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Abstract

Mutational signatures are key to understanding the processes that shape cancer genomes, yet their analysis requires
relatively rich whole-genome or whole-exome mutation data. Recently, orders-of-magnitude sparser gene-panel-
sequencing data have become increasingly available in the clinic. To deal with such sparse data, we suggest a novel
mixture model, Mix. In application to simulated and real gene-panel sequences, Mix is shown to outperform current
approaches and yield mutational signatures and patient stratifications that are in higher agreement with the literature.
We further demonstrate its utility in several clinical settings, successfully predicting therapy benefit and patient
groupings from MSK-IMPACT pan-cancer data. Availability: https://github.com/itaysason/Mix-MMM.
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Background

Each cancer genome is shaped by a combination of pro-
cesses that introduce mutations over time [1, 2]. The inci-
dence and etiology of these mutational processes may pro-
vide insights into tumorigenesis and personalized therapy.
It is thus important to uncover the characteristic sig-
natures of active mutational processes in patients from
their patterns of single base substitutions [3-5]. Some
such mutation signatures have been linked to exposure
to specific carcinogens, such as tobacco smoke [6] and
ultraviolet radiation [3]. Other mutation signatures arise
from deficient DNA damage repair pathways. By serving
as a proxy for the functional status of the repair pathway,
mutational signatures provide an avenue around tradi-
tional driver mutation analyses. This is important for per-
sonalizing cancer therapies, many of which work by caus-
ing DNA damage or inhibiting DNA damage response
or repair genes [7-10], because the functional effect of
many variants is hard to predict. Indeed, a recent study
[11] estimated a > 4-fold increase in the number of breast
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cancer patients with homologous recombination repair
deficiency—making them eligible for PARP inhibitors
[12]—when using mutational signatures compared to cur-
rent approaches. Thus, understanding the signatures of
mutational processes may lead to the development of
many effective diagnostic and treatment strategies.

Statistical models for discovering and characterizing
mutational signatures are crucial for realizing their poten-
tial as biomarkers in the clinic. A broad catalog of muta-
tional signatures in cancer genomes was only recently
revealed through computational analysis of mutations in
thousands of tumors. Alexandrov et al. [3, 4] were the
first to use non-negative matrix factorization (NMF) to
discover mutation signatures. Subsequent methods have
used different forms of NMF [13—16] or focused on infer-
ring the exposures (aka refitting) given the signatures
and mutation counts [17-19]. A more recent class of
approaches borrows from the world of topic modeling,
aiming to provide a probabilistic model of the data so as
to maximize the model’s likelihood [20-23].

These previous methods are applicable for whole-
genome or even whole-exome sequencing (WGS or
WXS). However, they cannot handle very sparse data
as obtained routinely in targeted (gene panel) sequenc-
ing assays [24]. There is only a single method, SigMA,
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that attempts to address this challenge [24] by relying on
whole-genome training data to interpret sparse samples
and predict their homologous recombination deficiency
status. However, SigMA still suffers from the fact that not
all cancer types have available whole-genome sequencing
data.

Here, we present the first model that can handle sparse
targeted sequencing data without pre-training on rich
data. Our model simultaneously clusters the samples and
learns the mutational landscape of each cluster, thereby
overcoming the sparsity problem. Using synthetic and real
targeted sequencing data, we show that our method is
superior to current non-sparse approaches in signature
discovery, signature refitting and patient stratification. We
further demonstrate the utility of our model in several
clinical settings.

Methods

Preliminaries

We follow previous work and assume that somatic muta-
tions in cancer fall into M = 96 categories, denoting
the mutation identity and its flanking bases [3]. These
mutations are assumed to be the result of the activity
of K (a hyper-parameter) mutational processes, each of
which is associated with a signature S; = (e;(1) ... e;(M))
of probabilities to emit each of the mutation categories.
Henceforth, we denote the mutation categories observed
in a given tumor # by O" = (01...071,), and we assume
that this sequence was emitted by the (hidden) signature
sequence Z" = (z1...zT,).

Multinomial mixture model (MMM)

The basic multinomial mixture model we use was pre-
sented in [22, 25] and is depicted in Fig. 1. The model is
parameterized by the signatures Sy, . . ., Sk and their rela-
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Fig. 1 A plate diagram for MMM. The mutations of

(1 <t <Tp1 <n<N)ineach sample are observed (gray circles)
and are modeled as depending on a latent (empty circles) signature
ex. The (latent) selected signature z{' that generated the observed
mutation depends on an exposure vector 7"’ that is selected once for
each of the N samples
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tive exposure vector i, where 1; is the prior probability for
the ith signature to emit any given mutation.

