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Abstract: There is a growing interest in the development of organic nanomaterials for biomedical
applications. An increasing number of studies focus on the uses of nanomaterials with organic
structure for regeneration of bone, cartilage, skin or dental tissues. Solid evidence has been found
for several advantages of using natural or synthetic organic nanostructures in a wide variety of
dental fields, from implantology, endodontics, and periodontics, to regenerative dentistry and wound
healing. Most of the research is concentrated on nanoforms of chitosan, silk fibroin, synthetic polymers
or their combinations, but new nanocomposites are constantly being developed. The present work
reviews in detail current research on organic nanoparticles and their potential applications in the
dental field.
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1. Introduction

In the recent years, engineered nanoparticles have raised substantial interest due to their possible
medical applications in vaccination, diagnostic imaging procedures [1], cancer therapy [2] or sustained
delivery of drugs [3]. Nanomaterials, i.e., materials with components less than 100 nm in at least one
dimension [4,5], include nanocontainers, nanofilms, nanomembranes, nanoscaffolds or composites
that are a combination of these. Nanoparticles have all three external dimensions in the nanoscale
and exhibit characteristics distinct from the corresponding bulk material. Biomedicine stands to profit
from the use of nanocarriers. Some of the advantages of the nanostructures are: higher colloidal
stability, improved dispersibility, and improved surface reactivity. The most important characteristic
of nanoparticles continues to be their ability to control delivery of drugs such as small molecule drugs,
proteins, and DNA [6,7].

In dentistry, drug-loaded nano-pharmaceuticals have been extensively utilized over the past few
years and are studied in almost all dental related fields [8]. A considerable amount of research
has been conducted on metallic nanoparticles, but their safety is still under discussion [9–11].
Because biomedical nanoparticles should be nontoxic for cells (either bioinert or biodegradable),
and because their use should not cause side effects in other tissues [12], multiple research groups
have shifted their focus from metallic to organic nanoparticles, such as chitosan, silk fibroin or
other biodegradable polymers, including poly(lactic-co-glycolic) acid (PLGA). PLGA is a copolymer
synthesized from two different monomers—lactic and glycolic acids. PLGA can be obtained mainly by
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ring opening polymerization and polycondensation. Hydrolysis, oxidation and enzymatic degradation
are the most important mechanisms of PLGA degradation. Chitosan is a linear polysaccharide
composed of β-(1-4)-linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine(acetylated
unit) obtained from chitin by partial deacetylation. Enzymatic degradation of chitosan leads to
glucosamine which is phosphorylated to glucosamine 6-phosphate, deaminated and izomerized
tofructose-6-phosphate which enters glycolysis. Silk fibroin (SF) is a natural polymer obtained by
a variety of species including silkworms (the domesticated silkworm Bombyxmori) and spiders.
Enzymatic degradation of the molecules results in amino-acids as end products without modifying the
pH. Chitosan and silk fibroin are natural materials, while poly(lactic-co-glycolic) acid is a synthetic
polymer that has been approved, due to its biocompatibility, by the U.S. Food and Drug Administration
and European Medicine Agency [13] (Figure 1). The focus of this paper is to present the recent advances
on organic nanomaterials made of natural compounds (chitosan, chitosan composites and silk fibroin)
and synthetic materials (PLGA and composites thereof) and their use in dental nanomedicine.
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most commonly used in the dental field, PLGA, chitosan and silk fibroin

2. Main Organic Nanomaterials Used in the Dental Field

2.1. Natural Organic Nano-Delivery Systems

Because of their increased biocompatibility, preference for natural products in biomaterial
research is increasing. There is an international resurgence of interest in natural products for the
development of novel drugs and therapies that could have medical applications [14], some of which
are described below. Chitosan is obtained through partial deacetylation from chitin which is a positively
charged polysaccahride [15] found in crustaceans [16,17]. It exhibits impressive characteristics for
drug delivery applications: biocompatibility, low cost, mucus adhesion, and no immunogenicity or
cytotoxicity [18–22]. Silk fibroin, another natural biomaterial, has recently been studied as a substrate
for tissue engineered cartilage, bone, ligaments, nerves and also for drug delivery applications.
Silk is a naturally occurring polymer material with a high resistance to deformation [23], while silk
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fibroin is a structural protein isolated from silk fibers separated from the cocoons of the silkworm
Bobymexmori [24,25].

2.2. Chitosan Nanoparticles (CNPs)

In recent years, there has been an increasing interest in using chitosan and chitin for dental
medicine applications. A number of studies focused on their controlled delivery properties as well as
their ability to support regeneration of oral tissues with applications that span almost all major fields of
dentistry: endodontics, periodontics, regenerative dentistry, invasive dentistry or even implantology
(Table 1).

Table 1. Applications of chitosan nanoparticles in the oral field.

