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The progression of tumorigenesis starts with a few mutational and structural driver events
in the cell. Various cohort-based computational tools exist to identify driver genes but
require multiple samples to identify less frequently mutated driver genes. Many studies use
different methods to identify driver mutations/genes frommutations that have no impact on
tumor progression; however, a small fraction of patients show no mutational events in any
known driver genes. Current unsupervised methods map somatic and expression data
onto a network to identify personalized driver genes based on changes in expression. Our
method is the first machine learning model to classify genes as tumor suppressor gene
(TSG), oncogene (OG), or neutral, thus assigning the functional impact of the gene in the
patient. In this study, we develop a multi-omic approach, PIVOT (Personalized
Identification of driVer OGs and TSGs), to train on experimentally or computationally
validated mutational and structural driver events. Given the lack of any gold standards for
the identification of personalized driver genes, we label the data using four strategies and,
based on classification metrics, show gene-based labeling strategies perform best. We
build different models using SNV, RNA, and multi-omic features to be used based on the
data available. Our models trained on multi-omic data improved predictions compared
with mutation and expression data, achieving an accuracy ≥ 0.99 for BRCA, LUAD, and
COAD datasets. We show network and expression-based features contribute the most to
PIVOT. Our predictions on BRCA, COAD, and LUAD cancer types reveal commonly
altered genes such as TP53 and PIK3CA, which are predicted drivers for multiple cancer
types. Along with known driver genes, our models also identify new driver genes such as
PRKCA, SOX9, and PSMD4. Our multi-omic model labels both CNV and mutations with a
more considerable contribution by CNV alterations. While predicting labels for genes
mutated in multiple samples, we also label rare driver events occurring in as few as one
sample. We also identify genes with dual roles within the same cancer type. Overall, PIVOT
labels personalized driver genes as TSGs and OGs and also identified rare driver genes.
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1 INTRODUCTION

Alterations in the genome drive the progression of cancer
(Stratton et al., 2009). Mutations in certain genes, called driver
genes, give cancer cells an added growth advantage (Vogelstein
et al., 2013). These mutations, as well as other genomic changes,
such as copy number variations (CNVs), accumulate as the tumor
progresses. The genomic landscape of cancer is complex (Stratton
et al., 2009; Vogelstein et al., 2013), with differences between
cancer types in the number of mutations observed (Kandoth et al.,
2013) or the mutation signatures (Alexandrov et al., 2013a;
Alexandrov et al., 2013b). The genes mutated vary between
cancer types and within subtypes of cancer. We now know
that cells are heterogeneous within the same tumor, and
heterogeneity confounds our understanding of the evolution of
tumors (Greaves and Maley, 2012; Burrell et al., 2013).
Mutational signatures vary in different cancer types
(Alexandrov et al., 2013b). These specific patterns of
mutations imply the need for cancer-specific driver mutation
prediction tools. Both pan-cancer and tissue-specific
identification of driver genes are essential for understanding
cancer.

Various computational methods exist for identifying driver
genes. Tools classify either mutations as driver events (Mao et al.,
2013; Tokheim and Karchin, 2019; Banerjee et al., 2021), or the
genes mutated as driver genes (Tokheim et al., 2016). Driver
mutation prediction relies on the functional impact or
neighborhood sequence. While some tools are specific to
cancer (Tokheim and Karchin, 2019), other functional impact-
based tools such as SIFT (Ng and Henikoff, 2003) or PolyPhen2
(Adzhubei et al., 2010) are not. Some tools are limited in their
ability to predict only single-nucleotide variations, more
specifically missense mutations (Tokheim and Karchin, 2019).
Hence, using tools that predict driver mutations to predict
personalized driver genes is limited in their scope.

Other tools exist that predict driver genes instead of mutations
and use backgroundmutation rate (BMR) or ratio-metric features
for prediction. Computational methods using BMR such as
MutSigCV (Lawrence et al., 2013) assume higher mutation
rates in driver genes when compared with the background
mutation rate. BMR-based methods are biased toward driver
genes with high mutation frequency (Sudhakar et al., 2022). This
shortcoming is overcome by ratio-metric features, which give
importance to the functional impact of the mutation on the gene
rather than the frequency of mutations (Davoli et al., 2013;
Tokheim et al., 2016; Sudhakar et al., 2022). These methods
are essential to identify most of the driver genes observed in a
cohort but are elusive to rare driver genes.

Methods using the concept of mutual exclusivity of genes
overcome the challenge by identifying a set of mutually exclusive
genes in samples (Leiserson et al., 2013; Bokhari and Arodz,
2017). Somatic mutation data are used to identify sets of genes
that improve coverage for the entire cohort. The mutual
exclusivity approach is further improved by including
biological knowledge as network information. QuaDMutNetEx
(Bokhari and Arodz, 2017) uses biological interactions between
proteins to find a set of mutually exclusive genes that perturb a

pathway. Along with the mutual exclusivity of genes, the
algorithm identifies a set of genes, which the algorithm can
map onto the network to form a connected component. While
this method may miss out on genes on different complementary
pathways, the authors suggest iterating QuaDMutNetEx after
excluding previously identified genes to help identify other
essential driver genes. Network-based approaches may help
identify low mutation frequency genes in a cohort by
including biological interactions between proteins. While
cohort-based methods help in understanding the biological
mechanism of the disease, they are not very useful in a clinical
setup. Additionally, a large number of samples are required for
cohort-based methods to produce reliable results. They also
cannot be used to find very rare driver genes.

While a large number of genomic events in the cancer genome
are single-nucleotide variations (SNVs), other genomic
rearrangements such as CNVs, gene fusions, and epigenomic
changes are also known to occur. While the above-mentioned
methods help identify many genes, many samples remain with no
mutations in known driver genes (ICGC/TCGA Pan-Cancer
Analysis of Whole Genomes Consortium, 2020). This implies
that rare driver genes are missed out by cohort-based methods.
BMR or ratio-metric methods also do not capture the effects of
these methods. Another approach to identifying driver genes
mutated at very low frequency in samples is to identify
personalized driver genes, i.e., driver genes for individual
samples rather than a cohort. Cohort-based studies rely on a
large sample size to identify patterns consistent across samples,
while identification of personalized driver genes is especially
relevant for sub-types of cancers where large cohort studies
are not possible or show very few mutations.