In the following exposition, we assume for simplicity a
single sample to facilitate the generalization to our sug-
gested model presented in the next section. Given the
observed mutations O and the unobserved signatures Z,
the model’s likelihood is:

T K T K

T
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Denoting by V; = ‘{t|0t :j}| the number of times the
jth category appears in the data, the likelihood can be
rewritten as:
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The likelihood can be maximized using the expectation
maximization (EM) algorithm. In the E-step, we compute
the expectation of the model’s emissions and (relative)
exposures under the current assignment to those parame-
ters. Specifically:

e The expected number of times that signature i
emitted mutation category j is computed by
, Vimiei(j)
E(,V,m,e) = —H—"—.
G 4 Yot ek (i)
e Similarly, the expected number of times signature i

was used is computed by

M
Ai(V,m,e): =Y E(,V,m,e).
j=1

These expectations are normalized (to probabilities) in the
M-step to yield a new set of parameters until convergence.

One obvious weakness of this model is that given a
collection of samples, we cannot expect all of them to
have the same exposures 7. While it is possible to learn
a unique exposure vector per sample, as done by existing
methods, the number of parameters then grows linearly
with the number of samples, which may lead to overfitting
in a sparse data scenario.

Mix: a mixture of MMMs

In order to cope with the problem of sparse data, our
approach is to cluster the samples and learn exposures
per cluster rather than per sample. To this end, we pro-
pose a mixture model and a scheme to optimize its like-
lihood, leading to simultaneous optimization of sample
(soft) clustering, exposures and signatures (Fig. 2). Given
a hyper-parameter L indicating the number of clusters,
denote by ¢” € {1...L} the hidden variables represent-
ing the true cluster identity of each sample. Our goal is to
learn cluster prior probabilities w = (w;...wy), cluster
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Fig. 2 A plate diagram for Mix. Notation is the same as in Fig. 1. The
key difference from MMM as illustrated in the plate diagram is that
the (latent) selected signature z’ depends on a cluster ¢ chosen for
each of the samples (with prior probabilities w), as well as (latent)
cluster exposures 7/ shared across samples within that cluster

exposures 7 = (711 L. nL), and shared signatures e, so as

to maximize the model’s likelihood:
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We can generalize the EM algorithm of the previous
MMM model to Mix as follows:
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A detailed derivation of the algorithm is given in Addi-
tional file 1. To learn the model in a refitting setting,
i.e., with fixed known signatures, the update step of e is
skipped and the initial value for it is set to the given sig-
natures. Each EM iteration can be completed in O(NLK)
time for N samples, L clusters and K signatures. The EM
algorithm is run until it converges to a local maximum
and up to 1000 iterations. To avoid being trapped in poor
local maxima, we train the model ten times with different
random seeds and choose the one that yields the highest
likelihood.

To estimate the hyper parameters of Mix (L, K), we
use the Bayesian information criterion (BIC) to weigh the
tradeoff between model fit and the number of parameters.
We train the model on a range of choices for L and K, and
choose the hyper parameters to be:

L*,K* = argmin{Mix.size - log(n) — 2log(Mix.prob)}
LK

where Mix.size is the number of parameters in the model,
n is the number of data points (number of mutations), and
Mix.prob is the probability of the data given the trained
model. The total number of learned parameters in Mix is
given by (L — 1) + L(K — 1) + K(M — 1), where M is the
number of mutation categories.

Given a trained model [w, 7, e] and a sample V we would
like to construct an exposure vector E for it. We explore
two inference schemes:

e Hard clustering: we define the exposures based on
the most likely cluster for that sample, i.e., E = *
where £ is the cluster that maximizes
fC=Pr[c" =¢|V,w,m,el.

e Soft clustering: we take a weighted sum of all clusters’

L
exposures, with £ as weights. Precisely, E = Y f¢m®.
=1

In both cases, E is the normalized exposure, i.e summed
to 1, so we will multiply it by the number of mutations to
obtain the real exposures, although for some applications
the normalized exposures performed slightly better. Note
that we mostly use hard-clustering to cluster the samples
and soft clustering to get the exposures.