Chitosan Nanosystems Application Year Study

Bone morphogenetic protein-2 Bone regeneration 2015 [26]
Bone morphogenetic protein 7 Bone regeneration 2015 [27]

Protein growth factors Bone regeneration 2014 [28]
Dexamethasone Dentin pulp regeneration 2015 [29]

Cetylpyridinium chloride and naf Dental toothpastes 2015 [30]
Chlorhexidinedihydrochloride Dental toothpastes 2015 [30]

Recent work shows that chitosan nanoparticles could be used in new bone formation therapies,
leading the way for future applications in implantology, periodontology or dental surgery. Researchers
developed bioactive scaffolds containing CNPs incorporated with protein growth factors for bone
tissue regeneration [26,28,31], with promising in vivo results. Titanium implants coated with chitosan
nanoparticles loaded with biologically active bone morphogenetic protein-2 (BMP-2) managed to
induce ectopic bone growth on mice [26]. Recently, a poly(ε-caprolactone) nanofibrous implant
functionalized with a chitosan nano-reservoir containing bone morphogenetic protein 7 implanted
together with human mesenchymal stem cells resulted in new bone formation and calcification in mice
calvarial defects [27]. And interestingly, decorating nanofibers of collagen with protein growth factor
loaded chitosan nanocontainers accelerated the speed of bone regeneration in vivo [28]. Moreover,
a composite hydrogel containing 2-N,6-O-sulfatedchitosan (26SCS) nanoparticles loaded with bone
morphogenetic protein-2 was shown to have profound osteogenic activity, producing mature compact
bone associated with new vascular in growth in ectopic bone [32]. This promising result might be due
to the fact that 26SCS2-N,6-O-sulfated chitosan(26SCS) promotes the BMP-2 signaling pathway [33],
suggesting that 26SCS could be used as the synergistic factor of BMP-2 for bone regeneration. Other
data demonstrate that chitosan nanofibers can stimulate osteoblast proliferation and maturation
via runt-related transcription factor 2-mediated regulation of osteoblast-associated osteopontin,
osteocalcin, and alkaline phosphatase (ALP) gene expression [34]. Researchers observed that mouse
osteoblasts grew much better on chitosan nanofiber scaffolds than on chitosan films. Moreover,
nanofibers of phosphate functionalized derivatives ofchitosan-N-methylene phosphonic chitosan
managed to accelerate bone healing by 300% compared to controls in rabbit tibial defects [35]. A recent
study stated that cortical bone allografts coated with chitosan nanofibers could serve as periosteum
mimics in bone grafting procedures [36]. Regenerative dentistry can also profit from the CNPs’
properties of temporal-controlled release of bioactive molecules [29,37] as they are successfully used in
studies concerning dentin pulp regeneration. Bovine serum albumin loaded chitosan nanoparticles
were proven to regulate the alkaline phosphatase activity (ALP) in stem cells from apical papilla, while
chitosan nanoparticles incorporating dexamethasone have been able to stimulate the differentiation of
human dental stem cells from apical papilla into odontoblast-like cells [37].

Minimally invasive dentistry is another field where chitosan nanoparticles could be used to
remineralize early enamel caries [38]. A biomimetic remineralizing solution containing nanocomplexes
of phosphorylated chitosan and amorphous calcium phosphate led to results similar to fluoride on
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enamel remineralization, but at a higher rate [38]. Its application could also reduce the risks associated
with fluoride treatment, such as allergies or fluorosis [39].

Chitosan nanoparticles exhibit antibacterial proprieties mainly because of their polycationic
charge, with higher reactivity in nanoform than in bulk [40–43]. This quality has broadened the
research of chitosan nanoparticles in dental endodontics, as they can be successfully used in root canal
treatments. CNPs possess an inherent antibacterial activity effective against Enterococcus faecalis [44],
a property that is not diminished in the presence of dentin or lipopolysaccharides [41]. Moreover,
incorporation of chitosan nanoparticles into root canal sealers has the potential benefits of inhibiting
microbial penetration and reduced biofilm formation at the dentin-root filling interface [45,46].
Consequently, several endondotic sealers have been developed by incorporating chitosan nanoparticles
into zinc-oxide-eugenol [47], epoxy resin or calcium silicate-based sealers [45], with each presenting
enhanced antibacterial qualities. However, in a recent study, resin-based dental sealants modified
with nylon-6 and chitosan nanofibers were prepared in an attempt to provide an antibacterial
effect, but none of the chitosan-containing sealants displayed antimicrobial proprieties [48]. Also,
chitosan nanoparticles showed a higher reduction of Enterococcusfaecalis biofilms as compared to
calcium hydroxide, but bacteria still survived even after a 24 h treatment with 20 mg/mL chitosan
nanoparticles [43]. It should also be noted that some researchers are not sure whether the inhibition of
bacterial adherence by the chitosan nanoparticles is caused by killing the bacteria in their vicinity or
by the nanoparticles’ direct effect on the bacteria-substrate interaction [47].

In the future, chitosan nanoparticles could be integrated into toothpastes or even used in dental
prophylactic therapies aimed at reducing bacterial biofilms in the oral cavity. CNPs have already
been developed that are loaded with toothpaste active compounds [30,49]. The in vitro toxicity
of the chitosan nanoparticles on human gingival fibroblasts was considered moderate after 24 h
exposure [30]. In addition, one study found that nanoparticle complexes prepared from low molecular
weight chitosan showed a high antimicrobial effect on Streptococcus mutans biofilms [50]. CNPs were
active at a neutralpH and resulted in damage to more than 95% of the S.mutans cells [50]. Because
Streptococcus mutans is one of the most intensively studied cariogenic microorganisms associated
with caries progression in humans [51,52], killing this bacterium could be an effective form of
preventive dentistry.

Chitosan nanofibers, nanopowders and nanoparticles also showed promising results in other
applications connected to the dental field, such as nerve regeneration medicine [53] or healing
skin [54,55] and oral mucosa [56]. A chitosan-based nanofibrous material was tested as a wound
dressing material for IIIa and IIIb degree burns and managed to protect the site from infection while
also supporting skin regeneration [55]. Recently, a scaffold with a surface layer consisting of chitosan
nanofibers was developed as a potential skin substitute [54].

