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Abstract

Little is known about the viruses infecting most species. Even in groups as well-studied as Drosophila, only a handful of
viruses have been well-characterized. A viral metagenomic approach was used to explore viral diversity in 83 wild-caught
Drosophila innubila, a mushroom feeding member of the quinaria group. A single fly that was injected with, and died from,
Drosophila C Virus (DCV) was added to the sample as a control. Two-thirds of reads in the infected sample had DCV as the
best BLAST hit, suggesting that the protocol developed is highly sensitive. In addition to the DCV hits, several sequences
had Oryctes rhinoceros Nudivirus, a double-stranded DNA virus, as a best BLAST hit. The virus associated with these
sequences was termed Drosophila innubila Nudivirus (DiNV). PCR screens of natural populations showed that DiNV was both
common and widespread taxonomically and geographically. Electron microscopy confirms the presence of virions in fly
fecal material similar in structure to other described Nudiviruses. In 2 species, D. innubila and D. falleni, the virus is associated
with a severe (,80–90%) loss of fecundity and significantly decreased lifespan.
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Introduction

The advent of high-throughput DNA sequencing technology

has facilitated the discovery and identification of microbes from

environmental samples. Though most of the focus has been on

metagenomics of microbial communities, leading to the detection

of a huge diversity of bacteria and their related bacteriophages

[1,2,3], viral metagenomic approaches have recently been used to

explore viral diversity within individuals exhibiting symptoms

ranging from obesity in humans to colony collapse disorder in

honey bees to Shaking Mink Syndrome in mink [4,5,6,7].

There is growing appreciation for the important role of

interactions among symbionts in host ecology and evolution

[8,9,10,11,12]. In particular, the interaction between vertically

and horizontally transmitted microbes and pathogens is the focus

of much theoretical and empirical attention [13,14,15,16,17].

Wolbachia, probably the most common vertically transmitted

endosymbiont among insects [18,19], has recently been found to

confer resistance to certain RNA viruses in some hosts

[14,15,20,21]. However, the importance of such virus protection

in natural populations of Drosophila has not yet been explored. To

investigate the relationship between insect hosts, endosymbiotic

bacteria, and viruses, wild-caught Drosophila innubila females, about

1/3 of which are infected with Wolbachia [22], were screened for

virus infection using a viral metagenomic approach.

D. innubila is a member of the mushroom-feeding quinaria group

of Drosophila. They inhabit woodlands and forests of the Sky

Islands of Mexico, Arizona, and New Mexico. Adults feed, mate

and oviposit on mushrooms and larvae burrow through mush-

room tissue, feeding on it prior to pupation. Species in the quinaria

group are hosts to endosymbionts such as Wolbachia and Spiroplasma

[23,24], parasitic nematodes [25], parasitoids [26] and mites

(Emma Dietrich, personal communication). As for the vast

majority of Drosophila species, very little is known about virus

infection in natural populations.

Of the roughly dozen different virus identified in Drosophila

[27,28], the most well-studied in natural populations is probably

Drosophila Sigma Virus. Several studies have examined the

frequency of Drosophila Sigma Virus infection in natural popula-

tions, indicating some degree of host specificity and infection

frequencies ranging form absence to more than 70% [29,30,31].

Some work has also been done on host range of Drosophila C Virus,

which infects several species from across the genus, with little host

specificity [32]. However, many of these lines were maintained in

the lab for several generations or from stock centers.

Reported here is the development and implementation of a new

virus discovery protocol for Drosophila and other insects. This

protocol revealed the presence of a new DNA virus that is both

taxonomically and geographically widespread and is associated

with significant mortality in at least two species of Drosophila.

Wolbachia, however, appears to play no role in protection of D.

innubila from the adverse effects of the virus.

Methods

Samples
Flies for the metagenomic survey were collected in the

Chiricahua Mountains, as described in Unckless et al. [22], by

sweep netting over mushroom baits in 2006 and 2007 near the

Southwest Research Station, Portal, AZ. They were then shipped

to the lab in Rochester, NY, where females were placed

individually in vials and allowed to lay eggs for 6 days. These

females were then dissected, their ovaries removed and screened

for Wolbachia, and the rest of the carcass frozen at 280uC [22].

Forty-two Wolbachia-infected and forty-one uninfected carcasses,

spanning 2 collection years, were selected for viral screening. Flies
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that produced few or no offspring were overrepresented, in order

to increase the chance of including virus-infected flies. One fly that

was injected with, and later died from, Drosophila C Virus (DCV)

was added to the Wolbachia-infected sample to assess the efficiency

of enrichment for viruses.