We present below both de-novo experiments, in which
we learn mutational signatures, as well as refitting exper-
iments, in which we assume the signatures are given. In
the latter cases, we restrict our analyses to Single Base
Substitution (SBS) mutational signatures in COSMIC [26]
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(https://cancer.sanger.ac.uk/cosmic/signatures_v2.tt) that
are known to be active in the cancer type being analyzed.

Mutation and clinical data
We applied Mix to analyze mutational signatures in three
datasets.

Somatic mutation data

1. MSK-IMPACT [27, 28] Pan-Cancer. We
downloaded mutations for a cohort of patients with
Memorial Sloan Kettering Integrated Mutation
Profiling of Actionable Cancer Targets
(MSK-IMPACT) targeted sequencing data from
https://www.cbioportal.org/. The MSK-IMPACT
dataset contains 11,369 pan-cancer patients’
sequencing samples across 410 target genes. We
restrict our analysis to the 18 cancer types with more
than 100 samples, which results in a dataset of 5931
samples and an average of 6.8 mutations per sample.
According to COSMIC [26] there are 17 mutational
signatures that are active in those cancer types, 12 of
which are associated with more than 5% of the
mutations. The 17 active COSMIC signatures are
Signatures 1-8, Signatures 10-13, Signatures 15-17,
Signature 20, and Signature 21.

2. ICGC breast cancers (BRCA). We downloaded
mutations for 560 breast cancer patients [29] with
whole-genome sequencing data from the
International Cancer Genome Consortium. There are
about 6214 mutations per sample in this collection
and 12 active COSMIC [26] signatures are associated
with it. The 12 active COSMIC signatures in breast
cancerare 1, 2, 3,5, 6,8, 13, 17, 18, 20, 26, and 30.

3. TCGA ovarian cancers (OV). We downloaded
mutations from whole-exome-sequencing data of
411 ovarian cancer patients from The Cancer
Genome Atlas [30]. There are about 113 mutations
per sample in this collection and 3 active signatures
are associated with it. The 3 active COSMIC [26]
signatures are 1, 3, and 5.

In addition, we analyzed mutation data sets for which
we had clinical information on homologous recombina-
tion deficiency (HRD) status or immunotherapy response:

Clinically-oriented data

1. Whole Genome Sequencing of Triple Negative breast
cancers. Triple negative whole genome breast cancers
data along with their HRDetect-predicted labels from
Staaf et al. [31]. The output labels are categorized by
the probability of HRD: high (HRD score above 0.7),
intermediate (0.2 to 0.7), and low (below 0.2).
Overall, 139 patients are predicted as “high,” while 13
and 85 are predicted as “intermediate” and “low,”
respectively. To make the labels binary, we removed
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the 13 “intermediate” labeled samples, leaving 224
samples, 62% of them with HRD.

2. MSK-IMPACT sequencing of Non-small cell lung
cancer (NSCLC) data treated by CTLA-4/PD-L1
[32]. We downloaded the data from the cBioPortal
[33, 34]. There are 240 NSCLC patients in this cohort.
206 patients went through PD-L1 monotherapy, and
34 patients went through a combined therapy of PD-
L1 and CTLA-4. To have a clean dataset to analyze,
we used the 150 LUAD patients that were treated
with PD-L1 monotherapy and either showed durable
clinical benefit (41 samples) or not (109 samples).

3. MSK-IMPACT sequencing of pan-cancer patients
data treated by CTLA4, PD-1, and/or PD-L1 [35].
Last, we downloaded from the cBioPortal [33, 34]
1583 mutation profiles of pan-cancer patients with
survival information. In detail, there are 339
non-small cell lung cancers, 311 melanoma, 209
bladder cancers, 137 renal cell carcinoma, 126 head
and neck cancers, 115 esophagogastric cancers, 114
gliomas, 109 colorectal cancers, 83 cancers of
unknown primary, 39 breast cancers, and 1 skin
cancer (non-melanoma). One thousand two hundred
forty-three of the patients were treated with
PD-1/PD-L1, 95 were treated with CTLA4, and 245
were treated with Combo.