The possible applications of CNPs in anticancer treatment should also be noted. Chitosan
nanoparticles have been successfully incorporated into systems involving active targeting, controlled
drug delivery, or imaging of cancer cells [57–61]. Methotrexate-charged chitosan nanoparticles have
been formulated, and their utilization induced a greater increase of the apoptosis of tumour cells
than treatment with the free drug [61]. Also, methotrexate CNPs exhibited relative selectivity for
cancer cells, as the cytotoxic effects were significantly lower in the non-tumor control cells HaCaT
(human keratinocytes immortalized) [61]. As methotrexate is a major chemotherapeutic used in the
treatment of the head and neck cancers [62], CNPs loaded with anticancer drugs could be used in the
future for oral cancer treatment. Interestingly, nanoparticles with surfaces decorated with chitosan that
can specifically target theCD44receptors in cancer stem-like cells have recently been fabricated [63].
The CD44 receptor protein is found to be overexpressed by many tumors and is identified as one of
the most common cancer stem cell surface markers in tumors including head and neck cancer [64,65].
Considering the fact that cancer stem cells in oral squamous carcinoma show high expression of
CD44 [66], some might consider in the future the hypothesis that CNPs could be used for selective oral
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cancer stem cell targeting. However this hypothesis needs further testing in order to clearly show that
CNP might be selective towards CD44 positive cells.

Chitosan nanoparticles applications in regenerative medicine as well as in regenerative dentistry
is clearly an intensively studied field. Taking into account the high number of in vitro, but also in vivo
presented studies, a next logical step should be the development of novel CNPs uses in dentistry as
well as the beginning of future clinical trials.

2.3. Composite Chitosan Nanoparticles

Because chitosan nanoparticles exhibit several disadvantages, such as poor mechanical and
processing properties or insolubility in common organic solvents [67], researchers have attempted
to combine them with an impressive number of polymeric or inorganic or other organic substances.
Table 2 briefly presents the main composite chitosan nanostructures that have been fabricated in recent
years and could have potential uses in dentistry. Composite materials blend the advantages of chitosan
with the added substance, and their nanosized presentation has shown desirable characteristics in
biomedical applications. However, their uses are limited to bone regeneration and wound healing
acceleration, with very few focusing on antibacterial treatments.

Because natural polymers exhibit similarities to the extracellular matrix, special attention is given
to chitosan-based materials for bone tissue engineering application. Chitosan-gold nanoparticles
managed to enhance osseointegration of dental implants [68–70] incorporated with the transcription
factor c-myb or with the anti-inflammatory molecule peroxisome proliferator activated receptor gamma
(PPAR). Interestingly, chitosan-gold nanoparticles conjugated with PPAR were used to modify dental
implants in vitro, but also in vivo in rat mandible. The modified implants led to newly-formed bone
with enhanced mineral density and reduced inflammation, and as such, may have future uses as a
dental prosthetic material in patients suffering from inflammatory diseases like arthritis, diabetes
and osteoporosis. Since the anti-inflammatory effect of peroxisome proliferator activated receptor
gamma has been demonstrated in periodontitis [71,72], in human dental pulp cells [73,74] and in
mouse osteoblast precursor cells [75], chitosan-gold nanoparticles incorporated with PPAR gamma
could be tested in the future also for periodontal or pulpal regeneration.

Other composite chitosan nanoparticles have also been developed for bone tissue engineering.
Recent studies focused on bone regeneration that could be supported by poly(ε-caprolactone) (PCL)
nanofiber scaffolds containing chitosan nanoparticles or by chitosan-PCL nanofibers [76,77]. Scaffolds
fabricated from poly(ε-caprolactone) (PCL) nanofibers and chitosan-PCL copolymers showed that the
polymer is biocompatible with bone cells such as MG63 cells [76,78]. Moreover, nanofiber matrices of
polycaprolactone-chitosan functionalized with collagen I led to higher alkaline phosphatase (ALP)
activity and mineralization of rat bone marrow-derived stromal cells [77]. Also, nanoparticles prepared
by combining chitosan, tripolyphosphate and chondroitin sulfate could be used to slowly release
osteogenic proteins, such as Nel-like molecule-1 [79], in future bone graft applications.

An important bioactive molecule in guided bone regeneration is hydroxyapatite, and
consequently, several composite hydroxyapatite-containing nanomaterials have been developed:
composite chitosan/hydroxyapatite nanofibers [15,80,81], chitin hydrogel/ nanohydroxyapatite
nanocomposite scaffolds [82], chitosan/polyvinyl alcohol/nanohydroxyapatite nanoscaffolds [83],
and hydroxyapatite/ collagen/ chitosan nanocomposite fibers [84]. Further, biocomposite nanofibrous
scaffolds have been fabricated from poly(3-hydroxybutyrate-co-3-hydroxyvalerate), chitosan and
hydroxyapatite for mineral deposition [85]. In the case of the latter, chitosan provided cell recognition
sites, while hydroxyapatite acted as a chelating agent for organizing the apatite-like mineralization [85].
Interestingly, biocompatible coatings of cellulose acetate nanofibers and composites of hydroxyapatite
nanoparticles and chitosan led to the formation of a bone-like apatite layer on the implants with such
coverings [86]. One study found that hydroxyapatite mineralized on chitosan-coated poly(lactic acid)
nanofiber composites could mimic structural, compositional, and biological functions of native
bone [87].