Identification of personalized driver genes helps identify
actionable targets in patients without known driver mutations.
The methods for the identification of personalized driver genes
are based on unsupervised algorithms because we lack the ground
truth. Instead, the methods use a network-based algorithm to
identify perturbed pathways. The graph, along with somatic
alterations and differential gene expression profile of the
patient, is used to predict driver genes. DawnRank (Hou and
Ma, 2014) and SCS (Guo et al., 2018) use a directed graph with
loops for autoregulation. The directed graph is a collapsed
network built using multiple protein–protein interaction (PPI)
networks. DawnRank uses a modification of the Page-Rank
algorithm to rank genes with downstream perturbed genes,
while SCS uses Random Walker with Restart algorithm
(RWR). Prodigy (Dinstag and Shamir, 2019) uses network as
well as pathway data to identify genes, which deregulate a large
number of pathways. The method uses a prize-collecting Steiner
tree algorithm to find genes with SNV mutations. All methods
identify rare driver genes compared with existing network-based
methods for driver gene identification.

Network-based personalized driver gene tools integrate
somatic mutation and gene expression data and identify genes
using an unsupervised method. A subset of mutations, SNV, are
used in PRODIGY though the method can be extended to other
mutation types. Furthermore, the functional impact of mutations
is ignored when mutation data are converted into presence/
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absence calls. Data ingested are limited to network, mutation, and
expression data, though methods such as DawnRank also analyze
CNV data. With many high-throughput multi-omic data
available, the prediction of driver genes can be improved by
including multi-omic data. Moreover, the expression data are
included as differentially expressed genes (DEGs), calculated
based on the cohort and not an individual sample. These
methods rank the driver genes but do not classify genes as
TSG or OG.

In this study, we define a machine learning (ML) classification
problem to identify personalized driver genes and address the
challenges. We define strategies for labeling genes as driver or
neutral and identify the best model that classifies them. We
employ features based on mutation, expression, CNV, and
miRNA expression data and understand their contribution to
classification. We finally build mutation, RNA, and multi-omic
models to identify personalized diver genes and assign functional
classes. We classify genes of three TCGA cancer cohorts as TSG
or OG for individual samples and identify new driver genes.

2 RESULTS

Our method, PIVOT (Personalized Identification of driVer
OGs and TSGs), is the first ML-based supervised approach for
identifying personalized driver genes to the best of our
knowledge. Unlike previous methods that distinguish
between driver and non-driver genes, PIVOT can also
identify whether it functions as a TSG or OG in the specific
cancer type. We build separate models using features extracted
from different modalities of -omics data: SNV, gene
expression, and multi-omics. The SNV model is trained on
mutation data not limited to single-nucleotide variation but all
mutation types. The multi-omic data integrates SNV, gene
expression, CNV, miRNA data, and also network information.
Figure 1 shows the different combinations of labeling
strategies, data, feature sets, and models used. We further
identify common cancer domains mutated frequently and

find that only a subset of domains contribute to the models.
We show that integrating network information with gene
expression data improves the overall predictive power of the
classification models. Last, we observe that our multi-omic
model generates better predictions than the models based on
SNV and gene expression data alone and can be used to predict
novel TSGs and OGs in individual samples.

2.1 Gene-Based Labeling Helps Learn
Better Models
One of the significant challenges in formulating a supervised
classification problem for driver gene identification is the lack
of a labeled gold standard dataset. We define four labeling
strategies to assign labels and build models using the SNV
data, two at the mutation level and two at the gene level. We
used the CIViC (Griffith et al., 2017) database and a list of
mutations published by Martelotto et al. (2014), to label genes
containing known driver mutations as driver or TSG and OG.
The models developed show high accuracy for BRCA. The
precision and recall of driver classes are ≥ 0.95 for CIViC and
≥ 0.86 for Martelotto et al. list (Table 1). Although these
models perform well, we use a highly curated list of less than
10 genes to train the model. While we could successfully label
all the mutations from the BRCA dataset, both methods fail to
label the COAD, LGG, and LUAD datasets. Notably, the
number of samples in BRCA is twice the number of
samples compared with other datasets (Supplementary
Table S1). We conclude that although mutation labeling-
based approaches successfully predict personalized driver
genes, they are often limited in their ability to label
mutations from all cancer types.

Cancer Gene Census (CGC) (Sondka et al., 2018) is the gold
standard database for known driver genes labeled as either TSG
or OG. Similarly, the list of cancer-type specific genes published
by Bailey et al. (2018) consists of predicted TSG and OG lists,
which has been manually curated. Datasets labeled using CGC
genes show accuracy ≤ 0.73, where the neutral class mainly

FIGURE 1 | Different types of classifiers. Four different labeling strategies were used to label the altered genes. Models were built using SNV, RNA, or multi-omic
data. The number of features used was varied for SNV andmulti-omic data to either include or drop features based on prediction scores. For building classifiers, we used
algorithms specific for imbalanced data as the number of neutral genes is far higher than TSGs or OGs. Classifiers are built using all combinations of labels, data, features,
and models.
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contributes to the score (Table 1). Given the heavy class
imbalance, accuracy is not the best metric to judge a model.
While the accuracy of the models is low compared with other
labeling strategies, the F1-score (harmonic mean of precision and
recall) is found to be ≤ 0.52 for TSGs and ≤ 0.76 for OGs. In some
models, the F1 score of the TSG and OG is ≤ 0.20. The list of
genes in CGC is not cancer-type specific. Using CGC as the
source to label cancer-type specific personalized driver genes
results in models that perform well on the training set but not on
the test dataset (Supplementary Table S1).

The best classification performances for identifying
personalized driver genes were obtained using the labels
derived from the list of TSGs and OGs published by Bailey
et al. The method consistently performs well across all four
cancer types with the best model accuracy of 0.89 (Table 1),
though classification of TSGs is poorer than OGs. Across all
feature sets used to build the best model, the accuracy is ≥ 0.80
except for the best model for BRCA data using a subset of the
SNV features. The F1 score of TSGs is lower at 0.69 when
compared with Martelotto et al. labels at 0.96. It is to be noted
that the metrics cannot be compared directly between labeling
strategies as the number of data-points differ. The cancer-
specific genes obtained using Bailey et al. strategy resulted in a
larger training dataset consisting of TSGs and OGs and
consistently label all four cancer types, unlike mutation-
based labeling approach (Supplementary Table S1). We
conclude that the increase in the size of the training dataset
using TSGs and OGs from Bailey et al., and the specificity of
the genes used for training contribute to building better models
for identifying personalized driver genes.

