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Establishing the origin and function of unusual traits in fossil taxa provides a

crucial tool in understanding macroevolutionary patterns over long periods

of time. Ceratopsian dinosaurs are known for their exaggerated and often

elaborate horns and frills, which vary considerably between species. Many

explanations have been proposed for the origin and evolution of these ‘orna-

mental’ traits, from predator defence to socio-sexual dominance signalling

and, more recently, species recognition. A key prediction of the species recog-

nition hypothesis is that two or more species possessing divergent ornamental

traits should have been at least partially sympatric. For the first time to our

knowledge, we test this hypothesis in ceratopsians by conducting a compari-

son of the morphological characters of 46 species. A total of 350 ceratopsian

cladistic characters were categorized as either ‘internal’, ‘display’ (i.e. orna-

mental) or ‘non display’. Patterns of diversity of these characters were

evaluated across 1035 unique species pairs. Display characters were found

to diverge rapidly overall, but sympatric species were not found to differ

significantly in their ornamental disparity from non-sympatric species, regard-

less of phylogenetic distance. The prediction of the species recognition

hypothesis, and thus the idea that ornamentation evolved as a species

recognition mechanism, has no statistical support among known ceratopsians.
1. Introduction
Exaggerated and elaborate anatomical features are well known among many

fossil taxa, including trilobites, amphibians, non-avian dinosaurs and artiodactyls

[1]. These features can take the form of bony processes, spines, horns, crests and

frills, often with no obvious functional explanation. A number of hypotheses have

been suggested for the presence and evolution of such ornaments, including

predator defence, mechanical support, thermoregulation, social or sexual signal-

ling, and species recognition [2–5]. The first three of these proposed explanations

have been considered and ruled out in many analyses of specific systems, leaving

species recognition and sexual selection as the two main competing hypotheses

that could offer a more general explanation for the evolution of ornaments.

There is now growing evidence that sexual selection can influence macroevolu-

tionary processes such as speciation, extinction and adaptation. The fossil

record offers the opportunity to test these ideas over considerably longer

timescales than possible in extant organisms.

The Ceratopsia was a major clade of non-avialan dinosaurs (hereafter ‘dino-

saurs’) of over 70 known species, all of which possessed large, ornamented,

morphologically diverse skulls [6,7]. (‘Ornament’ refers here to any exaggera-

ted morphological feature that was externally visible in life and has no obvious

utilitarian function, presumably functioning, in part, as a visual signal. We do
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Figure 1. Line drawings of ceratopsian skulls in simplified phylogeny to illustrate morphological diversity of cranial ornaments within the clade. (a) Liaoceratops
yangzigouensis; (b) Protoceratops andrewsi; (c) Centrosaurus apertus; (d ) Achelousaurus horneri; (e) Pachyrhinosaurus canadensis; ( f ) Chasmosaurus belli; (g) Tricera-
tops horridus. Node 1 represents the clade Coronosauria, containing all taxa with enlarged frills. Node 2 represents the clade Ceratopsoidea, encompassing
Centrosaurinae (orange branch) and Chasmosaurinae (blue branch), within which the majority of cranial ornamental diversity, and all horned taxa, are found.
Lower image: full-body illustration of Styracosaurus albertensis (Centrosaurinae) with highlighted examples of the three different character classes used in this
study (refer to the electronic supplementary material for full list of characters).
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not distinguish between ornaments and weapons to avoid

presupposing function [8].) Ceratopsians are well represented

in the fossil record and, coupled with their diverse skull mor-

phology and rapid species turnover, are well-suited for the

study of macroevolutionary patterns. Cranial ornamentation

in ceratopsians variously takes the form of frills (composed

of enlarged parietal and squamosal bones), nasal and postorbi-

tal horns, prominent jugal (‘cheek’) spikes, and epiossifications

around the posterior margin of the frill (figure 1) [9]. Sexual

dimorphism is not known from any ceratopsian species [10],

and no similar ornamentation is found in extant taxa. Early cer-

atopsians, such as Psittacosaurus and Liaoceratops (figure 1a),

had combinations of enlarged jugal spikes, and small, incipient

frills [6]. Enlarged frills and horns appeared first in the basal

neoceratopsian Zuniceratops [11], and reached their peak

diversity and complexity in the Centrosaurinae between 80

and 70 Ma (figure 1) [7,12]. Despite the great diversity in

ornament morphology, at no point were horns or frills

completely lost in any ceratopsian lineage once established.