Molecules 2016, 21, 207 6 of 23

Table 2. Main applications of composite chitosan nanosystems in the oral cavity.

Chitosan Composites Dental Field Year Study

Chitosan-gold nanoparticles implantology 2015 [70]
chitosan-poly(ε-caprolactone) nanofibers bone regeneration 2015 [76]

chitosan, tripolyphosphate and chondroitin sulfatenanoparticles bone regeneration 2012 [75]
composite chitosan/hydroxyapatite nanofibers bone regeneration 2008 [80]

chitin hydrogel/nanohydroxyapatitenanocomposite scaffold bone regeneration 2011 [82]
chitosan/polyvinyl alcohol/nanohydroxyapatitenanoscaffolds bone regeneration 2008 [83]

hydroxyapatite/collagen/chitosan nanocomposite fibers bone regeneration 2010 [84]
poly-3-hydroxybutyrate-co-3-hydroxyvalerate/chitosan/hydroxyapatite nanofibrous scaffold bone regeneration 2015 [85]

chitosan/polyethylene oxide nanofibers cartilage tissue engineering 2005 [88]
chitosan/polyvinyl alcohol nanofibers oral candidiasis 2015 [89]

poly(ε-caprolactone)-poly(ethylene glycol) copolymernanofibrous mats incorporated into chitosan regeneration of periodontium 2015 [90]
chitosan/polyethylene oxide nanofibers wound healing 2014 [91]

poly(ε-caprolactone)/chitosan nanofibers wound healing 2014 [92]
chitosan/polyvinyl alcohol nanofibers wound healing 2015 [93]

chitosan/collagen nanofibrous membranes wound healing 2006 [94]
chitosan hydrogel/nanofibrin composite wound healing 2012 [95]

chitosan/sericin nanofibers 2014 [96]
chitosan-Eudragit nanofibrous sheets 2015 [97]

chitosan/arginine nanofibrous membrane 2015 [98]
chitosan/gelatin/shape memory polyurethane nanofibers 2015 [99]

tannic acid/chitosan/pullulan composite nanofibers 2015 [100]
chitosan-rose bengal nanoparticles 2014 [101]
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There is also a high number of research papers that have developed composite chitosan-containing
nanofibers for other biomedical applications: nanofibers of chitosan/polyethylene oxide for cartilage
tissue engineering [88], chitosan/polyvinyl alcohol nanofibers for oral candidiasis treatment [89,102]
and poly(ε-caprolactone)-poly(ethylene glycol) copolymer nanofibrous mats that were incorporated
into chitosan for the regeneration of periodontium [90]. An interesting multitude of nanocomposite
materials have been fabricated for wound healing applications: chitosan/polyethylene oxide
nanofibers [91,103], poly(ε-caprolactone)/chitosan nanofibers [92,104,105], chitosan/polyvinyl alcohol
nanofibers [93,106,107], chitosan/collagen nanofibrous membranes [94], chitosan hydrogel/nanofibrin
composite [95], chitosan/sericin-nanofibers [96], chitosan-Eudragit nanofibrous sheets [97],
chitosan/arginine nanofibrous membrane [98], chitosan/gelatin/shape memory polyurethane
nanofibers [99] or tannic acid/chitosan/pullulan composite nanofibers [100].

Different studies reported on using CNP antibiotic qualities in odontotherapy [40,108], but
this functionality is questionable, as some authors have stated that the pulpal tissue has a strong
inhibitory effect on CNP antibacterial characteristics. Composite chitosan nanoparticles have been
fabricated because of their enhanced antibacterial property, which is important in anti-cavities
therapy or endodontic procedures. One study developed a nanosized compound which contains
silver nanoparticles, chitosan and fluoride, which seems to be a promising anti-cavities agent
with low toxicity to living cells [109]. Several chitosan nanoparticles, nanofilms or nanofibers
have been also incorporated with silver in order to enhance the antibacterial activity of the
nanocomposites [110–113]. Researchers developed photoactivated Rose Bengal-functionalized chitosan
nanocarriers that were effective in killing Enterococcu sfaecalis biofilms [101,114,115], as well as
in neutralizing lipopolysaccharides obtained from Pseudomonas aeruginosa while also stabilizing
dentin-collagen. Taking into account that E. faecalis and P. aeruginosa are associated with endodontic
infections [116], their killing would be beneficial in dental endodontic treatments.

This multitude of available research papers supports the idea that chitosan nanoparticles are one
of the most studied organic nanosystems in the dental field. Nanocomposite CNPs development is
significant because of their improved properties, mostly in guided bone regeneration procedures or in
dental therapies where the ability to accurately kill bacteria is necessary. Following this trend, it is
expected that the development of new composite chitosan nanoparticles will rise even further in the
following years.