2.2 Mutation Data is Helpful for Identifying
Personalized Genes
We used PIVOT on four TCGA datasets [Breast Cancer: BRCA
(The Cancer Genome Atlas Research Network, 2012b),
Colorectal Adenocarcinoma: COAD (The Cancer Genome
Atlas Research Network, 2012a), Lower Grade Glioma: LGG
(The Cancer Genome Atlas Research Network, 2015), and
Lung Adenocarcinoma: LUAD (The Cancer Genome Atlas
Research Network, 2014)] to predict genes as neutral or
drivers. Depending on the labeling strategy, driver genes
were further classified as TSG or OG. For BRCA, we
observed the best accuracy for the model trained on CIViC
labels using all SNV features (Supplementary Table S1). The
F1 score for the best model was ≥ 0.98 for driver and neutral
class. All ML algorithms, balanced bagging, balanced random
forest, and Easy ensemble gave comparable results. Based on
the F1 scores of TSG and OG for the best model in each
labeling strategy, we built better models labeled using genes
from Martelotto et al., followed by those from Bailey et al. and
CGC. Different ML algorithms perform better based on the
labeling strategy or the number of features used for prediction,
though balanced bagging consistently performed best or close
to best.

No data was labeled using CIViC or Martelotto et al. driver
genes for the other three datasets (Supplementary Table S1).
Models built on data labeled using TSGs and OGs published by
Bailey et al. consistently performed better than models built on
data labeled using CGC (Table 1). Furthermore, irrespective of

TABLE 1 | Classification metrics for best SNV models.

Cancer type Labeling strategy Feature set Accuracy F1 score Precision Recall

Neutral Driver Neutral Driver Neutral Driver

OG TSG OG TSG OG TSG

BRCA CIViC All 0.99 1.00 0.98 1.00 0.95 0.99 1.00
Small 0.96 0.98 0.62 1.00 0.45 0.95 0.99

Martellotto et al. All 0.86 0.91 0.86 0.96 0.97 0.95 0.98 0.86 0.78 0.95
Small 0.83 0.90 0.49 0.97 1.00 0.36 1.00 0.82 0.81 0.95

CGC All 0.69 0.77 0.65 0.52 0.80 0.73 0.45 0.75 0.58 0.61
Small 0.55 0.67 0.34 0.36 0.68 0.38 0.33 0.65 0.31 0.41

Bailey et al. All 0.89 0.94 0.84 0.69 0.96 0.78 0.66 0.92 0.90 0.72
Small 0.75 0.83 0.43 0.61 0.95 0.30 0.50 0.74 0.77 0.79

COAD CGC All 0.61 0.73 0.44 0.35 0.72 0.55 0.32 0.73 0.36 0.39
Small 0.67 0.78 0.30 0.38 0.72 0.95 0.41 0.85 0.18 0.36

Bailey et al. All 0.84 0.90 0.78 0.52 0.95 1.00 0.38 0.86 0.64 0.81
Small 0.80 0.88 0.43 0.53 0.97 0.33 0.39 0.81 0.61 0.86

LGG CGC All 0.63 0.68 0.76 0.26 0.60 0.97 0.28 0.79 0.62 0.25
Small 0.68 0.74 0.74 0.45 0.65 1.00 0.50 0.86 0.58 0.40

Bailey et al. All 0.87 0.87 0.93 0.67 0.86 1.00 0.57 0.89 0.86 0.81
Small 0.86 0.88 0.90 0.74 0.87 0.98 0.68 0.89 0.84 0.81

LUAD CGC All 0.74 0.85 0.23 0.31 0.78 0.46 0.47 0.93 0.15 0.23
Small 0.73 0.84 0.22 0.21 0.78 0.30 0.39 0.92 0.18 0.14

Bailey et al. All 0.88 0.94 0.71 0.34 0.97 1.00 0.23 0.90 0.55 0.61
Small 0.82 0.90 0.69 0.23 0.98 0.88 0.14 0.83 0.57 0.64
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the ML algorithm used for Bailey et al. labels, the recall on TSG is
always higher than the precision. Predicting OGs using SNV is
more straightforward than predicting TSG, as evident from the
higher F1 score for OGs compared with the TSGs. The SNV
features are primarily based on the scores given by mutation
prediction tools that predict the damaging nature of the missense
mutation. Since the training dataset mainly consists of missense
mutations, it is intuitive that predicting OGs is easier. In general,
models learnt on data labeled using Bailey et al. perform well
using all the SNV features.

2.3 Mutation-Based Categorical Features
are not Sufficient to Predict Driver Genes
SNV features are based on the functional impact of the
mutation, domains mutated, and the prediction scores by
various driver or mutation impact predicting tools. These
tools cannot score all mutations and are hence dropped while
training. We train our models using two feature sets, one that

uses all features and the second that uses a subset of these
features. The advantage of a smaller feature set is an increased
number of training data. Since features with a large number of
missing data are dropped, the number of data points dropped
because of missing data reduces. The statistics for labeled data
used for training and testing is available in Supplementary
Table S1. Most SNV features consist of prediction scores and a
corresponding categorical feature defining the impact of the
mutation. For example, feature SIFTscore consists of a prediction
score between 0 and 1, while the corresponding feature SIFTpred

is a categorical feature with “D” defining damaging and “N” for
neutral mutations. We cannot impute missing values for
SIFTscore and SIFTpred, as the given mutation type might be
out of the scope of the tool. Hence in the smaller feature subset,
we drop SIFTpred feature and encode SIFTpred as an ordinal
feature with the lowest value for missing data (explained in
Methods).

We ran the SNV models with two feature sets, “all” and
“small,” where “small” consists of categorical features. It is to

FIGURE 2 | Top features contributing to models. The top 20 features and their contribution to the best model are plotted for “all” and “some” feature sets.
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be noted that the number of features in the two feature sets vary
between the datasets because of the difference in domains
associated with a cancer type. In BRCA, irrespective of the
labeling strategy, the models consistently perform better on
“all” features (Table 1). Since only a subset of features is used,

lower scores show that non-categorical features are essential for
classification (Table 1). For other datasets labeled using Bailey
et al. genes, we find that the “small” feature set performs equally
well as compared to the “all” feature set (Table 1). Feature
importance ranking shows that, unlike BRCA, for other
datasets, categorical features rank high for both “all” and
“small” feature sets, explaining the slight difference in F1
scores (Figure 2). While score-based features rank in the top
20 of all datasets, these features contribute more to BRCA
(Supplementary Table S2) elucidating that the tools are better
at predicting the functional effects of mutations in BRCA.

2.4 Cancer Domains Used for Predicting
Driver Genes
We include onco-domain information into the SNV features. For
each cancer type, we define features to capture the presence or
absence of mutations in cancer-type-specific known onco-
domains. Not all domains contribute equally to the classifier’s
performance, with amajority having no contribution.We identify
the top contributing domain in each cancer type. The subset of
domains identified during SNV classification intersects with
domain features contributing to multi-omic models (Table 2).
BRCA identifies three domains: p53 DNA-binding domain,
T-box, and cadherin-binding domain. T-box is a DNA-
binding domain used in transcriptional activation/repression
roles. TP53 is a known TSG pan-cancer, while cadherins are
trans-membrane proteins used for adhesion. Similarly, we
identify the top domains for all four cancer types. We find
that the p53 DNA-binding domain is the only domain feature
identified for all cancer types by SNV and multi-omic models.
The individual contribution of domains to SNV and multi-omic
models is listed in Supplementary Table S3.