Sexual selection is difficult to determine in extinct taxa

because of the lack of behavioural or genetic data, and there

is no single, reliable means of recognizing it from morphology

alone [1]. The absence of any obvious sexual dimorphism has

led some to conclude that sexual selection cannot provide an

explanation for ornamentation in ceratopsians, and that the
best explanation is, therefore, species recognition [13]. Species

recognition has been proposed as an alternative hypothesis

for the divergence of ornaments in extant species as a means

of avoiding hybridization; closely-related sympatric species

should, it is argued, develop contrasting morphological charac-

ters to differentiate themselves, a process known as character

displacement [14–18]. Such characters are not expected to

have an obvious mechanical function, and the process is

distinct from ecological character displacement [19]. Morpho-

logical characters involved in species recognition are

expected to function early on in social interactions between

individuals [20] and should be highly visible, an obvious

characteristic of highly ornamented ceratopsian skulls.

Padian and Horner suggested the following two tests for

identifying species recognition traits in extinct animals [3]:

(i) patterns of diversification of ornaments should be

relatively random; and

(ii) there should be evidence that at some point, several closely

related species with divergent ornaments lived at the same

time in environments that at least partially overlap.

The first hypothesis is not useful in distinguishing species

recognition traits because sexually selected features also

sometimes show apparently ‘random’ patterns of divergence
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[21–23]. Given the reasonably dense fossil record of the Ceratop-

sia, however, it should be possible to test a modified version of

the second hypothesis using species that are known to have been

sympatric. If species recognition is a driver of trait evolution,

then morphological disparity in ornamentation should be sig-

nificantly higher between sympatric species because species

that are not sympatric have minimal selective pressure to

evolve obvious visual differences [15]. Species recognition

should, therefore, promote the divergence of these traits to a

greater degree between sympatric species than between species

which did not coexist. The species recognition hypothesis can be

easily tested with knowledge of morphology and species

distributions, both of which are well known in ceratopsians.

Here, we perform, to our knowledge, the first everevaluation

of species recognition in a fossil vertebrate clade with an assess-

ment of ceratopsian dinosaur data. We combine information on

ornamental and other traits with information on sympatry to test

the hypothesis that sympatric ceratopsian taxa evolved features

that visually distinguish them from one another.
312
2. Methods
All known valid ceratopsian species were listed using existing

sources [12,24]. Known geographical occurrences for each species

were determined from the primary literature (electronic sup-

plementary material, table S1). Temporal ranges follow published

dates of their host formations, using more precise dates for

occurrences within the formation where possible.

Phylogenetic information was compiled from a number of

sources, and a composite tree constructed (electronic supplemen-

tary material) [7,9,25–36]. The phylogenetic distance between

each species pair was calculated using a method [37] adapted

for extinct taxa; the number of speciation events since the last

common ancestor was counted for each possible species pair,

omitting species radiations that occurred after the more recent

occurrence of the two species. This avoids overweighting of

clades that subsequently underwent large species radiations.

Trait comparisons were performed using a total of 350

defined and scored cladistic characters (electronic supplementary

material). Each character was classed as either external or internal,
based on whether it was likely to have an effect on the exterior

appearance of the animal in life. External characters were further

subdivided into display and non-display, defined as whether or

not the character in question was deemed whole or part of an

ornament (i.e. in ceratopsians, the frill, horns and bosses of the

skull). The classification of characters in this way resulted in

three character classes:

internal characters (196 characters),

display characters (86 characters),

non-display (other) characters (68 characters).