2.4. Silk Fibroin Nanoparticles

Silk fibroin nanoparticles have been used in a multitude of medical applications (Table 3),
mainly in regenerative medicine, because of their controlled delivery properties [117]. Silk fibroin
can be modified by adding different functional groups. Functionalization allows for an adjustable
drug release system with distinct interactions between drug and nanocarrier and varied releasing
kinetics. The kinetics are also dependent on silk fibroin’s large molecular weight, hydrophobicity
and crystalline structure. Details on the chemistry, structure and delivery properties of silk fibroin
can be found elsewhere [118]. Nanosystems made from silk fibroin showed encouraging results in
studies addressing regeneration of tissues found in the oro-maxillo-facial field, such as bone, skin
or vascular tissues. Although not the main focus of regenerative dentistry, wound healing and
vascular tissue formation are also important for the dentist, considering the frequency of oral mucosa
wounds found in everyday practice. Silk fibroin nanoparticles could have numerous applications
in dentistry, but mainly in bone regeneration procedures, where they have been used in the form of
nanospheres, nanofibrous membranes, or nanofibrous scaffolds [117]. New bone formation is needed
in dental surgeries such as implant therapy or in some periodontal treatments. Studies found that
experimental nanofibrous electrospun silk scaffolds incorporated with bone morphogenetic protein-2
supported human mesenchymal stem cells osteogenic differentiation [119]. Silk fibroin nanofiber
membranes were implanted in calvarial defects of rabbits and resulted in complete healing with new
bone after 12 weeks [120]. Also, silk fibroin nanospheres were applied in the manufacture process of
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vaterite-microparticles, which could be further used as drug carriers in bone tissue engineering [121].
Moreover, composite nanostructures of silk fibroin and chitosan were developed, combining the
advantages of both organic materials. Nanofibrous membrane scaffolds of chitosan and silk fibroin
led to osteogenic differentiation of human mesenchymal stem cells, as was demonstrated by the
increased alkaline phosphatase activity and expression of the osteogenic marker genes [122]. In a recent
animal study, nanohydroxyapatite was added to the chitosan/silk fibroin nanofibrous membrane,
thereby facilitating the osteogenesis of human mesenchymal stem cells [123]. Also recently, a thin
nanofibrous membrane containing silk fibroin/chitosan/ nanohydroxyapatite/ bone morphogenetic
protein-2,subcutaneously implanted together with human mesenchymal stem cells, resulted in ectopic
bone formation in vivo [124]. Wound healing in the oral cavity would suggest a wound dressing
material which is possible to contain silk fibroin nanosystems. Hybrid or blend chitin/silk fibroin
nanofibers could be effective as wound-healing accelerators in tissue regeneration [125]. The chitin/silk
fibroin blend nanofibrous matrix, containing 75% chitin and 25% SF, has been shown to promote
excellent cell attachment and spreading for human keratinocytes and fibroblasts [126]. It is important
to note that pure silk fibroin nanofibers led to enhanced spreading of human epidermal keratinocytes
than the pure chitin nanofibers. In order to improve the antibacterial proprieties of the wound dressing
materials, one experiment developed nanofibrous membranes of chitosan and silk fibroin effective
against E. coli, a gram negative bacteria [127]. The potential of silk fibroin nanofibers to form vascular
tissues should also be noted. Nanofibers of silk fibroin and chitosan managed to support human
umbilical vein endothelial cells into forming capillary-like vascular structures and could be used to
regenerate vascular tissue [128]. Although there are no specific studies on silk fibroin nanoparticles use
in oral cancer, silk fibroin nanoparticles can deliver drugs and genes to the tumorigenic cells [129,130].
Nanocarriers of silk fibroin loaded with the antitumor drug cisplatin were able to efficiently deliver
the drug to cancer cells while avoiding the cytotoxicity and side effects of the free drug on normal
tissues [130]. Considering all this, it may be possible to speculate that silk fibroin nanoparticles could
have future applications in the field of oral cancer treatment. While in vitro experimental procedures
have shown very promising results, future studies are needed for assessing silk fibroin nanoparticles
properties in animal studies. Silk fibroin is an attractive biomaterial for tissue engineering and
controlled delivery of molecules but as in the case of chitosan several challenges remain. As natural
products their characteristics may vary between individuals and species. To date, in the dentistry,
the main focus of silk fibroin drug delivery systems has been on bone regeneration applications and
wound healing products.

Table 3. Applications of silk fibroin nanoparticles in dentistry.

Nanoparticle Type Dental Field Type of Study Study

silk fibroin nanofiber membranes bone tissue engineering in vivo [120]
silk fibroin nanofibrouselectrospun scaffolds bone tissue engineering in vitro [119]
silk fibroin/chitosan nanofibers bone tissue engineering in vitro [122]
silk fibroin/chitosan/nanohydroxyapatite nanofibrous membrane scaffolds bone tissue engineering in vivo [123]
silk fibroin/chitosan/nanohydroxyapatite nanofibrous membrane bone tissue engineering in vivo [124]
silk fibroin/chitin blend fibers wound healing accelerator in vitro [125]
silk fibroin and chitosan nanofibrous membranes wound healing accelerator in vitro [127]
silk fibroin and chitosan nanofibers vascular tissue regeneration in vitro [128]

3. Synthetic Organic Nano-Delivery Systems

Full exploitation of the natural materials has been limited because of the batch-to-batch variations
in their properties [131]. On the other hand, manufacturing of synthetic polymers has the flexibility and
reproducibility desired for nanomedical applications [132]. In dental medicine, one of the most studied
synthetic organic molecule is poly-lactic-co-glycolic acid co-polymer. PLGA is highly compatible and
has been approved by the U.S. Food and Drug Administration for the use of drug delivery, diagnostics
and other medical applications. Most importantly, PLGA is biodegradable; its degradation leads to
carbon dioxide and water [133].
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3.1. PLGA Nanoparticles

The number of studies published on PLGA nanoparticles (NPs) application in dentistry has grown
in recent years [8]. Recently, a wide variety of studies has been undertaken leading the way for possible
future applications of PLGA NPs in a high number of dental fields, from periodontology [134] and
endodontics [135] to tissue regeneration of skin [136–138], bone [139], or cartilage [140–144] (Table 4).

