylisocynanate (CSI). In 

continuation of our efforts to design and synthesize new cyclic sulfamides, we have extended our 

studies to a series of seven membered heterocyclic compounds C containing sulfamide groups (Figure 1), 

we describe for the first time the first example of a new heterocyclic class 1,4,3,5-oxathiadiazepane 

4,4-dioxides which can be described as structural analogs of the anti-HIV-1 compounds mentioned 

above. This compound is an interesting candidate for pharmaceutical purposes. 

Figure 1. Cyclosulfamide stuctures. 
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2. Results and Discussion 

In recent years, considerable attention was paid to compounds resulting from the condensation of 

substituted amino alcohols with aldehydes [20–24]. As outlined in Scheme 1, the substituted amino 

alcohols (N’-benzyl-N-(2-hydroxyethyl)-proline or sarcosine sulfamides) 1c and 2c were prepared in a 

three-step reaction sequence starting from (tert-butyloxycarbonylsulfonyl) L-amino acid methyl esters 

1 and 2. These compounds were synthesized by sulfamoylation of aminoester derivatives (Pro, Sar) as 

previously described [18]. 

Scheme 1. General synthesis of substituted aminoalcohol sulfamides. 
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Reagents and conditions: (i) PhCH2OH (1 equiv.), PPh3 (1.5 equiv.), DIAD or DEAD (1.5 equiv.), 
THF; (ii) TFA (3 equiv.), CH2Cl2; (iii) NaBH4 (2 equiv.), THF-Eau (4:1). 
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In these tert-butyloxycarbonylsulfamides 1 and 2, the Boc (tert-butyloxycarbonyl) group increases 

the acidity of the adjacent NH group and allows an expedient regiospecific alkylation under Mitsunobu 

conditions [25–28] using benzylic alcohol, which provides the N-substituted Boc-sulfamides 1a and 2a 

in 80% and 85% yield, respectively. Selective cleavage of the tert-butyloxycarbonyl protective  

group with trifluoroacetic acid gives compounds 1b and 2b in 95% and 98% yield, respectively. The 

substituted amino alcohols sulfamides 1c and 2c were obtained from the deprotected sulfamides by 

NaBH4 reduction in 87% and 85% yield, respectively. 

Substituted 1,4,3,5-oxathiadiazepane 4,4-dioxides were obtained in accordance with the 

methodology shown in the literature [20]. The substituted amino alcohols 1c and 2c were allowed to 

react with aromatic aldehydes in dichloromethane in a cycolodehydration reaction to obtain the 

corresponding compounds 1d–4d, 1e–4e. The yields are listed in Table 1. These compounds can 

furnish after debenzylation new ring opened products by nucleophilic attack by organometallic 

reagents [27,28]. 

Table 1. General synthesis of substituted oxathiadiazepane 4,4-dioxides.  
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Reagents and conditions: (iv) Aromatic aldehyde (1 equiv.), CH2Cl2, H2SO4 cat. 

Compounds Yield (%) 
1d 50 
2d 50 
3d 43 
4d 41 
1e 55 
2e 45 
3e 40 
4e 42 

In the 1H-NMR (CDCl3) spectra of proline derivatives 1e–4e, the asymmetric carbon protons of 

compounds 3e and 4e resonate around δ 6.52–6.35 ppm as a singlet peak. Compounds 1e and 2e 

exhibit a doublet of doublets at δ ~ 5.48 ppm and 7.90 ppm, with coupling constants of 3.43, 3.49 Hz 

and 1.53, 1.57 Hz, respectively. Thus, the asymmetric carbon proton of sarcosine derivatives, showed 

for compounds 3d and 4d a doublet at δ ~ 7.90 ppm and δ ~ 7.50 ppm with coupling constants of 1.47 Hz 

and 1.49 Hz, respectively, while compound 2d exhibit a doublet of doublets at δ ~ 7.80 ppm with 

coupling constants of 1.37, 1.55 Hz, and compound 1d presents a triplet at δ ~ 5.10 ppm. 
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3. Experimental 

3.1. General 

All commercial chemicals and solvents were used as received. Melting points were determined in 

open tubes on a Büchi apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 

Spectrum 1000 spectrophotometer. Microanalyses were performed in the Microanalysis Laboratory of 

ENSCM (Montpellier). 1H and 13C-Nuclear Magnetic Resonance spectra were determined on a Brüker 