2.5 Expression and Network-Based
Features Improve Prediction Accuracy
Whilemutation data helps classify genes into TSGs andOGs, there is
scope for improvement. We used expression data and PPI networks
for generating features and predicting personalized driver genes. We
built models for BRCA, COAD, and LUAD cancer types using all
feasible labeling strategies. In contrast to SNV models, we find
≥ 96% accuracy across the best models for all three cancer types
(Supplementary Table S4). The F1 score of OG and TSG is ≥ 94%
across all models, irrespective of the labels (Table 3). An analysis of
the features revealed network properties of genes such as closeness
centrality and degree are the significant contributors to the
identification of TSGs and OGs (Figure 3). While the RNA
expression-based features logFC and logCPM contribute, they are
not sufficient for classification. Network and RNA expression
features improve the classification accuracy above SNV features.

2.6 Multi-Omic Data Generate the Best
Classification Performances
The SNV and RNA models are sufficient to predict the driver
genes, but including both improves the prediction. We used

TABLE 2 | Domains contributing to models for the cancer type.

Cancer
type

Domain

BRCA PF00870: P53 DNA-binding domain
PF00907: T-box
PF00028: Cadherin domain

COAD PF00071: Ras family
PF00870: P53 DNA-binding domain
PF03166: MH2 domain
PF00001: 7 transmembrane receptor (rhodopsin family)
PF00028: Cadherin domain
PF00613: Phosphoinositide 3-kinase family, accessory domain (PIK
domain)
PF00520: Ion transport protein

LGG PF00180: Isocitrate/isopropylmalate dehydrogenase
PF00870: P53 DNA-binding domain
PF00505: HMG (high mobility group) box
PF00757: Furin-like cysteine-rich region
PF07710: P53 tetramerization motif
PF10409: C2 domain of PTEN tumor-suppressor protein

LUAD PF00071: Ras family
PF00431: CUB domain
PF00084: Sushi repeat (SCR repeat)
PF00870: P53 DNA-binding domain
PF08441: Integrin alpha
PF00057: Low-density lipoprotein receptor domain class A
PF00028: Cadherin domain
PF00001: 7 transmembrane receptor (rhodopsin family)
PF02210: Laminin G domain
PF10565: N-methyl D-aspartate receptor 2B3 C-terminus
PF01094: Receptor family ligand binding region
PF00041: Fibronectin type III domain
PF07710: P53 tetramerization motif
PF00754: F5/8 type C domain
PF07679: Immunoglobulin I-set domain
PF01007: Inward rectifier potassium channel transmembrane
domain

FIGURE 3 | Expression and network-based features contributing to
models. For each cancer type, the average contribution of a feature across all
models is plotted.
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features extracted from SNV, RNA features, CNV, and miRNA
data to build the multi-omic models. The best prediction model
uses Balanced Bagging across all cancer types using Bailey et al.
genes for labeling (Supplementary Table S5). Unlike the SNV
models, the smaller feature subset performs better across all
cancer types for Bailey et al. labels (Table 4). The model
accuracy is 1.0 for BRCA, with an F1 score of 0.99 for OG
and 0.97 for TSG. For COAD, we observe an accuracy of 0.99 with
an F1 score of 0.97 and 0.94 for OG and TSG, respectively.
Similarly, for the LUAD cancer type, we achieve an accuracy of
0.99 and an F1 score of 0.91 and 0.90 for OG and TSG,
respectively. Randomizing the training labels shows a
substantial drop in the classification metrics from the F1 score
> 0.90 to ≤ 0.11 for TSG and OG, showing that our models do
not overfit. Detailed classification metrics for all multi-omic
models and randomized labels are available in Supplementary
Table S5. Feature importance shows network and RNA
expression are top-ranking features (Figure 4) among other
multi-omic features (Supplementary Table S2). We generated

two random networks: 1) by node label randomization and 2)
degree maintaining randomization. Both randomized networks
lead to decreases in the F1 score suggesting that the network
includes biological knowledge important for identifying
personalized driver genes better. Along with CNV features, we
also find some miRNA features contributing to the overall
classification performance (Supplementary Table S9).

2.7 Rare Driver Genes Predicted Across
Cancer Types
We used the multi-omic model to predict TSGs and OGs for
BRCA, COAD, and LUAD cancer types. Most samples predicted
at least one TSG or OG. Out of 984 samples, we generated features
for 972 samples and identified driver genes in 963. Similarly, only
three samples in COAD predicted no driver genes and the
number was larger at 62 for LUAD. Surprisingly, the number
of unique genes predicted in each cancer type was large. In BRCA
a total of 1,342 unique genes were identified, followed by 1,155

TABLE 3 | Classification metrics for best RNA models.

Cancer-type Labeling strategy Accuracy F1 score Precision Recall

Neutral Driver Neutral Driver Neutral Driver

OG TSG OG TSG OG TSG

BRCA CIViC 1.00 1.00 0.96 1.00 0.92 1.00 1.00
Martellotto et al. 0.96 0.98 0.94 0.96 1.00 0.91 1.00 0.96 0.97 0.92
CGC 0.99 0.99 0.98 0.98 0.99 0.99 0.98 0.99 0.98 0.99
Bailey et al. 0.99 1.00 1.00 0.98 1.00 1.00 0.97 0.99 1.00 1.00

COAD CGC 0.98 0.99 0.98 0.97 0.99 0.96 0.98 0.99 0.99 0.97
Bailey et al. 0.99 0.99 0.99 0.97 1.00 0.98 0.94 0.99 1.00 1.00

LUAD CGC 0.99 0.99 0.98 0.98 1.00 0.97 0.98 0.99 0.98 0.98
Bailey et al. 0.99 1.00 0.97 0.94 1.00 0.96 0.89 0.99 0.98 1.00

TABLE 4 | Classification metrics for best multi-omic models.