Synthetic data simulation

We simulated data according to our model as follows. We
start by learning Mix on MSK-IMPACT panel data to
obtain realistic estimates for the model’s hyperparameters
(10 clusters and 6 signatures using BIC) and parameters
(cluster probabilities w, signature exposures 7 per cluster
and the signatures themselves e). We use these estimates
as a baseline for data simulation. In the simulations, we
vary the number of clusters L from 5 to 9, by sampling
clusters without replacement using the distribution w.
We then assign the clusters their corresponding weights
from w, normalizing the sum to 1 w = (wy,...,wr). Let
7w = (rl,...,7") denote the learned signature exposures
over the selected clusters. Let py = Z§=1 Wgnlf. Next, we
sample without replacement K = 4 signatures with prob-
abilities pi, ..., ps. Finally, we normalize per cluster the
exposures over the selected signatures to sum to 1. We
applied this simulation setup to generate 5000 samples,
similar to the number of samples in the MSK-IMPACT
data. For each sample, we first determine its number of
mutations by sampling uniformly (with replacement) a
sample from the MSK-IMPACT data and adopting its
number of mutations. Last, we use the generative process
of Mix to sample mutations.

Performance evaluation in a refitting scenario
In order to evaluate Mix and other algorithms on their
ability to infer accurate mutational signature exposures on
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sparse data, we focus on whole-genome or whole-exome
data where we have information about active signatures.
The evaluation procedures require generating sparse,
downsampled datasets to imitate the target sequencing
data. In this section, we first describe the downsampling
procedure, and then how to use it for evaluation.

Downsampling strategies

For evaluation purposes, we wished to simulate tar-
geted sequencing panels from higher coverage datasets.
We use two downsampling strategies: (i) downsampling
WGS/WXS data by constraining the samples to target
regions of MSK-IMPACT [27, 28] and (ii) random sam-
pling of an average of d mutations per patient. In detail, for
each patient i, we sample n; ~ Pois(d) and then randomly
sample #; mutations from the mutation set O' without
replacement.

Reconstruction error

To compare methods in their ability to learn mutational
signature exposures on sparse datasets, we compare the
reconstruction error (RE) obtained by each method on a
full dataset using relative exposures inferred on a down-
sampled dataset. For ease of comparison, we fix the
signature matrix S to consist of known signatures from
COSMIC [26]. Since the full and downsampled datasets
have different numbers of mutations, we compare them
only on their relative exposures. Let V be an N x M matrix
where Vj; is the number of times mutation category j is
observed in tumor i in the full dataset, and let V be the
matrix V normalized so that each row sums to one. Given
the N x K relative exposure matrix E; computed on the
downsampled data, we define the reconstruction error as
RE := |\7 —E;-5|), where |-|; is the L1 norm.

Exposure reconstruction error

Another reconstruction error measure we use to compare
signature learning from sparse data is exposure recon-
struction error (ERE). Using the mutation matrix V and
the signature matrix in the cancer type S, we learn the
“true” (i.e., non-relative) exposures E using NNLS, which
is a common method used to learn exposures from rich
data. Again, let E; be the relative exposures computed on
the downsampled data, and let E be the E normalized so

that each row sums to one, we define ERE := ‘INS - Ed’{
This measure is better suited to the case were we would
like to know the exposures rather than the mutations, as
the mutations can be noisy and we do not expect muta-
tional signatures to be able to reconstruct them with no

error.

Implementation details
Mix is implemented in Python 3 using numpy [36].
For NMF and KMeans, we used the scikit-learn
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implementation [37]. NNLS was taken from scipy [38].
The workflow is managed by Snakemake [39]. The code
is available at https://github.com/itaysason/Mix- MMM
[40].

Results

We developed the Mix algorithm for elucidating the
mutational signature landscape of input samples from
their (sparse) targeted sequencing data. We tested
our algorithm on synthetic data, downsampled whole-
genome/whole-exome data, and gene-panel data and
compared its performance to existing approaches. First,
we applied Mix to learn parameters from synthetic
data it generated. Second, we used Mix to reconstruct
mutational signature exposures from downsampled ICGC
breast cancer [29] and TCGA ovarian cancer data [30],
also applying it to another downsamled data to clus-
ter samples and predicting homologous recombination
deficiency (HRD) status. Third, we applied Mix to the
MSK-IMPACT Pan-Cancer targeted sequencing data [27,
28]. We tested its success in discovering mutational sig-
natures and in clustering patients. Finally, we tested Mix
in a clinical setting, aiming to predict the benefit of PARP
inhibitor therapy for breast cancer patients and the benefit
of immunotherapy for lung cancer patients.