Each species pair was compared using the following formula:

difference index ¼ jntot � nsamej
ntot

,

where ntot is the total number of characters present in both taxa

and nsame is the number of characters with matching states in

both taxa. This resulted in a ‘difference index’ value of between

0 and 1, where species pairs possessing all identical characters

are scored 0 and absolutely different pairs are scored 1.

Because of the low confidence arising from comparisons of

poorly known species with many unknown characters, a mini-

mum cut-off of 40% possession of characters was used. This

retained a high number of species in the analysis while simul-

taneously excluding those known from limited remains. This
latter group contained mainly the earlier, more basal members of

the clade, and was deemed an acceptable omission because this

study is concerned with the exaggerated structures associated pri-

marily with Neoceratopsia. After these criteria were applied, a

total of 46 ceratopsian species were retained from the initial total

of 77. Phylogenetic distance values were not altered.

Comparisons of species pairs were determined by a pairwise

comparison grid of ðn2 � nÞ=2 possible combinations, where n is

the number of taxa. If we define sympatry as the situation where

species pairs are known to be found in the same place and at the

same time, we classify only 38 species pairs of a total of 1035

used in this study as sympatric. Given the incomplete nature of

the fossil record and the possibility of dating errors, however,

this is likely to be an underestimate, so we used a series of criteria

to describe how likely each species pair was to have been present

in the same place at the same time, as follows:

— sympatric: species pairs are found in the same location with

overlap in their temporal range (38 pairs);

— allopatric: species pairs overlap in their temporal range and

are found on the same continent, but are not known from

the same locality (63 pairs);

— pseudo-sympatric: species pairs are found in the same region

and do not overlap temporally, but are dated within 1 million

years of one another (119 pairs);

— contemporary: species pairs overlap in their temporal range

(a combination of sympatric and allopatric; 101 pairs); and

— not sympatric: species pair not known to overlap geographi-

cally within 1 million years temporally (815 pairs).

Padian and Horner suggested the ‘ghost of species recognition’ con-

cept to test the species recognition hypothesis [3]; divergent clades

with ‘exaggerated features’ need only to have been known to have

coexisted. This hypothesis is untestable as presented because it

does not require physical evidence of contemporary forms, and

we cannot know if contemporary lineages were morphologically

distinct without fossil evidence. Furthermore, all divergent lineages

would, at some time, have been contemporary by definition. In an

attempt to address the ‘ghost of species recognition’ concept [3],

the contemporary category was created by merging the sympatric

and allopatric categories. Categorizing species in this way ensures

that fossil evidence is available for comparison of the morphology

of contemporaryspecies, and avoids speculating that morphological

divergence had occurred at a chosen point.

To ensure that the relatively smaller datasets of the sympatry

categories were not affecting comparison, we randomly sampled

species pairs from the complete dataset to simulate populations

of the same size as each sympatry category. This process was

repeated 10 000 times for each category to provide a distribution

of regression parameters, and the equivalent values for each

sympatry category were compared with these distributions.

Finally, we assessed each character individually to test if

sympatry was driving the divergence of individual traits. This

was done by individually comparing the mean difference values

of each character in the three main sympatry classes with the

equivalent means in the remaining, non-sympatric species pairs.
3. Results
All unique pairwise comparisons, excluding same-species

comparisons ððn2 � nÞ=2 ¼ 1035Þ, were plotted against relative

phylogenetic distance (figure 2, row a). Trend lines in all cases

are fitted with a second-order polynomial regression. This

method captured the distribution of data while keeping the

number of parameters low [38]. Morphological disparity

increases with increasing relative phylogenetic distance, but

the form of this relationship varies with the different classes
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of trait. The relatively low intercept values of internal (20.028)

and non-display characters (0.033), and shallower slope at low

phylogenetic distances, suggest comparatively high levels of

conservation of these characters between closely related

species. By contrast, display characters show a higher intercept

(0.100) across all species pairs (figure 2, cell a(ii)), and these

characters are notably more divergent in closely related species

pairs than are the internal or non-display characters.