Cancer-type Labeling strategy Feature set Accuracy F1 score Precision Recall

Neutral Driver Neutral Driver Neutral Driver

OG TSG OG TSG OG TSG

BRCA CIViC All 1.00 1 0.99 1 0.99 1.00 1.00
Small 1.00 1 0.97 1.00 0.93 1.00 1.00

Martellotto et al. All 0.96 0.98 0.97 0.87 1.00 1.00 0.80 0.96 0.95 0.96
Small 0.96 0.98 0.83 0.95 1.00 0.73 0.95 0.96 0.95 0.96

CGC All 0.89 0.92 0.89 0.80 0.92 0.92 0.80 0.93 0.87 0.81
Small 0.89 0.92 0.89 0.80 0.92 0.92 0.80 0.93 0.87 0.81

Bailey et al. All 0.96 0.97 0.95 0.86 1.00 0.91 0.76 0.95 1.00 0.98
Small 1.00 1.00 0.99 0.97 1.00 0.97 0.95 1.00 1.00 0.99

COAD CGC All 0.85 0.91 0.73 0.74 0.91 0.69 0.76 0.91 0.76 0.72
Small 0.94 0.95 0.86 0.92 0.94 0.86 0.96 0.97 0.87 0.88

Bailey et al. All 0.97 0.98 0.90 0.90 1.00 0.82 0.83 0.97 1.00 0.98
Small 0.99 0.99 0.97 0.94 1.00 0.94 0.89 0.99 1.00 1.00

LUAD CGC All 0.91 0.94 0.81 0.78 0.96 0.78 0.73 0.93 0.84 0.84
Small 0.95 0.97 0.89 0.93 0.97 0.85 0.94 0.96 0.92 0.92

Bailey et al. All 0.98 0.99 0.89 0.81 1.00 0.80 0.68 0.98 1.00 0.99
Small 0.99 0.99 0.91 0.90 1.00 0.85 0.82 0.99 0.99 1.00
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and 1,152 in LUAD and COAD, respectively. The distribution of
genes identified across samples was similar in all cancer types
with most samples with < 100 genes identified as drivers

(Supplementary Figures S43, S49, S56). A large number of
genes identified, consist of mutation as well as CNV
alterations with CNVs contributing with as high as 100 genes
altered in one sample (Supplementary Figures S44, S50, S57). In
contrast, most samples had an average of 10 mutations identified
as driver genes (Supplementary Figures S45, S51, S58) as
previously reported in the literature (Vogelstein et al., 2013).

Genes identified across a large number of samples are well-
known driver genes. The top 10 genes in each cancer type are listed
in Table 5. Comparison with the list of genes in CGC showed an
overlap of 228, 169, and 188 genes for BRCA, COAD, and LUAD,
respectively. The list of top genes also consists of genes, such as
PRKCA (Kelemen et al., 2009; Lin et al., 2017; Pham et al., 2017;
Beetch et al., 2021), SOX9 (Lü et al., 2008; Carrasco-Garcia et al.,
2016; Lizarraga et al., 2019), and NFKBIA (Furukawa et al., 2013),
that are not present in CGC but found in the literature for their role
in respective cancer types. We also identify a large number of rare
driver genes identified in as few as one sample in BRCA
(Supplementary Table S6), COAD (Supplementary Table S7),
and LUAD (Supplementary Table S8). In BRCA (Figure 5) and
LUAD (Supplementary Figure S62), we observe a bimodal
distribution with a large number of genes identified in a large
number of samples along with genes that are mutated in less
than 10 samples. Genes predicted in COAD cancer type on the
other hand show consensus in a few samples (Supplementary
Figure S55). The distribution is similar for the known driver
gene listed in CGC and predicted by the model, indicating that
genes identified in a few samples are not false positives. We find
genes, such as TK1 in LUAD (Xu et al., 2012; Malvi et al., 2019) and
ELAVL1 in BRCA (Chou et al., 2015; Liu et al., 2019), predicted in
only one sample but known to have a role in respective cancer types.
Patients with high expression of TK1 showed higher stromal
invasion grade and poor survival in lung adenocarcinoma. A
knockdown of the gene with shRNAs led to reduced growth and
metastasis in cell lines and mice models. Silencing ELAVL1 directly
or indirectly inhibited the growth of breast cancer in vitro and in vivo
by interacting with other proteins such as β-catenin, PKD1, PKD2,
and PKD3. Moreover, treatment with Quercetin in triple-negative
breast cancer inhibited cytoplasmc ELAVL1, which directly affects
adhesion and migration of cells (Umar et al., 2021). The list of rare
predicted genes provides potential genes to target and study to
understand their role in the progression of tumors.

2.8 Genes with Dual Roles in Different
Samples Identified
We observed that the number of TSGs in a given cancer type is
always greater than OGs (Supplementary Figures S47, S48, S53,
S54, S60, S61). In LUAD, 1,030 TSGs and 195 OGs were
predicted, while the number was 991 and 798 in BRCA and
938 and 266 in COAD. It is interesting to note that some genes are
labeled differently in different samples, with as many as 447 genes
in BRCA, 70 in LUAD, and 52 in COAD. Genes labeled as both
TSG and OG suggest genes behaving differently in not only
cancer types but within subtypes of cancer. JAK1 was one such
gene identified as both TSG and OG in BRCA and COAD cancer
types. JAK1 is a signal transducer and activates the JAK/STAT

FIGURE 4 |Multi-omic features contributing to the best model for cancer
type. For each cancer type, the contribution of the top 20 features is plotted.
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pathway. It has been shown to be consistently active leading to
cell survival in colon cancer (An et al., 2014) and lower survival
rates (Tang et al., 2018). Similarly, JAK1 is activated by PRLR
signaling in a subset of breast cancers (Neilson et al., 2007), while
underexpression of JAK1 is needed for the invasion of immune
response (Albacker et al., 2017; Chen et al., 2019). The role of
JAK1 is highly dependent on the cell conditions and can vary
across different cancer subtypes (Yeh et al., 2007). GNA11 is
another gene that was classified as both a TSG and an OG in all
three cancer types. The role of GNA11 as an oncogene and the
occurrence of mutations in tumor samples are well studied. But,
unlike an oncogene downregulation of GNA11 was observed in
human breast cancers. Genes identified with multiple labels
might be used to understand diverging roles of a gene in cancer.

2.9 Comparison of Personalized Driver
Gene Tools
We compare PIVOT with DawnRank, another personalized driver
gene prediction tool. We compare the predictions only for mutated

genes and find consensus for 1,315, 1,628, and 1,281 sample-gene
pair combinations for BRCA, COAD, and LUAD, respectively. We
rank all the genes for each sample and calculate the precision of the
predictions for each sample. The average precision across samples is
plotted in Figure 6 for the top 20 ranked genes. We find that, for the
entire data set, PIVOT predicts better than DawnRank across all
cancer types. For COAD, overall PIVOT performs better though for
higher ranks the average precision for DawnRank is greater than
PIVOT. PIVOT, unlike DawnRank, is trained on known genes, and
to avoid any bias, we ignore the genes trained on. After excluding the
training genes, we find that for BRCA, PIVOT performs better. For
COAD, DawnRank has higher precision than PIVOT when the
training genes are excluded. The lower precision on excluding
training genes means PIVOT fails to identify some CGC genes.
The precision for DawnRank is higher for the first couple of ranks
but PIVOT performs equally well or better. It is to be noted that the
precision is calculated using CGC genes and the analysis of labeling
strategies showed that the CGC gene list is not specific to cancer
types. Given the lack of any gold standard data for personalized
genes, comparison with CGC genes is commonly used to evaluate a
tool. The comparison shows that PIVOT identifies genes trained on,
as well as other possible driver genes not previously trained on.