Mix design

In the field of mutational signatures, NMF-based meth-
ods like SigProfiler [4] are used, as are statistical analogs
of NMF like EMu [14] or signeR [16]. For these meth-
ods, the number of parameters grows linearly with the
number of patients, as a consequence of learning an
exposure vector for each patient. Commonly, when using
whole-genome/whole-exome data, each patient has many
mutations, spanning most categories of mutations (usu-
ally 96 categories), allowing the accurate estimation of
these exposures. In the increasingly available case of gene
panel data, patients usually have less than 10 mutations,
causing most categories to have zero counts leading to
a number of parameters that is larger than the num-
ber of data points. One method, SigMA [24], which was
designed to predict HRD status in breast cancer samples,
addresses this challenge by first learning patient clusters
on rich data from whole genome sequencing, then associ-
ating sparse samples with these clusters using a likelihood
score, and finally applying a classifier (that uses the like-
lihood score along with other features) to predict HRD
status.

To solve the sparsity problem, we developed the Mix
model. Mix is a probabilistic model that simultaneously
learns signatures and soft clusters patients, learning expo-
sures per cluster instead of per sample. Then, to obtain a
unique exposure for each new patient, Mix soft-clusters
the patient’s mutations and takes a linear combination of
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all exposures according to their probability. With this, Mix
also solves another problem of existing methods, where
adding a new patient requires learning a new exposure
vector for it. Mix is trained using Expectation Maxi-
mization and selects hyperparameters using the Bayesian
information criterion. A formal description of Mix, model
evaluation strategies and information about the datasets
used are given in the “Methods” section.

Performance on synthetic data

As a first test case of our model, we applied it to syn-
thetic data created to have similar characteristics as the
MSK-IMPACT dataset [27, 28]. We evaluated Mix in both
estimating the number of clusters and signatures that
underlie the data and learning the model’s parameters.
The results are summarized in Additional file 1: Table S1
and show that Mix can accurately reconstruct the simu-
lation parameters from sparse data. In 4 out of 5 settings,
BIC was a good estimator for the hyperparameters, esti-
mating the exact number of clusters and signatures. In
3 out of these 4 settings, Mix perfectly reconstructed all
clusters’ exposures and signatures (average similarity >
0.97), and in one of these settings, Mix reconstructed 8
out of 9 clusters, and the remaining one was a duplicate.
In one setting, Mix underestimated the hyper parame-
ters, learning 5 clusters instead of 8 and 3 signatures out
of 4. However, on closer inspection, the missing signa-
ture is involved in less than 5% of the mutations. With-
out this signature there are only 5 clusters with distinct
exposures (similarity < 0.95), supporting the inferred
model.
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Reconstructing mutation and exposure profiles from
simulated data

To evaluate Mix in a more realistic, yet controlled set-
ting, we applied it to simulated, downsampled data that is
derived from whole-genome or whole-exome sequencing
(see the “Methods” section). In this application, the full
mutation profiles are available to us and can be used to
guide the evaluation.

We focus the experiments on exposure learning (refit-
ting scenario) and fix the signatures to be the known
active COSMIC [26] signatures in the given cancer type.
We train Mix using downsampled data from 50% of sam-
ples, compute exposures on downsampled data for the
remaining 50% of (test) samples, and report the average
reconstruction error (RE) and exposure reconstruction
error (ERE) on the whole mutation catalog of the test
samples. We repeat these experiments for average num-
ber of mutations per sample d ranging from 3 to 18,
and the MSK-IMPACT region (panel) mutations, with an
average of 5.6 and 4.5 mutations for WGS BRCA [29]
downsampling and WXS OV [30] downsampling data,
respectively.

We compare the performance of Mix against the
widely-used non-negative least squares (NNLS) approach.
Given a mutation count matrix V' and signatures H,
NNLS extracts (non-negative) exposures W that mini-
mize ||V — WH||,. The results are shown in Fig. 3. We
include in the comparison also a hard clustering infer-
ence scheme for Mix (see the “Methods” section). Out
of the two Mix variants, the soft clustering inference of
exposures displays better performance, and both outper-

A B MIX-hard-clustering M MIX-soft-clustering NNLS
1.00
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Fig. 3 Performance evaluation on simulated data. Shown are reconstruction errors (RE) and exposure reconstruction error (ERE) for Mix (two
variants) and NNLS across two datasets, breast cancer (A, €) and ovarian cancer (B, D), and seven downsampling schemes
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form NNLS in all cases. An interesting observation is that
we do not see a decrease in reconstruction error when
the number of mutations increases. This might be caused
by inherent noise in mutation data, which is mitigated
when reducing the dimension of the data from mutation
categories to signatures.