Rows (b–e) of figure 2 show the divergence values for each

character class when the species pairs are divided into the four

sympatry categories. In the plots for the display characters, the

allopatric and contemporary sympatry categories appear to

depart slightly from the trend seen for all species pairs, but

only at high relative phylogenetic distances. The trend lines

for sympatric (b(i)) and pseudo-sympatric (d(i)) species pairs

in the non-visual character class show a small deviation from

the all-species trend at intermediate and high values of relative

phylogenetic distance, respectively. This is not seen in the plots

of this character class for other sympatry categories.

The three second-order polynomial regression parameter

values obtained for each of the observed character classes

were plotted with the values obtained from random sampling

for all species pairs (figure 3). All sympatry category par-

ameters appear to fall well within the distribution of

parameters from the randomly sampled datasets.

Z-scores were calculated for all the regression parameters,

and all fell well within +1.96 standard deviations (95% confi-

dence interval) from the mean of the distribution of parameter
values of the randomly sampled datasets (electronic sup-

plementary material, table S2). This analysis, coupled with

visual inspection of the plots in figure 2, suggests that sympatry

does not have a significant effect on divergence of morphology

in these groups.

Mean difference values for individual characters only

show notably greater values in sympatric species pairs than

other sympatry categories for two display characters (157

and 182; see the electronic supplementary material, figure

S2 for details). These characters were found to be only present

in 1 out of 38 and 3 out of 38 sympatric species pairs, respect-

ively. It is likely that this is a result of the relatively small

sample size of the sympatric category and does not reflect a

genuine pattern of divergence among only these characters.
4. Discussion
We find no support for the hypothesis that sympatry correlates

with higher ornament divergence in ceratopsian dinosaurs,

nor for the wider species recognition explanation [3] for

the evolution of horns, frills and other display traits in the

Ceratopsia. Firstly, the divergence between ornaments of con-

temporary species is not significantly different from randomly

sampled species, either individually or when considered as a

suite of complimentary ornaments. This is true regardless of

the level of sympatry, offering little support to the idea that

the driver of ornament diversity was the need to differentiate
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between contemporary species. Secondly, although ornaments

appear to show more rapid initial divergence than other struc-

tures, this pattern is not expected to be exclusive to species

recognition-specific features; those involved in sexual selec-

tion or resource acquisition are known to undergo rapid

morphological evolution and divergence [1,23,39].

A number of criticisms have been made of the species rec-

ognition hypothesis, chiefly that the drive to differentiate

closely related species should evolve towards minimal cost

[21]. Under the circumstances where two parties benefit from

differentiating one another, low-cost signals are evolutionarily

stable because neither party would benefit from either a dis-

honest or costly signal [40]. Although attempting to explain

the divergence of ornamentation among ceratopsians, species

recognition does not explain why all neoceratopsians evolved

and maintained broadly similar structures in order to differen-

tiate themselves from other species. The skulls of some

neoceratopsians such as Chasmosaurus (figure 1f ) have been

shown to be such a large component of overall body mass

that the centre of mass of the animal is shifted forwards to a

degree that renders them obligately quadrupedal [41]. The

amount of resources and energy required to grow and maintain

such a structure is not consistent with a low-cost modification.

The few examples of species recognition-driven character

divergence (as opposed to ecological character displacement)

in extant species suggest low-cost modifications to pre-existing

features that are common to both species in the non-

overlapping portions of their ranges. Examples include facial

markings in the rock nuthatches, Sitta tephronata and

Sitta neumayer [15], plumage coloration in trogons [42] and the
flycatcher Ficedula [18], and dewlap coloration in the lizard

genus Anolis [43]. No example is known of a large, costly struc-

ture evolving to serve primarily as a recognition signal in extant

taxa [44]. Unique phenotypes may, of course, enable a member

of a species to easily identify conspecifics, but for the examples

known in extant taxa a different explanation of their origin

exists [45]. An example is known of a so-called ‘social mimic’

in extant bird taxa, where two visually identical species overlap

substantially in their ranges and are known to flock and forage

together, but are nevertheless genetically distinct [46]. There is

seemingly no impediment to their stable coexistence that war-

rants divergence of visual characters, as would be expected if

species recognition were important.