AC 250 spectrometer. Chemical shifts are recorded in ppm (δ) and coupling constants (J) in Hertz, 

relative to tetramethylsilane used as internal standard. Multiplicity is indicated as s (singlet), d 

(doublet), q (quadruplet), m (multiplet) and combinations of these signals. Fast-atom bombardment 

mass spectra (FAB) were recorded in positive or negative mode with glycerol (G), thioglycerol (GT), 

or 3-nitrobenzylalcohol (NOBA) as matrix. Optical rotations for solutions in CHCl3 were measured 

with a POLAX model 2L digital polarimeter. All reactions were monitored by Thin Layer 

Chromatography (TLC) on silica gel Merck 60 F254 precoated aluminium plates, developed by 

spraying with ninhydrin solution. Column chromatography was performed using silica gel 60  

(203–400 mesh). 

3.2. General Synthetic Procedure for Carbamoylation-Sulfamoylation: Preparation of 1 and 2 

A solution of N-chlorosulfonyl tert-butylcarbamate (0.05 mol) was prepared by addition of  

tert-butanol (408 mL in 50 mL of dichloromethane) to a solution of CSI (7.1 g in the same solvent). 

The resulting Boc-sulfamoyl chloride solution (25 mL) and triethylamine (17.40 g, 17.1 mL,  

0.085 mol) in dichloromethane (100 mL) was added into a suspension of aminoester (0.05 mol) in the 

same solvent (120 mL) at 0 °C. The reaction was complete in 45 minutes. The reaction mixture was 

then diluted with dichloromethane (100 mL) and washed with two portions of 0.1 N HCl solution. The 

organic layer was dried with (Na2SO4) and concentrated in vacuo to give the crude product, which was 

purified by column chromatography eluting with dichloromethane to give compounds 1 and 2. 

(S)-Methyl [N-methyl(N’-tert-butyloxycarbonyl)-sulfamoyl]-glycinate (1). Yield = 80%; TLC: Rf = 0.76 

(CH2Cl2-MeOH 9:1); cristallizable oil; IR (KBr) ν cm−1: 3200 (NH), 1770, 1763 (C=O), 1360 and 

1150 (SO2); 
1H-NMR (CDCl3) δ ppm: 7.62 (s, 1H, NH), 4.14 (s, 2H, CH2), 3.75 (s, 3H, OCH3), 3.04 

(s, 3H, NCH3), 1.49 (s, 9H, tBu); M.S: (NOBA, FAB > 0): 283 [M+H]+, 565. M = 282; Anal. Calcd 

for C9H18N2O6S: C, 38.29; H, 6.38; N, 9.93; S, 11.34; found: C, 38.24; H, 6.43; N, 9.87; S, 11.28. 

(S)-Methyl [N-(N’-tert-butyloxycarbonyl)-sulfamoyl]-prolinate (2). Yield = 80%; TLC: Rf = 0.58 

(CH2Cl2-MeOH 95:5); m.p. = 132–133 °C; [α]D = −9.5 (c = 1; MeOH); IR (KBr) ν cm−1: 1730, 1712 

(C=O), 1340 and 1150 (SO2); 
1H-NMR (CDCl3) δ ppm: 7.52 (s, 1H, NH); M.S: (NOBA, FAB > 0): 

309 [M+H]+, 208 ([M+H]+-Boc). M = 308; Anal. Calcd for C11H20N2O6S: C, 42.85; H, 6.69; N, 9.09; 

S, 10.38; found: C, 42.27; H, 6.53; N, 9.06; S, 10.41. 
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3.3. General Procedure for the Synthesis of N-Boc, N′-(benzyl)sulfamides 1a and 2a 

A solution of N-alkyl carboxylsulfamide (0.0065 mol, 2 g), triphenylphosphine (2.56 g) and 

benzylic alcohol (0.7 g) in THF (15 mL) was added dropwise (20 min, 5 °C) to a solution of equimolar 

quantities of diethyl(diisopropyl)azodicarboxylate (1.97 g) in THF (5 mL), the reaction medium was 

stirred under an atmosphere of dry nitrogen for about 45 min. TLC reveals the formation of substituted 

compound (UV, ninhydrin) less polar than its precursor. Oxidoreduction compounds were removed by 

filtration after precipitation into diethylether. The filtrate was concentred and the crude residue was 

purified by column chromatography eluted with dichloromethane.  