3 DISCUSSION

Identifying driver genes is still a challenging problem with new
tools being developed to identify driver genes. Tumors are
highly heterogeneous, even within the same cancer type.
While some genes such as TP53 (Vogelstein et al., 2000;
Petitjean et al., 2007) are mutated in a significant fraction of
tumors, a small fraction of patients with no mutations in known
cancer driver genes exist (ICGC/TCGA Pan-Cancer Analysis of
Whole Genomes Consortium, 2020). The identification of less
frequently mutated genes in a new set of samples will require
multiple samples with mutations in these genes. Personalized
driver tools can predict driver genes in a single new sample once
trained on a large number of samples. The treatment strategy is
geared toward personalized medicine based on the presence of
prognostic markers to optimize for patient’s recovery (Verma,
2012). Targeted therapy is given based on the genomic

TABLE 5 | Top genes identified for all cancer types. The genes are listed along with the number of samples they were labeled TSGs or OGs. Their presence or absence in
CGC is also given.

BRCA COAD LUAD

Gene Samples CGC Gene Samples CGC Gene Samples CGC

PIK3CA 453 Yes APC 408 Yes TP53 268 Yes
TP53 383 Yes TP53 212 Yes KRAS 186 Yes
PRKCA 239 No KRAS 153 Yes STK11 135 Yes
MYC 235 Yes PIK3CA 122 Yes CDKN2A 133 Yes
GATA3 230 Yes ARID1A 87 Yes EGFR 112 Yes
PSMC5 229 No FBXW7 86 Yes KEAP1 111 Yes
IKBKB 228 Yes SOX9 81 No NF1 105 Yes
PSMD12 228 No PRKDC 73 No PSMD4 105 No
MAP2K6 226 No SMAD4 72 Yes NFKBIA 103 No
RPS6KB1 225 No MTOR 60 Yes MYC 99 Yes

FIGURE 5 | Distribution of samples for genes predicted as a driver. The
x-axis represents the number of BRCA samples a gene is identified as driver.
The y-axis shows the density of genes identified in n samples. The plot shows
a bi-modal distribution with genes mutated in many samples as well as
<20 samples.
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alterations in known driver genes (Amado et al., 2008; Ross
et al., 2009; Cho et al., 2012). Identification of personalized
driver genes is the first step to push the field of personalized
medicine further. Personalized genes will not only help identify
potential targets but identify genes mutated in only a small
subset of samples.

We developed a machine learning model that employs
multi-omic data to identify personalized driver genes. To
the best of our knowledge, this study is the first supervised
ML approach for identifying personalized driver genes. Our
models label the genes based on their functionality as TSGs and
OGs, another first in the field of personalized driver genes. We
employ the SNV, RNA, CNV, miRNA, network, and Pfam
(Mistry et al., 2021) domains to build the models. Not all data
from multiple omics will be available at all times. Hence, we
build the SNV and RNA models when only SNV or RNA data
are available. Many driver genes are also hub genes, and
integrating STRING network (Szklarczyk et al., 2019)
information greatly improves the prediction as observed by
our RNA and multi-omic models. All three node-based

network features rank consistently high. While driver genes
are known to have a high degree, the distribution of the degree
of predicted genes shows genes with a low degree are also
predicted and the model is not biased toward genes with a high
degree (Supplementary Figures S46, S52, S59). Analysis of
feature contribution of SNV features shows that the most
contributing feature for BRCA data is the FATHMM score,
and when the score is dropped, the FATHHM prediction
category is important. For other cancer types, the
contribution of tools varies. The feature contribution of
prediction scores can be used to identify tools that best
predict the functional effect of the mutations in different
cancer types.

Supervised classification models require labels to train the
models. The field of personalized driver gene prediction is
largely unexplored, and no gold standards are available to
validate the results. Formulation of the supervised problem
requires a label. The mutation-based labeling methods consist
of highly curated mutations and genes, which build models
with high accuracy for only one cancer type (BRCA). While

FIGURE 6 | Comparison of precision of personalized driver genes. Average precision of DawnRank and PRODIGY for varying ranks are plotted for BRCA, COAD,
and LUAD. The plots of the left include predictions on all genes for both methods. The plots on the right drop genes used for training PRODIGY for both methods before
ranking. The precision is calculated for CGC gene list.
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models built on labeled mutations score high on classification
metrics, their ability to predict genes not observed may vary.
Furthermore, ML algorithms predict consistently only when
trained on large datasets that mimic all driver genes. We
increased the training data by employing gene-based
labeling methods and dropping SNV features with large
missing data. Our final multi-omic models built on fewer
features and many cancer-type specific driver genes perform
the best.

The lack of gold standard further makes comparison
difficult among different methods. Most driver gene lists are
either pan-cancer or cancer-type specific. Comparison for
personalized driver genes requires a list of driver genes
specific for a patient. In the absence of any ground truth
most methods use CGC gene list to compare predictions.
While building models we show the performance is poorest
on CGC genes as the list of genes is not specific to cancer type.
There is a need for establishing gold-standard for personalized
driver genes to further the field.

Compared with previous methods that employ only
mutation and expression data, we include known biological
knowledge regarding domains and onco-miRNA expression.
Furthermore, the previous network-based unsupervised
methods consider the presence or absence of mutations in
the gene. The functional impact of the mutation is lost in the
compression. We use mutation type and prediction scores by
multiple tools, and we observe functional impact-based
features ranking high in the absence of network or RNA
data. Furthermore, the methods use expression data to
identify DEGs to map onto the network. The method to
identify DEGs is based on cohort, making it difficult to use
in a clinical setting. We identify DEGs for an individual sample
based on pre-computed values of biological variation for the
cancer type. Any new sample can be processed to feature and
predict TSG and OG.