Although they were not developed to tackle such
task, we also compared to three current refitting tools—
deconstructSigs [18], SigLasso [41], and YAPSA [42].
SigLasso did not halt on the MSK-IMPACT data, and
DeconstructSigs and YAPSA both gave similar results to
the NNLS approach. Full comparison results are given in
Additional file 1: Tables S2 and S3.

Comparison to SigMA on clinically-relevant data

Next, we wished to compare between Mix and SigMA,
the only previous method for analyzing panel data. To this
end, we trained Mix using a panel downsampling version
of the BRCA data [29], with the 12 COSMIC [26] signa-
tures that are known to be active in this cancer type. In this
application, BIC yields an estimate of 3 clusters which was
used in the training of Mix. Notably, SigMA was trained
on those 560 BRCA samples, along with 170 additional
samples [24].

We applied both models to panel downsampling of 224
WGS triple negative breast cancer samples [31], cluster-
ing them and predicting their HRD status. Signature 3
activity is known to be a good predictor of HRD [43],
with 0.96 AUC on this dataset when estimating its expo-
sure using NNLS on the full (WGS) mutation data. For
Mix, we based our status estimate on Signature 3 expo-
sure using the soft clustering variant. For SigMA, we used
the Signature 3 mva output. For completeness, we also
evaluated an NNLS estimate of Signature 3 exposure on
the panel downsampling data. The HRD status prediction
ROC curves of the three methods are depicted in Fig. 4A,
with Mix showing a clear advantage over the two com-
peting methods. When considering the performance of
the three methods at low false positive rates (FPRs), we
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observe 31% true positive rate (TPR) for Mix at 10% FPR,
which is on par with NNLS (34%) and higher than SigMA
(12%); for an FPR of 20% the TPR of Mix increases to 58%,
outperforming NNLS (48%) and SigMA (34%).

Next, we evaluated the clustering produced by Mix and
SigMA. To this end, we focused on the clustering pro-
duced by the hard clustering variant of Mix and compared
to the “categ” output of SigMA. For each method, we
randomly drew 200 intra-cluster sample pairs and 200
inter-cluster sample pairs and compared the distributions
of similarities they induce. Specifically, for each pair, we
computed the cosine similarity between their exposures
in the WGS data, obtained by NNLS with the 12 known
COSMIC [26] signatures in breast cancer. As can be seen
in Fig. 4B, the intra-cluster pairs of Mix displayed sub-
stantially higher similarity than inter-cluster pairs (0.69 vs.
0.46), while no such difference was observed for SigMA
(0.65 vs. 0.66).

Learning signatures and patient classes from MSK-IMPACT
Moving to real data, we applied Mix to analyze 5931 sam-
ples from the MSK-IMPACT dataset [27, 28]. We trained
Mix with ten random initializations on number L of clus-
ters ranging from 1 to 15 and number K of signatures
ranging from 1 to 12 (up to 12 signatures are associated
with these data according to COSMIC, see the “Methods”
section). Using BIC, we found L = 10 and K = 6 to be
the optimal hyper parameters (Fig. 5A). We also trained
a refitting version of Mix on this dataset with the known
17 COSMIC [26] signatures and found L = 7 using BIC.
The learned signatures can be viewed in Additional file 1:
Figure S1 and the clusters’ exposure of both de-novo and
refitting models can be seen in Additional file 1: Figure S2.
We observed that the BIC score is affected mostly by the
number of signatures, with a clear minimum between 5
and 7, but less so by the number of clusters.