(S)-Methyl [N-(N′-tert-butyloxycarbonyl, N′-benzyl)-sulfamoyl]-glycinate (1a). Yield = 80%; TLC:  

Rf = 0.76 (CH2Cl2-MeOH 95:5); m.p. = 72 °C; 1H-NMR (CDCl3) δ ppm: 7.34 (m, 5H, ArH), 4.86 (s, 

2H, CH2-ph), 4.04 (s, 2H, CH2-N), 3.72 (s, 3H, OCH3), 2.84 (s, 3H, CH3), 1.49 (s, 9H, tBu); M.S: 

(NOBA, FAB > 0): 373 [M+H]+. M = 372; Anal. Calcd for C16H24N2O6S: C, 51.61; H, 6.45; N, 7.52; 

S, 8.60; found: C, 51.43; H, 6.38; N, 7.49; S, 8.62. 

(S)-Methyl [N-(N′-tert-butyloxycarbonyl, N′-benzyl)-sulfamoyl]-prolinate (2a). Yield = 85%; TLC:  

Rf = 0.73 (CH2Cl2-MeOH 95:5); m.p. = 73 °C; 1H-NMR (CDCl3) δ ppm: 7.36 (m, 5H, ArH), 4.86 (m, 

1H, CH), 4.66 (2dd, 2H, J = 3.14, 5.45 Hz, CH2-Ph), 3.72 (s, 3H, OCH3), 3.48 (m, 1H, CH*), 3.15 (m, 

1H, CH), 1.88–2.08 (m, 4H, 2CH2), 1.48 (s, 9H, tBu); M.S: (NOBA, FAB > 0): 399 [M+H]+. M = 398; 

Anal. Calcd for C18H26N2O6S: C, 54.71; H, 6.53; N, 7.038; S,8.04; found: C, 54.65; H, 6.62; N, 7.05; 

S, 8.13. 

3.4. General Deprotection Procedure: Preparation of 1b and 2b 

A solution of trifluoroacetic acid (50% in dichloromethane; 3 equiv.) was dropwise added into a 

stirred solution of substituted N-carboxylsulfamide(0.92 g, 2.6 mmol) in dichloromethane (10 mL) at 0 °C. 

The reaction midium was stirred during two hours, concentrated under reduced pressure and 

coevaporated with diethylether. The residue was purified by column chromatography eluted with 

dichloromethane (or recrystallized from an AcOEt-hexane mixture) to afford deprotected sulfamides 

1b and 2b. 

N[N′-Benzyl]sulfamoylglcinate de methyl (1b). Yield = 95%; TLC: Rf = 0.55 (CH2Cl2-MeOH 95:5); 

m.p. = 100–102 °C; IR (KBr) ν cm−1: 3312 (NH), 1360 and 1160 (SO2); 
1H-NMR (CDCl3) δ ppm: 

7.34 (m, 5H, ArH), 5.70 (t, 1H, NH), 4.30 (d, 2H, J = 6.0 Hz, CH2-Ph), 4.0 (s, 2H, CH2), 3.75 (s, 3H, 

OCH3), 2.90 (s, 3H, CH3); M.S: (NOBA, FAB > 0): 273 [M+H]+, 546; M = 272; Anal. Calcd for 

C11H16N2O4S: C, 48.52; H ,5.88; N ,10.29; S ,11.76; found: C, 48.39; H, 5.80; N, 10.25; S, 11.74. 

N[N′-Benzyl]sulfamoylprolinate de methyl (2b). Yield = 98%; TLC: Rf = 0.60 (CH2Cl2-MeOH 95:5); 

oil; IR (KBr) ν cm−1: 3320 (NH), 1355 and 1159 (SO2); 
1H-NMR (CDCl3) δ ppm: 7.34 (m, 5H, ArH), 

5.96 (m, 1H, NH), 4.41 (dd, 1H, J = 3.81, 4.70Hz, C*H), 4.30 (2dd, 2H, J = 3.11, 4.70 Hz, CH2-Ph), 

3.70 (s, 3H, OCH3), 3.46 (m, 2H, CH2N), 2.20–2.0 (m, 4H, CH2β and CH2γ); M.S: (NOBA, FAB > 0): 