Our method has its limitation commonly observed with
ML-based models. ML algorithms assume the training data
covers all possible driver genes and the features capture all
the required information to predict the genes. Given the lack
of experimental data on personalized driver genes, we
assume known driver mutations and all mutations in the
curated driver gene list are drivers in the observed tumor.
Furthermore, it is to be noted that PIVOT may also produce
false positives along with true personalized driver genes.
Our tool generates reasonable candidate driver genes in a
personalized fashion, which help shortlist genes for
experimental studies to understand the progression of
cancer. PIVOT uses logCPM values from expression data,
which is biased to genes with longer length. Calculating
transcripts per million (TPM) might be a better feature as it
is normalized for gene length. Including new features that
improve the prediction while not increasing computation
cost are potential directions in this field. We use network
data from STRING (Szklarczyk et al., 2019), and other
networks such as Reactome can be used instead of or in
combination. Currently, we use miRNA expression of
known cancer miRNAs. We can generate gene-specific

features to capture miRNA and mRNA interaction.
Furthermore, we can include scores from other
personalized driver prediction tools as features to develop
an ensemble model to improve predictions. The research
space for the identification of personalized driver genes is
mostly under-explored.

4 CONCLUSION

In this study, we make three significant contributions. First, we
define the identification of personalized drivers as a supervised
problem by defining and studying various labeling strategies. We
conclude that the best labeling strategy is using gene-based
labeling that is cancer-specific. Second, we build multiple
models on mutation, RNA, and multi-omic features to identify
the contribution of individual omic-based features. We show
network-based and expression features contribute the most to
models, with the multi-omic models performing the best. In case
of missing omic data, mutation or RNA models can be used for
predicting driver genes. Lastly, our models can label genes as TSG
and OG in a tumor. The functional labeling of genes is helpful for
the identification of potential treatment strategies. Our method,
PIVOT, is capable of predicting TSG and OG for individual
samples, with multiple models available for predicting based on
the availability of data.

5 METHODS

The models for the identification of personalized TSGs and OGs
are built using different modalities of data, feature sets, labeling
strategies and imbalance algorithms. The data are labeled using
four different strategies. The data are split into training and test
and models are tuned using cross-validation on the training data.
The best models are selected using metrics on the test data. The
overview of model building is shown in Figure 7.

5.1 Data
The TCGA data were downloaded from GDC for the four cancer
types, BRCA, COAD, LGG, and LUAD. For each cancer type the
mutation (downloaded BRCA on October 4, 2021, rest on
November 17, 2021), expression (downloaded BRCA on
October 4, 2021, rest on December 3, 2021), CNV, and
miRNA data were downloaded (downloaded BRCA on
October 4, 2021, rest on December 7, 2021). The mutation file
was downloaded as a maf file generated using Mutect2. The data
were annotated using ANNOVAR (Wang et al., 2010) and
processed to include domain-based features. The expression
data from RNA-sequencing experiments alone were
downloaded for BRCA, COAD, and LUAD as raw HT-seq
counts. The data were processed using edgeR (Robinson et al.,
2009; McCarthy et al., 2012; Chen et al., 2016) to obtain DEGs for
each patient. For BRCA, COAD, and LUAD we downloaded
CNV data as a GISTIC gene-level copy number score. For
labeling genes, driver genes lists are downloaded from the
CIViC database, Cancer Gene Census (CGC), Martelotto et al.
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and Bailey et al. The list of neutral genes is also published by
Bailey et al. included in the GitHub PIVOT folder under folder
data, subfolder driver. A list of onco-domains, miRNA, associated
with cancer type is also included in the GitHub PIVOT folder
data. The STRING v11.5 (Szklarczyk et al., 2019) database was
downloaded for the protein–protein interaction (PPI) network.
Only edges with experimental or database scores above 700 were
retained. The network was processed to generate degree, closeness
centrality, betweenness centrality, and all neighbors for a gene.
The data are stored as pickle files and accessible via the GitHub
PIVOT repository.

5.2 Labeling Genes
Driver genes are defined as a gene that contains driver mutations or is
expressed aberrantly such that it confers a selective growth advantage
(Vogelstein et al., 2013). We label all mutations and CNV changes
based on the previously published driver and neutral gene lists. We
use four driver gene lists to label the data, where two are based on
mutations, and two are based on genes (Figure 8A). The mutation-
based strategies include CIViC database, and Martelotto et al. After
considering threshold of > 15 for the evidence scores, CIViC data
contain 342 uniquemutations which span 155 genes. For each sample

and individual gene, the mutation location and nucleotide alteration
were searched in theCIViC database and if found the genewas labeled
“Driver” for the sample. Similarly, the mutation location and
nucleotide alteration were used to label genes using Martelotto
et al. as “TSG” or “OG.” The Martelotto et al. gene list comprised
543 unique mutations in six oncogenes, and 2,947 alterations in three
tumor suppressors. The gene-based labeling strategies include CGC
and Bailey et al. CGC comprises 723 pan-cancer driver genes, out of
which 182 and 106 genes were labeled as “TSG” and “OG,”
respectively. Genes with multiple roles in cancer were excluded.
Any alteration in gene, including mutations and CNVs, in the
given sample was labeled as “TSG” or “OG” if present in the CGC
list. Unlike the previous methods for labeling, where the list of genes
remains the same irrespective of the cancer type, the Bailey et al. gene
list varies for cancer types. Similar to the CGC labeling strategies, the
Bailey et al. gene list is used to label mutations and CNV alterations.
The total numbers of genes used for labeling are 20, 29, 24, and 20 for
COAD, BRCA, LGG, and LUAD, respectively. Genes tagged as “tsg”
or “possible tsg” are labeled “TSG,” and genes tagged as “oncogene” or
“possible oncogene” are labeled “OG.”The lists of TSGs andOGs vary
for cancer types as listed: COAD—12 TSGs and 8 OGs, BRCA—19
TSGs and 9 OGs, LGG—12 TSG and 12 OG, and LUAD—13 TSG 6
OG. We used the list of 488 genes published by Bailey et al. to label
neutral genes, which remain constant across labeling strategies and
cancer types. For each sample, all genes altered (mutation/CNV) are
labeled as “TSG,” “OG,” or “Neutral,” based on the labeling strategy.
Unlike cohort-based methods where labels are predicted for genes for
the entire cohort, our method predicts labels for a patient–gene pair
making the method personalized. It is to be noted that while the
number of genes are few, since the training data consider each
sample–gene as a single data point and not a gene; the size of the
training dataset is larger than the number of genes. Genes not labeled
as neutral or driver or TSG or OG are unlabeled, and not included
during training or testing. The unlabeled data are used for predicting
new and rare driver genes.

5.3 Feature Generation
5.3.1 Mutational Features
For SNV features, the mutation data were annotated using
ANNOVAR (downloaded on March 25th, 2018) (Wang et al.,
2010) to include prediction scores for various tools. The
mutation type was one-hot encoded. All other categorical
predicted features were converted into ordinal categories, where
missing data were given value 0. The list of domains (Hashemi et al.,
2017) was processed to retrieve Pfam ids. All onco-domains for the
given cancer type were used as features, and the domain feature was
assigned value one if the mutation is associated with the domain.
The mutation and list of domains associated are given in the
mutation maf file. The number of features vary in each cancer
type and are dependent on the number of cancer domains identified.