Table 4. Applications of PLGA nanoparticles in the dental field.

Active Substance Dental Field Year Study

photosensitizer methylene blue endodontics 2010 [135]
antibiotic minocycline periodontics 2012 [134]
parathyroid hormone bone regeneration 2015 [139]

recombinant human bone morphogenetic protein-7 bone regeneration 2007 [145]
nafcillin osteomyelitis treatment 2008 [146]

simvastatin osteoporosis treatment 2015 [147]
lovastatin healing of fractures 2007 [148]

LL37 (a human host defense peptide) wound healing 2014 [137]
curcumin wound healing 2013 [136]

vascular endothelial growth factor wound healing 2015 [138]
dexamethasone gingival fibroblast differentiation 2015 [149]
amphotericin B fungal infections treatment 2015 [150]

chondrogenesis related proteins chondrogenesis 2014 [142]
Genes SOX 5, SOX 6, SOX 9 chondrogenesis 2011 [140]

The most important studies that focus on PLGA NPs and their uses in the dental field are
described below. PLGA nanoparticles loaded with the photosensitizer methylene blue exhibited
significant killing of Enterococcus faecalis biofilm species in experimentally infected root canals of
extracted human teeth [135]. These results are promising, considering that Enterococcus faecalis
is highly associated with endodontic treatment failure [151,152]. Moreover, encapsulation of the
antibiotic mynocycline into PLGA nanoparticles proved to be remarkably more effective than the
free drug against Aggregatibacter actinomycetemcomitans [134], another etiologic agent of periodontal
diseases [153–155]. Another research direction with potential clinical applications is the use of
PLGA to support new bone formation [156–161] and/or osteogenic differentiation [162]. PLGA NPs
encapsulated with recombinant human bone morphogenetic protein-7 in a nanoporouspoly(L-lactic
acid) scaffold induced bone healing in rats [145]. Additionally, nanocarriers consisting of PLGA and
incorporating bioactive molecules nafcillin [146] or simvastatin [147] were studied for osteomyelitis
and osteoporosis treatment, respectively .PLGA NPs could also be utilized in fracture treatment,
as one study found that lovastatin-containing PLGA nanosystems increased the rate of healing
of femoral fractures [148]. Interestingly, nanosized PLGA had positive results in experiments
concerning wound healing applications [136–138]. LL37(a human host defense peptide) encapsulated
in PLGA nanoparticles led to nearly complete wound closure in mice by day 13 due to the sustained
release of both LL37 and lactate. Similarly, curcumin and vascular endothelial growth factor in
PLGA nanostructures promoted re-epithelization or healing of non-diabetic and diabetic wounds.
Cartilage regeneration might be a promising novel approach for treating articular fractures or
disorders of the temporo-mandibular joint. Numerous experiments obtained chondrogenesis of human
mesenchymal stem cells by exposing cells to PLGA NPs that incorporated chondrogenesis-related
proteins, transcription factors, or genes. Of interest also is the fact that PLGA nanocarriers have been
developed to deliver active molecules for other possible dental-related applications: transport of
dexamethasone for gingival fibroblasts differentiation [149] or controlled release of amphotericin B for
fighting against fungal infections [150]. Novel skin cancer treatments could include PLGA NPs [163]
transporting small molecules, RNA or genes in order to target the p53 inactivation or the epidermal
growth factor receptor over-expression in skin squamous carcinoma tumors [164].Taking into account
the numerous experiments involving PLGA and PLGA-derived nanoparticles used for diagnosis or
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treatment of other types of tumors [13,165–168], an increase in research regarding PLGA nanoparticles
uses in the oral cancer field is expected.

3.2. Composite PLGA Nanoparticles

PLGA materials are also easy to fabricate and combine with a wide variety of natural or
synthetic molecules in different shapes and structures (nanofibers, nanocontainers or nanoscaffolds).
Interestingly, PLGA and chitosan are some of the most studied organic polymers in dentistry. Because
of chitosan’s biocompatibility, the PLGA-chitosan combination in biomedical nanostructures creates
promising applications in prophylactic dentistry [30] or wound healing [169,170]. Chitosan and
chitosan-covered PLGA nanoparticles could be integrated in dental toothpaste, as indicated by one
study where nanoparticles were loaded with chlorhexidinedihydrochloride [30]. The release of the
active molecules from chitosan NPs was dependent on the pH of the medium, while PLGA nanocarriers’
release of chlorhexidine was less pH-dependent [30]. Moreover, PLGA/chitosan nanofibers promote
the fibroblasts’ attachment and proliferation and could therefore be used in skin tissue engineering,
while their functionalization with graphene oxide and silver nanoparticles creates a biomaterial with
antimicrobial proprieties against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and
Gram-positive (Staphylococcus aureus) bacteria [171].