299 [M+H]+. M = 298; Anal. Calcd for C13H18N2O4S: C, 52.34; H, 6.04; N, 9.39; S, 10.73; found: C, 

52.29; H, 6.00; N, 9.37; S, 10.68. 
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3.5. General Reduction Procedure; Preparation of 1c and 2c 

Deprotected product 1b or 2b (3.30 mmol) in THF (15 mL) was added dropwise to a suspension of 

NaBH4 (0.006 mol) in THF-Water (4:1, v/v, 20 mL) at 0 °C. When the addition was complete, the 

reaction mixture was acidified slowly with HCl 5% and concentrated in vacuo. The aqueous layer was 

extracted with ethyl acetate (3 × 150 mL). The combined organic layers were dried (Na2SO4) and 

concentrated in vacuo. The crude product was purified by column chromatography eluted with 

dichlomethane-methanol (90:10). 

N-Methyl(N′-benzylsulfamoyl) glycinol (1c). Yield = 87%; TLC: Rf = 0.50 (CH2Cl2-MeOH 95:5);  

m.p. = 98 °C; IR (KBr) ν cm−1: 3315 (NH), 1330 (OH); 1H-NMR (CDCl3) δ ppm: 7.35 (m, 5H, ArH), 

4.72 (t, 1H, NH), 4.39 (d, 2H, J = 5.99 Hz, CH2-Ph), 3.78 (t, 2H, CH2OH), 3.35 (t, 2H, CH2N), 2.88 (s, 

3H, CH3), 1.98 (s, 1H, OH); M.S: (ESI+): 267 [M+Na]+, 511 [2M+Na]+; M = 244; Anal. Calcd for 

C10H16N2O3S: C, 49.18; H, 6.55; N, 11.47; S, 13.11; found: C, 49.14; H, 6.52; N, 11.45; S, 13.20. 

N-Methyl(N′-benzylsulfamoyl) prolinolnol (2c). Yield = 85%; TLC: Rf = 0.48 (CH2Cl2-MeOH 95:5); 

m.p. = 109–112 °C; IR (KBr) ν cm−1: 3320 (NH), 1370 (OH); 1H-NMR (CDCl3) δ ppm: 7.30 (m, 5H, 

ArH), 5.0 (t, 1H, NH), 4.25 (d, 2H, J = 5.5.75 Hz, CH2-Ph), 3.81 (m, 1H, CH*), 3.55 (m, 2H, CH2OH), 

3.30 (t, 2H, CH2N), 2.31 (band large, s, 1H, OH), 1.85 (m, 4H, CH2β and CH2γ); M.S: (ESI+): 293 

[M+Na]+, 563 [2M+Na]+; M = 270; Anal. Calcd for C12H18N2O3S: C, 53.33; H, 6.66; N, 10.37; S, 

11.85; found: C, 53.31; H, 6.60; N, 10.39; S, 11.89. 

3.6. General Procedure for the Preparation of 1,4,3,5-Oxathiadiazepanes 4,4-dioxides 1d–4d, 1e–4e 

Compounds 1c and 2c (0.01 mol) were dissolved separately in dichloromethane (25 mL), and the 

aromatic aldehyde (0.01 mol) was added. A drop of concentrated sulfuric acid was also added, and the 

reaction mixture was stirred for 3h at room temperature. The reaction mixture was washed with a 5% 

solution of sodium bicarbonate, water and then with brine. The organic layer was dried over anhydrous 

sodium sulfate, and evaporated under reduced pressure on a rotary evaporator. The residue was 

purified by column chromatography eluting with dichloromethane to give the 1,4,3,5-oxathiadiazepanes 

4,4-dioxide. 

(N3,2)-Dibenzyl, N5-methyl 1,4,3,5-oxathidiazepane 4,4-dioxyde (1d). Yield = 59%; TLC: Rf = 0.75 

(CH2Cl2); m.p. = 82–85 °C; IR (KBr); 1H-NMR (CDCl3) δ ppm: 7.30 (m, 10H, 2ArH), 7.09 (m, 2H, 

C*-CH2-ph), 5.1 (t, J = 5.37, 1H, CH*), 4.55 (s, 2H, CH2-N), 3.90 (m, 2H, CH2-O), 2.97 (S, 3H,  

CH3-N), 2.85 (m, 2H, CH2-N); 13C-NMR (CDCl3) δ ppm: 37.80, 41.34, 49.74, 52.80, 68, 89.31, 128; 

M.S: (ESI+): 369 [M+Na]+; M = 346; Anal. Calcd for C18H21N2O3S: C, 62.42; H, 6.06; N, 8.09; S, 

9.24; found: C, 62.44; H, 6.02; N, 8.03; S, 9.20. 