An additional result of this study is in the comparison of

curves for each character class across all species (figure 2,

row a). The intercepts of the curves in both the internal
(figure 2, a(i)) and other visual (figure 2, a(iii)) categories show

a lower, near-zero, initial value than that seen in the display
(figure 2, a(ii)) category. This difference suggests that traits

associated with display in ceratopsians diverge at a quicker

rate than do other features. This raises two possibilities: display

features, implicated in visual communication, generally under-

went rapid evolution during divergence of ceratopsian taxa, or

that traits with a specific mechanical function (i.e. non-display

characters; teeth, limbs, etc.) were under stronger stabilizing

selection than display characters. The species recognition

hypothesis does not appear to adequately account for this

phenomenon because the pattern is a general trend observed

across all included taxa, not simply those that are known or

are implied to be sympatric. Visual signals are predicted to
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diverge rapidly under both sexual selection [1] and species

recognition [3], but the effects of species recognition would

only be seen in sympatric taxa where failure to distinguish

conspecifics is costly.

The largest and most elaborate ceratopsian ornaments are

found within the clade Ceratopsidea, including such well-

known taxa as Centrosaurus, Triceratops and Styracosaurus
(figure 1c,g and main image, respectively) [7]. The seemingly

rapid and random divergence of skull ornamentation within

this clade may point to one or several situations acting across

it [47]. Firstly, interspecific selection acting in different direc-

tions would promote divergence between species. This

may occur as a result of sympatric ecological niche partition-

ing, allopatric ecological selection, or as a result of the need

for signalling diversity, as in species recognition [3,19].

Secondly, intraspecific mutually antagonistic coevolution

where novelty is favoured creates conditions where arms

races within species drive morphological evolution. An

example of this is the evolution of weapons for use in intra-

sexual combat [48]. Thirdly, very flat selective landscapes

create conditions where morphology is not constrained to

evolve in a particular direction and so is free to evolve ran-

domly from ancestral states. This last explanation seems

unlikely given the high cost of ceratopsian ornaments,

which were retained in almost all the species within the

clade [7]. Niche partitioning and species recognition require

some degree of interspecific interaction and, thus, sympatry.

We have demonstrated here that sympatry has no significant

effect on morphological disparity in ceratopsians. In the

absence of any functional ecological role for ornamentation

in ceratopsians [44], only intraspecific mutually antagonistic

coevolution favouring novelty seems to apply to this clade,

given the available evidence.

Sexual selection or social-sexual signalling has previously

been proposed as a driver of ornament evolution and diversity

in ceratopsians [1,2,21,44,49,50]. Most studies of sexually
selected ornaments and weapons in extant taxa focus on sexu-

ally dimorphic examples [51,52], and there is no clear evidence

of sexual dimorphism in Ceratopsia or any other dinosaur

clade [10,53]. Except in extreme examples, large sample sizes

are needed to distinguish sexes based on morphology alone

[53,54]. Furthermore, mutual mate choice is also known to

lead to the evolution of similar ornaments in both sexes in

extant taxa [2,55]. If sexual selection is indeed the process

behind the unique ornamentation of ceratopsians, it points to

a set of conditions acting upon ceratopsians without obvious

parallel in extant taxa. Nevertheless, sexually selected orna-

ments are expected to show characteristic patterns of growth,

diversity and rapid evolution regardless of the taxa or charac-

ters in question [1]. Some support has been found for this in the

positively allometric growth patterns of the ceratopsian Proto-
ceratops [56], and the patterns of ornament divergence seen in

Ceratopsia [7] are similar to those seen in the sexually selected

horns of the scarab beetle genus Onthophagus [52]. Identifying

these patterns is a challenge in fossil taxa, but an important step

in the study of evolutionary palaeobiology, and evolutionary

theory in general.
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