Although PLGA nanofibers are widely used in the manufacture of scaffolds for tissue
regeneration [171] and despite their biocompatibility, the clinical applications of pure PLGA for
bone regeneration are hampered by its poor osteoconductivity [172,173]. Therefore, a variety
of composite PLGA scaffolds have been developed for bone tissue engineering (Table 5).
Different nanosized PLGA composite systems have been successful at inducing osteogenic
differentiation of stem cells: PLGA/collagen nanofibers with calcium phosphate [174], PLGA/
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles [175], nanoparticles of bis(poly(lactic-
co-glycolic acid)-phenylalanine-polyethylene glycol-quaternary ammonium grafted diethyltriaminbis
(PLGA-phe-PEG)-qDETA) [176], and even PLGA-hyaluronic acid copolymer nanoparticles [177]. Some
of these composite nanostructures, such as PLGA/collagen/calcium phosphate nanomembrane [174],
managed to support osteogenic differentiation on their own, while others were incorporated with
simvastatin [176] or growth factors like bone morphogenetic protein-2 [178], BMP-2 and BMP-7 [45],
bone morphogenetic protein-2 and insulin-like growth factor-1 [177]. Interestingly, although the
mechanism is not fully understood, the bis(PLGA-phe-PEG)-qDETA nanoparticles alone were able
to promote the osteogenesis of the bone marrow mesenchymal stem cells, possibly by enhancing
the expression of osteocalcin that leads to elevated alkaline phosphatase (ALP) expression and
mineralization [177].

Table 5. Main applications of composite PLGA nanosystems in dental medicine.

PLGA Composite Nanosytems Dental Field Year Study

PLGA nanoparticles covered with chitosan dental toothpastes 2015 [30]
PLGA/chitosan nanofibers wound regeneration 2014 [170]

Calcium phosphate/collagen/PLGA nanofibers bone regeneration 2011 [174]
PLGA/poly(3-hydroxybutyrate-

co-3-hydroxyvalerate) nanoparticles bone regeneration 2010 [175]

bis(poly(lactic-co-glycolic
acid)-phenylalanine-polyethylene glycol-quaternary

ammonium grafteddiethyltriamin nanoparticles
bone regeneration 2014 [176]

PLGA-HA copolymer nanoparticles bone regeneration 2014 [177]
PLGA/polycaprolactonenanoparticles bone regeneration 2015 [178]

heparin-fibrin-poly(lactide-co-
caprolactone) nanoparticles chondrogenic differentiation 2009 [179]

PLGA nanoparticlescovered with hyaluronic acid osteogenic differentiation 2015 [180]

There is also one in vivo study that used polycaprolactone/PLGA injectable nanoparticles
containing recombinant human BMP-2 in rabbits [178]. The results were very positive,
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with 78% trabecular bone formation with surrounding fibro-vascular tissues within 6 weeks.
Future treatments of joints or articular structures may be based on cartilage regeneration.
Heparin-fibrin-poly(lactide-co-caprolactone) nanoparticle complex releasing transforming growth
factor beta 1 sustained chondrogenic differentiation of human adipose derived stem cells [179],
while hyaluronic acid-covered PLGA nanoparticlescould have future applications in chondrogenic,
osteogenic or adipogenic new tissue formation [180].

3.3. Dendrimers, Lipid Nanoparticles and Liposome Applications in the Dental Field

Dendrimers are highly branched, synthetic polymers with micelle-like behavior demonstrating
promising results in several biomedical applications. Their properties make them suitable as scaffolds
for tissue repair, targeted carriers for antiviral or chemotherapeutic drugs, gene delivery systems, and
as ligands for various medical applications [181,182]. Dental applications of dendrimers are currently
limited and research in the field demonstrates conflicting results depending on the dental field in which
the particle have been used and on the polymer choice. Reports show that dendrimers may be used as
releasing-scaffolds for releasing anti-periodontopathogenic agents [183]; implant surface coating with
phosphoserine and polylysine-dendrimers do not improve their osteointegration [184] while other
studies report that they can promote osteoblast differentiation [185]; poly-amidoamine-dendrimer
molecules have anti-adhesive properties and modulate the oral bacterial response [186]; dentine surface
coating with poly-amidoamine-dendrimers can induce hydroxidapatite formation and thus contribute
to dentinal tube occlusion [187–189].

Solid lipid nanoparticles are a valuable drug carrier systems, representing a solid alternative to
carriers such as micro-/nanoparticles or liposomes. These particles have several attributes that make
them attractive as drug delivery systems: physically stable system; small size (typically from 50 to
100 nm); high drug loading; large surface area when compared to their size; low toxicity, improved
delivery of lipophilic active compounds. However their usage in the medical field is limited by several
shortcomings such as: systems have a tendency to gelate over time resulting in expulsion of the drug
and an increase in size over time [190]. There are very few studies that focus on the interaction between
these nanoparticles and the biology of oral cavity. To date potential applications of lipid nanoparticles
in the oral field such as in the treatment of periodontal diseases, are lacking.