N3-Benzyl, N5-methyl, 2-phenyl 1,4,3,5-oxathidiazepane 4,4-dioxyde (2d). Yield = 50%; TLC: Rf = 0.75 

(CH2Cl2); oil; 1H-NMR (CDCl3) δ ppm: 7.80 (dd, J = 1.37, 1.55 Hz, 1H, CH*), 7.30 (m, 10H, 2Ar), 

4.35 (t, 2H, CH2-O), 4.25 (dd, J = 27.57, 27.52 Hz, 2H, CH2-Ph), 3.30 (t, 2H, CH2-N), 2.90 (S, 3H, 

CH3-N); 13C-NMR (CDCl3) δ ppm: 37.80, 49.70, 52.80, 68, 87.50, 128.50; (ESI+): 355 [M+Na]+;  
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M = 332; Anal. Calcd for C17H20N2O3S: C, 61.44; H, 6.02; N, 8.43; S ,9.63; found: C, 61.40; H, 6.10; 

N, 8.50; S, 9.67. 

N3-Benzyl, N5-methyl, 2-(2-chlorophenyl) 1,4,3,5-oxathidiazepane 4,4-dioxyde (3d). Yield = 43%; 

TLC: Rf = 0.80 (CH2Cl2); m.p. = 80–82 °C; 1H-NMR (CDCl3) δ ppm: 7.90 (d, J = 1.47 Hz, 1H, CH*), 

7.40 (m, 9H, 2Ar), 4.50 (t, J = 5.49 Hz, 2H, CH2-O), 4.20 (d, J = 5.98 Hz, 2H, CH2-Ph), 3.57 (t,  

J = 5.49 Hz , 2H, CH2-N), 2.92 (S, 3H, CH3-N); 13C-NMR (CDCl3) δ ppm: 37.80, 49.50, 53, 68.4, 

84.60, 129, 132; M.S: (ESI+): 389 [M+Na]+; M = 366; Anal. Calcd for C17H19N2O3SCl: C,55.73; H, 

5.19; N, 7.65; S, 8.74; found: C, 55.68; H, 5.14; N, 7.59; S, 8.70. 

N3-Benzyl, N5-methyl, 2-(4-chlorophenyl) 1,4,3,5-oxathidiazepane 4,4-dioxyde (4d). Yield = 41%; 

TLC: Rf = 0.80 (CH2Cl2); m.p. = 80–82 °C; 1H-NMR (CDCl3) δ ppm: 7.50 (d, J = 1.49 Hz, 1H, CH*), 

7.20 (m, 9H, 2Ar), 4.30 (t, J = 1.63 Hz, 2H, CH2-O), 4.1 and 4.4 (2d, J = 15.89 Hz, 1H and J = 15.91 Hz, 

1H, CH2-Ph), 3.5 (t, J = 1.49, 2H, CH2-N), 3.10 (s, 3H , CH3-N); 13C-NMR (CDCl3) δ ppm: 37.80, 

49.50, 55.90, 68.3, 85, 129, 131.5; M.S: (ESI+): 389 [M+Na]+; M = 366; Anal. Calcd for 

C17H19N2O3SCl: C, 55.73; H, 5.19; N, 7.65; S, 8.74; found: C, 55.76; H, 5.23; N, 7.72; S, 8.70. 

(N3,2)-Dibenzyl, (N5,6)-trimethylene 1,4,3,5-oxathiadiazepane 4,4-dioxide (1e). Yield = 55%; TLC:  

Rf = 0.82 (CH2Cl2); m.p. = 107–108 °C; 1H-NMR (CDCl3) δ ppm: 7.30 (m, 10H, 2ArH), 5.48 (dd,  

J = 3.43, J = 3.49 Hz, 1H, C1H*), 5.31 (s, 2H, CH2-N), 4.81 and 4.55 (2d, J = 16.77 Hz, 1H and  

J = 16.68 Hz, 1H, CH2-Ph), 3.81 (m, 2H, CH2-O), 3.50 (m, 3H, CH2-N and C2H*-N), 1.35 (m, 4H, 

CH2β and CH2γ); 
13C-NMR (CDCl3) δ ppm: 24.80, 28.97, 29.71, 41.41, 48.19, 59.15, 73.06, 88.98, 

129; M.S: (ESI+): 395 [M+Na]+; M = 372; Anal. Calcd for C20H24N2O3S: C, 64.5; H, 6.45; N, 7.52; S, 

8.60; found: C, 64.49; H, 6.46; N, 7.47; S, 8.65. 