5.3.2 Expression Features
For RNA features, the data were processed for each sample to
generate a list of DEGs using edgeR (v3.32.1). Differential genes are
usually reported for a cohort. It is advisable to have more than one
sample in each condition. In a clinical setting, multiple samples may
not be available.We generate DEGs for each sample. Not all samples

FIGURE 7 | Overview of the methods. The data are preprocessed to
generate features to be used for classification. The data are then labeled using
one of the four labeling strategies, and samples are split into train and test. The
training data are used to tune and build models. The metrics are
calculated for the predictions made on test data and used to select the best
model. The best model is then used to predict TSGs and OGs on the altered
genes for all samples.
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contain paired adjacent normal for a cancer type. First, we calculate
the common biological coefficient of variation (bcv) for all tumor
samples against normal—this is the coefficient of variation with
which the (unknown) true abundance of the gene varies between
replicate RNA samples (McCarthy et al., 2012). It represents the CV
that would remain between biological replicates if sequencing depth
could be increased indefinitely. Estimating BCV is required to avoid
false discoveries. We then group all normal samples and run DEG
against all tumor samples individually. The previously calculated bcv
is specified to the fit function when only one tumor sample is used to
calculate the DEGs. The common bcv calculated for a cancer type
can be used for the identification of DEGs for future samples and
saved as individual files. The logFC and logCPM values are used as
features. The logFC refers to the log fold change, which is the ratio of
the difference in gene expressed in the tumor sample in comparison
with the normal samples. The logCPM value quantifies the
expression of gene as log counts per million. Other features
include node properties degree, closeness centrality, and
betweenness centrality. Another three features are produced,
multiplying the logFC to the node properties. The differential
expression of neighbors is captured by features neigh_FC and
neigh_normFC. For a given gene, neigh_FC is calculated as the

sum of logFC of all neighbors of the gene, with fold change > 2 or
< − 2. neigh_normFC is normalized for the number of genes
differentially expressed in the neighborhood.

5.3.3 Multi-Omic Features
Multi-omic features concatenate the SNV, RNA features, CNV,
and miRNA data. The effect of CNV on neighborhood is
calculated by neigh_CNV_FC and neigh_CNV_normFC
similar to RNA features. All genes with copy number
variation ≠ 0, the sum of logFC values > 2 or < − 2 of all
neighboring genes defines neigh_CNV_FC. The neighborhood is
defined by all genes that can be accessed with ≤ n hops. We
consider n = 1 for this analysis. The list of miRNA associated
with cancer type was downloaded from OncomiR Cancer
Database [OCMD; Sarver et al. (2018)] and OncomiR (Wong
et al., 2018) databases and the intersection of both databases was
used for the analysis. Expression of the known oncogenic
miRNAs was used as features for predicting.

5.4 Classification
The data is labeled using four different gene lists. CIViC and
Martelotto et al. list the gene as well as the mutation location.

FIGURE 8 | Labeling data for training and testing. The figure explains the differences between labeling strategies and the steps for training and test split. (A) For
mutation-based strategies, the gene and location of the mutation are both considered. The arrows indicate the locations of driver mutations in a gene. The mutation in
Gene 1 coincides with known driver mutation and the gene is labeled as “Driver” in Sample 1. Mutation in Gene 1 of Sample 2 is not a known driver mutation. Since the
mutation locations differ between the first and second samples shown here, Gene 1 in Sample 2 is unlabeled. For gene-basedmethods, irrespective of the location
of mutation, Gene 1 is labeled “Driver” in Samples 1 and 2. All lists of neutral genes if altered in a sample are labeled as neutral. Gene-basedmethods can be used to label
mutation and CNV alterations. Altered genes, if present in the list of driver mutations or driver genes, are labeled as “Driver” if the labeling strategy is CIViC or “TSG” or
“OG” for the rest. (B) The samples are split into training and test in the ratio 70:30. The number of mutations may vary in samples, and is captured by the varying shapes of
the data boxes. Each row represents a sample—gene pair and the columns represent the features. The genes for each sample are labeled, and used for building models
and evaluation.
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Only mutations with the exact location and base change are used
labeled. CIViC labels genes as driver, while all other methods label
genes as TSG or OG. CGC and Bailey et al. label all mutations in a
gene with the same label. Furthermore, we labeled genes with copy
number variations in driver genes based on labels assigned by gene-
based labeling strategies for multi-omic analysis. Classification of
CIViC labels was a binary classification problem (classes: Driver,
Neutral), while the rest were multi-class classification problems
(classes: TSG, OG, Neutral). We used 70:30 that split the samples
into train and test data (Figure 8B). All the mutations and/or CNV
alterations were labeled using one of the four lists of driver genes
described earlier. It is to be noted the numbers of data points in
train and test split vary for the different labeling strategies
(Supplementary Tables S1, S4, S5). The data is highly
imbalanced, with a large number of neutral genes and very few
TSG and OG. We used sampling algorithms for imbalanced data
from imblearn package. Models were built using balanced random
forest, balanced bagging, and easy ensemble. Five-fold cross-
validation was conducted to tune hyperparameters using grid
search. We also shuffle the labels of the training set to test for
over-fitting. The precision-recall (PR) curve and the receiver
operator curve (ROC) were plotted for all classes and all models
including randomized labels (Supplementary Figures
S1A–S42C). Furthermore, the top 20 features contributing to
the model are plotted. The accuracy, F1 score, precision, and
recall for the training and test set were calculated. All the
models, plots, and output metrics are available in the GitHub
folder and as supplementary data.

5.5 Feature, Domain, and miRNA Analysis
For each cancer type, the consensus feature contribution was
calculated as the average feature contribution for all models
built on the dataset. The top domains for SNV and multi-omic
datasets were identified based on all domains with feature
contribution > 0. Similarly, the top miRNA features with
consensus feature contribution > 0 for the cancer type were
listed.

5.6 Comparison with Other Tools
The predictions of multi-omic models were compared with
DawnRank, another personalized driver tool. The mutation
and mRNA expression data were run using DawnRank. The
complete network published with the tool was used for the
analysis. For comparable results, we only consider the labels
predicted by PRODIGY for mutated genes and not genes
altered by CNV. For each sample, the precision was calculated

for increasing ranks. Precision is calculated as the true positives
divided by all predictions. True positives are genes predicted by
tool and also present in the CGC list of driver genes. We calculate
and plot the average rank for samples in a cancer type for
varying ranks.
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