To evaluate the learned signatures, we compared them
to the COSMIC [26] signatures using the cosine simi-
larity measure (Fig. 5B and Additional file 1: Figure S3).
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Mix accurately reconstructed 6-8 known signatures with
cosine similarity > 0.8 as commonly required [15]. We
compared our performance to that of the standard NMF
algorithm as well as to a clustered variant where we first
form meta-samples corresponding to each of the 18 can-
cer types, and then apply the NMF to these meta-samples.
To form a meta-sample, we combined together all muta-
tions of samples that belong to the corresponding cancer
types (i.e., sum together the samples’ mutation counts).
For these additional applications, we varied the number
of signatures from 6 to 8; for Mix we optimized the num-
ber of clusters in each application using BIC as described
above. Further, we executed each algorithm ten times
with different (random) initializations and chose the run
that yielded the best score (likelihood for Mix or approx-
imation error for NMF). Evidently, Mix dominates the
other approaches across the explored range, yielding a
larger number of highly accurate and distinct signatures.
Notably, Mix was consistently able to identify the follow-
ing signatures: Aging (Signature 1), APOBEC (Signatures

2), Smoking (Signature 4), MMR (Signatures 6), UV (Sig-
nature 7), POLE (Signature 10), and TMZ (Signature 11).
All these signatures are supported by a previous refitting
analysis that was based on the known COSMIC signatures
[28].

We note that we also tried comparing Mix to Sig-
Profiler [4], SigAnalyzer [44, 45], SomaticSignatures [46],
and MutationalPatterns [19], which are tools for learn-
ing mutational signatures. We executed all these tools
using their default settings. SigProfiler and MutationalPat-
terns were too time consuming (expected running time
of days to weeks to perform the experiments described
here). SignatureAnalyzer gave inferior results to the NMF
application reported here (only two signatures, 1 and
7, consistently recovered with cosine similarity greater
than 0.8). Similarly, SomaticSignatures performed consis-
tently worse than the NMF implementation reported here
(Additional file 1: Figure S4). Expectedly, Mix outper-
formed the other tools that were not developed to handle
sparse data




Sason et al. Genome Medicine (2021) 13:173

Next, we used Mix to cluster samples, choosing for each
sample the cluster with maximal posterior probability. We
scored the resulting clusters against a benchmark cluster-
ing of the samples according to their cancer type with the
adjusted mutual information (AMI) score (Fig. 5C). We
note that in addition to validating our results, predicting
cancer type from targeted sequencing panels has potential
clinical relevance, as approximately 3% of tumors are of
unknown primary origin [47] and there has been a recent
focus on developing methods to predict cancer type using
mutations [48, 49].

We compared our results to those obtained by KMeans
clustering of the original mutation count vectors as well
as to a refined variant where we first apply NNLS to
the data using the 17 active COSMIC [26] signatures,
then cluster the resulting exposures using KMeans. For
Mix we present an additional refitting variant where we
set the signatures to be the 17 COSMIC signatures. For
all methods, we report results with L = 1 — 20 clus-
ters; for de-novo Mix we choose the number of signa-
tures for each value of L using BIC. As the clustering
of specific samples depends on their sparsity, we also
report AMI scores when focusing on samples with at
least 10 mutations. Figure 5C demonstrates that the two
Mix variants outperform the alternative methods in both
settings. Interestingly, the two Mix variants display sim-
ilar performances, suggesting that Mix can cluster well
even without prior knowledge. The fact that the Mix
AMI scores seem to converge for 6 clusters or more
suggests that Mix is robust to the number of clusters
being used.

Predicting immunotherapy response of lung cancer
patients

As another challenge, we wished to test the utility of Mix
in additional clinical scenarios in which signature analysis
is less abundant. Specifically, we applied Mix to 150 LUAD
samples [32] to predict durable clinical benefit to PD-
L1 monotherapy treatment. We used the same de-novo
and refitting Mix models that were trained on the MSK-
IMPACT pan-cancer data [27, 28] in previous section.
Notably, most samples in the MSK-IMPACT data set are
from LUAD patients (1277, 21%).

Tumor mutational burden (TMB) is one of the most
widely known and analyzed genomic correlates with
immunotherapy response. In addition, Rizvi et al. [50]
found that the exposure of Signature 4 was associated with
response in non-small cell lung cancer. For the former,
as we have targeted sequencing data, we used the plain
mutation counts instead which were shown to be in high
correlation with TMB [51]. For the latter, we used Mix to
obtain signature exposures and compared to those derived
using NNLS on the 17 COSMIC [26] signatures active in
the MSK-IMPACT dataset [27, 28].
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We evaluated the performance of each method using the
area under the ROC curve (AUC). Specifically, we report
the AUC score of Signature 4 at predicting the treatment
response. For Mix in the de-novo setting, we report the
signature which is most similar to signature 4, with cosine
similarity 0.924. The AUC scores are 0.64, 0.63, 0.63, 0.6
for refitting-Mix, de-novo-Mix, NNLS, and TMB, respec-
tively. The results suggest a slight advantage for Mix over
alternative approaches in this setting.