2-Phenyl, N3-benzyl, (N5,6)-trimethylene 1,4,3,5-oxathiadiazepane 4,4-dioxide (2e). Yield = 45%; 

TLC: Rf = 0.79 (CH2Cl2); m.p. = 97–99 °C; 1H-NMR (CDCl3) δ ppm: 7.90 (dd, J = 1.53, J = 1.57 Hz, 

1H, C1H*), 7.45 (m, 10H, 2ArH), 4.30 (s, 2H, CH2-Ph), 3.90 (m, 1H, C2H*), 3.70–3.60 (m, 2H, CH2-O), 

3.50 (m, 2H, CH2-N), 1.80 (m, 4H, CH2β and CH2γ); 
13C-NMR (CDCl3) δ ppm: 24.80, 28.97, 41, 

48.20, 59.15, 72.80, 89.80, 129; M.S: (ESI+): 381 [M+Na]+; M = 358; Anal. Calcd for C19H22N2O3S: 

C, 63.68; H, 6.14; N, 7.82; S, 8.93; found: C, 63.72; H, 6.16; N, 7.79; S, 8.89. 

2-(2-Chlorophenyl), N3-benzyl, (N5,6)-trimethylene 1,4,3,5-oxathiadiazepane 4,4-dioxide (3e).  

Yield = 40%; TLC: Rf = 0.80 (CH2Cl2); oil; 1H-NMR (CDCl3) δ ppm: 6.94 (m, 9H, 2ArH), 6.52 (s, 

1H, C1H*), 4.50 (dd, J = 15.81, J = 16.24 Hz, 2H, CH2-Ph), 4.10–3.90 (m, 3H, CH2-O and C2H*), 3.60 

(t, 2H, CH2-N), 2.08 (m, 2H, CH2β,), 1.60 (m, 2H, CH2γ); 
13C-NMR (CDCl3) δ ppm: 24.80, 28.97, 41, 

48.20, 59.15, 72.80, 89.80, 129, 131.5; M.S: (ESI+): 415 [M+Na]+; M = 392.5; Anal. Calcd for 

C19H21N2O3SCl: C, 58.08; H, 5.35; N, 7.13; S, 8.15; found: C, 58.00; H, 5.29; N, 7.09; S, 8.20. 

2-(4-Chlorophenyl), N3-benzyl, (N5,6)-trimethylene 1,4,3,5-oxathiadiazepane 4,4-dioxide (4e).  

Yield = 42%; TLC: Rf = 0.78 (CH2Cl2); yellow powder, m.p. = 154–157 °C; 1H-NMR (CDCl3) δ ppm: 

7.25 (m, 9H, 2ArH), 6.35 (s, 1H, C1H*), 4.48 (dd, J = 15.85, J = 16.21 Hz, 2H, CH2-Ph), 4.11 (m, 1H, 

C2H*), 3.85 (m, 2H, CH2-O), 3.55 (m, 2H, CH2-N), 2.15 (m, 4H, CH2β and CH2γ,); 
13C-NMR (CDCl3) 
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δ ppm: 24.80, 28.97, 41, 48.20, 59.15, 72.80, 89.80, 129, 131; M.S: (ESI+): 415 [M+Na]+, 807 

[2M+Na]+; M = 392.5; Anal. Calcd for C19H21N2O3SCl: C, 58.08; H, 5.35; N, 7.13; S, 8.15; found: C, 

58.10; H, 5.39; N, 7.16; S, 8.19. 

4. Conclusions  

In conclusion, we have successfully prepared a new class of seven-membered heterocyclic 

substituted 1,4,3,5-oxathiadiazepanes 4,4-dioxides via a simple strategy. The biological evaluation of 

the resulting compounds, their stereochemical study, reopening after debenzylation by nucleophilic 

attack by organometallic reagents and their incorporation into biomolecule analogues are currently 

underway and will be reported in due course. 
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