Liposomes are spherical vesicles with a diameter ranging from 20 nm to several micrometres,
consisting of one or more lipid bilayers surrounding aqueous spaces [191]. They are made from natural
lipid molecules, mainly phospholipids [191] and are considered to be non-toxic, non-immunogenic
and biodegradable [192,193]. Liposomes are one of the most employed nanodevices to encapsulate
antibiotics for treating intracellular infections [194] and therefore, could have promising applications
in periodontology. Numerous research groups have fabricated antibiotic incorporating liposomes
for use against various periodontal pathogens including liposomes containing metronidazole against
Streptococcus mutans [195], chlorhexidine and triclosan for Streptococcus oralis [196], triclosan against
Streptococcus sanguis [197] or for Pseudomonasaeruginosa, as well as amikacin and gentamicin-containing
nanoliposomes [198].Similarly, the combination of liposomes and photodynamic therapy was proven
effective against Porphyromonasgingivalis [199]. In addition liposomes incorporating bovine lactoferrin
(LbLF)could be used for periodotal prevention in patients undergoing orthodontic treatments [200].
Recent in vivo studies suggested that liposomes significantly inhibited lypopolysacharide induced bone
resorption but not orthodontic force induced bone remodeling. Similarly, scaling and root planing with
subgingival application of liposome-encapsulated SOD managed to suppress periodontal inflammation
on experimentally induced periodontitis in beagle dogs, after only 6 weeks of treatment [200].
Moreover, liposomal phosphatidylserine inhibits osteoclastogenesis and adjuvant arthritis-induced
trabecular bone loss in rats, by generating TGF-β1 and PGE2 [201].Another characteristic with
implications in the dental field is the ability of liposomes to target macrophages naturally. Thus
mynocycline hydrochloride nanoliposomes could provide a long term therapeutic effect in targeted,
controlled release topical periodontitis therapy, they could inhibit the proliferation of murine
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macrophages (ANA-1), and specifically achieve anti-inflammatory effects by suppression of TNF-α
mRNA expression. Furthermore, liposomes were able to deliver plasmid DNA into the gingiva and
could have future applications in periodontal genetic therapies [202]. However, these nanostructures
are not considered very stable, especially the larger size liposomes [203] and that is a significant
drawback of liposome use in dental applications.

Among all nanomaterials presented in this review, some have the potential of being translated to
clinical situations more than others. For example, one promising application for PLGA nanoparticles
that could develop into a commercial application is described by Sadat et al. [134]. The PLGA
nanoparticles are reported to release minocycline over a 5-day period, suggesting that this nanosystem
can be ideal for treatment of periodontal diseases. Similarly, the use of PLGA nanoparticles loaded
with the photosensitizer methylene blue showed bactericidal effects on biofilm species in infected root
canals of human teeth and may have promising results in antimicrobial endodotic treatment [135].
Both chitosan and silk fibroin based nanoparticles have been shown to efficiently encapsulate and
deliver antitumor drugs. However the reviewed literature shows that in dentistry these two polymers
are more suitable for applications focusing on tissue engineering (especially bone formation), formation
of vascular tissue and wound healing (Tables 2 and 3).

4. Conclusions

In the light of the above studies, the application of nanotechnology-based dentistry stands to
profit greatly from the development of organic-based materials. A variety of shapes and structures,
from nanomembranes, nanopowders and nanofibers to nanoscaffolds or nanogels can be fabricated
from organic materials. While liposomes, solid lipid and dendrimers have been developed to address
oral disease treatment, polymeric nanoparticles made of PLGA, chitosan and silk fibroin appear to be
some of the most studied nanomaterials in dentistry.

Nanostructures fabricated from these materials support regeneration of oral tissues, covering
all main dental fields from periodontology and endodontics to bone healing. The available literature
shows that, to date, PLGA is the most used polymer for NPs in dentistry. Its properties make it
especially suitable as a reliable drug delivery system, but so far there is no general consensus on the
benefits of PLGA nanoparticles when used alone in bone regeneration therapies. Moreover, surface
coating with these polymeric NPs can have little or no effect on the dental implant osteintegration.
One concern is related to the fact that several oral bacteria have good adherence on PLGA which
can potentially lead to infections for in vivo applications. Chitosan and silk fibroin are more often
selected for oral tissue engineering. Chitosan is recognized for its mucoadhesivity and the property
of improving active compounds’ penetration across mucosal surfaces, while also supporting cellular
adhesion, mobility and proliferation. In an increasing trend, composite nanostructures are being
developed, combining advantages of all individual incorporated materials. Chitosan nanoparticles
are easily combined with other substances, conferring or improving antimicrobial and antifungal
proprieties to a variety of nanostructures. Additionally, silk fibroin nanoparticles, due to their
controlled delivery properties, exhibit promising results in studies for formation of oral bone or
vascular tissue.

Several limitations of polymeric nanoparticle use in dentistry are noted. PLGA is a co-polymer
that can be degraded by hydrolysis to the two initial acids and, unlike chitosan or silk fibroin, can
alter the pH at the delivery site, affecting the surrounding tissue as well as the effectiveness of the
delivered drug. Other pitfalls related to PLGA-based NPs, include their relative poor loading of the
active compound coupled with a high release burst of the drug. Overall, poor drug loading efficiency
seems to be the major issue for PLGA NPs and can limit the use of these particles in clinical trials.
Biomacromolecules’ instability inside polymeric particles is another important issue to consider. It has
been reported that the structure of fragile molecules such as DNA, RNA or proteins can be destabilized
or degraded during drug entrapment. A significant limitation of natural components chitosan and
silk fibroin is variations in their properties as a result of vendor-dependent extraction and purification
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methods. Another limitation of organic NPs in general, is the relatively insufficient data on their
interaction and impact on the oral environment. For all types of nanoparticles described in this review
more data is needed in order to fully understand the interaction of these nanocarriers with cells
and tissue and to assess their toxic potential. While most in vitro and animal model studies report
encouraging results, clinical trials are needed in order to correctly assess NPs toxicity in vivo.

The field of organic composites used for controlled delivery of antibiotics, growth factors or
even anticancer substances continues to grow. Based on the positive data obtained in vivo and in vitro,
further studies are needed in order to translate the knowledge obtained in the research lab to the daily
clinical dental practice.
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