Discussion

An important application of Mix is for predicting the
potential benefit of drug treatments based on the inferred
activities of relevant mutational signatures. In particular,
we have shown the utility of our model for predicting
HRD status and hence the benefit of treatment with PARP
inhibitors. However, our results were on a downsampled
whole-genome sequencing dataset where “ground truth”
was determined by the HRDetect algorithm [11]. While
HRDetect has shown promise at predicting response to
PARP inhibitors [11] and in stratifying triple-negative
breast cancers by outcome [31], there may be value in
training Mix on other HRD classifications or investigating
discrepancies between Mix and HRDetect. Ultimately, the
clinical value of Mix will be better determined when it can
be evaluated on a dataset with sequencing data and PARP
response. We also showed the utility of our model for
predicting the response to immunotherapy. To our knowl-
edge, this is the first time targeted sequencing data was
used in this setting, yielding promising results that merit
further research.

Beyond the prediction of signature exposures, Mix has
the advantage of clustering the patients to potentially clin-
ically relevant groups. To showcase this relevance, we
conducted a survival analysis of 1583 pan-cancer patients
from [35] whose mutation profiles are not used for the
training process of Mix. We applied de-novo and refit-
ting Mix models that were trained on the MSK-IMPACT
pan-cancer data [27, 28] and assigned Mix cluster mem-
berships to patients via hard clustering, i.e., each patient
is assigned to the most likely cluster. To pinpoint clinically
relevant clusters, we used Cox regression, corrected for
cancer type, age, gender, and TMB.

Out of the seven refitting clusters, we find that patients
in cluster 5 have significantly better survival (Fig. 6A),
with p value of 0.027. Our analysis indicates that the dom-
inant signature in this cluster with exposure of 0.82 is
Signature 7, which is associated with UV-radiation. At
the same time, 131/204 patients in the cluster are Cuta-
neous Melanoma (SKCM) patients, which agrees well
with the previous finding that Signature 7 is correlated
with better SKCM survival [52]. Out of the remaining
73 samples in the cluster, 40 are Melanoma of another
sub-type and 8 are of unknown primary origin (UPO).
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Reassuringly, we find a corresponding cluster also in the
de-novo setting, where out of ten clusters, patients in
cluster 7 have significantly better survival, with p value
of 0.03. This cluster is again dominated by Signature 7
(exposure of 0.9) and 149/243 of its members are SKCM
patients (Fig. 6B). Similarly to the refitting case, in this
cluster, there are 44 other Melanoma samples and 8 UPO
samples.

In addition, we find that patients in refitting cluster 1
and de-novo cluster 10 have significantly worse survival
(Fig. 6C, D), with p values of 0.008 and 0.004, respectively.
These clusters contain 754 (48%) and 617 (39%) of the
samples, respectively, spanning all cancer types. They are
characterized by samples with the lowest average patient
TMB (among the different clusters) with a median value
of 4, as is expected for patients treated with immunother-
apy [53] given the relationship between tumor mutation
burden and neoantigen load.

While we have shown promising results for Mix, one
limitation of our model is that the number of clusters
should be larger than the number of signatures or else
a possible solution would be to assign each cluster only
one signature, which will serve as the “average” signature
across samples in that cluster. This property could in fact
become an advantage if we only wish to cluster samples, in
which case we could set the number of clusters to be equal
to the number of signatures and require a single signature
with an exposure of 1 in each cluster.

Conclusions
Sparse mutation data, as characteristic of targeted
sequencing assays, is becoming increasingly available in

the clinical setting with important applications in diagno-
sis and therapy. In this paper, we have presented a novel
algorithm to model such data and derive the underlying
mutational signatures, exposures, and clinically relevant
predictions. Our model is the first to directly capture
sparse data without the need for pre-training on rich
datasets. We have shown its utility in a range of tasks
as well as its favorable performance in comparison to
existing methods.

Importantly, we have shown the clinical relevance of our
model for predicting HRD status in breast cancer, predict-
ing immunotherapy response in lung cancer and patient
stratification. Nevertheless, our model is only a first step
in such an analysis that should be followed by specific pre-
dictors for the tasks at hand that can take additional data
(beyond signature exposure) into account. Our model can
be further strengthened by making use of WGS/WXS
data, when such are available, to improve the signature
discovery step.
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