Virus enrichment and extraction
A protocol was developed to remove as much host nucleic acid

as possible, leaving capsid-protected viral nucleic acids intact

before extraction, production of cDNA libraries, and sequencing

(Figure S1). The protocol is a modification of several previously

published protocols [4,33,34]. All flies for each sample were

homogenized in 200 ml viral buffer [33], then centrifuged for

5 min. at RT at 25006g. The supernatant was then transferred to

a new centrifuge tube. Genomic DNA was digested by adding 0.1

volumes of DNase I and reaction buffer (AMPD1-1KT, Sigma-

Aldrich, USA) and incubating for 15 min. at RT. Sigma stop

solution (included in DNase I kit) was added at 0.1 volume, and

the solution was incubated at 70uC for 10 min. Genomic RNA

was digested with 2 ml 0.02 mg/ml RNase A/T1 (ENN051,

Fermentas, Glen Burnie, MD) incubated at 37uC for 3 hours. 1 ml

Ribolock (EO0381, Fermentas, Glen Burnie, MD) was added to

protect viral nucleic acids. Samples were enriched for viruses

because, in any infected fly, the total RNA from a virus will be

only a small fraction of the total RNA from the entire fly. In

addition, because most flies are probably uninfected with viruses,

pooling the flies for virus detection requires selective removal of

nucleic acids of the host and resident microbes.

RNA was extracted using the E.Z.N.A. viral RNA extraction kit

(R6874-01, Omega Bio-Tek, USA), which will also isolate DNA.

Further sample preparation including library preparation (Rapid

Library Preparation Method, Roche, Germany), nebulization and

emulsion was performed at the Engencore sequencing facility

(Columbia, SC). The 2 samples were bar-coded and run on 1/4 of

a chip using a Roche 454 machine with Titanium chemistry.

Data analysis
Both raw reads and contigs (assembled at Engencore using the

Roche/454 Life Sciences Newbler algorithm) were analyzed. All

searches were performed locally using stand-alone BLAST+ [35]

with a minimum E-value of 0.0001. Initially, each contig and read

were searched against the RefSeq protein [36] database using

BLASTx with the BLOSUM62 matrix and gap costs of 11 and 1

for opening and extension, respectively. Since the goal was in

finding viruses, several additional searches were performed with

restricted databases to enhance the sensitivity of the search. The

restricted databases included all viruses in Viral RefSeq protein

[36], 3 RNA virus databases (single-stranded RNA viruses, double-

stranded RNA viruses and Drosophila C Virus), and 3 DNA virus

databases (Baculoviruses, Nudiviruses, and Oryctes rhinoceros Nudi-

virus). All but the Viral RefSeq protein database were constructed

de novo using NCBI’s taxonomy browser. The Baculovirus,

Nudivirus and Oryctes rhinoceros Nudivirus searches were added

after identification of a putative Nudivirus in the initial searches

(see below). Limiting the size of the database decreases the E-value

of any particular match, increasing its significance, because the

probability of a chance match decreases. For all searches,

significant hits were characterized by parsing the BLAST output

and accessing Genbank to identify genes and organisms for the hit.

These scripts were written in PERL and utilized functions in

BIOPERL [37]. Sequences with BLAST hits to Nudiviruses were

deposited in Genbank, except those sequences shorter than

200 bp, which are presented in the online supplemental material

(Material S1).

Survey of wild flies for DiNV infection
After discovery of a putative DNA virus (see results), several

species of Drosophila were surveyed for infection with this virus.

Flies were collected from Rochester, NY and the Southwest

Research Station in 2009 and 2010. DNA from 7 Drosophila

phalerata (4 females and 3 males) individuals collected in Munich,

Germany was kindly provided by Kelly A. Dyer. In addition, D.

innubila were collected in 2010 at the Southwest Research Station

and immediately dissected and extracted on site to minimize

possible horizontal transmission of the virus among flies. DNA was

extracted using the Puregene DNA purification kit (QIAGEN,

Valencia, CA). Flies were screened for the virus using standard

insect COI primers (1490 and 2198) [38] as a control for extraction

quality and newly developed primers (P47F: 59–TGAAACCA-

GAATGACATATATAACGC and P47R: 59–TCGGTTTCTC-

AATTAACTTGATAGC) for the P47 homolog found in the

metagenomics search. For each species, the P47 locus from at least

one individual was sequenced using BigDye Terminator v3.1

(#4337455, Applied Biosystems, Carlsbad, CA) and deposited in

GenBank (Accession numbers JN44311–JN44330). These se-

quences were used to build a phylogenetic tree using PhyML

[39] with the HKY85 model of substitution and 100 bootstrap

replicates and Mr. Bayes [40] with the GTR+Gamma model with

a chain length of 1,100,000 and a burn in of 100,000 generations.

The P47 ortholog from OrNV was used as an outgroup.

Electron microscopy of virus particles
Because transmission of the DNA virus may be fecal-oral, as

hypothesized for the closely related Oryctes rhinoceros Nudivirus [41],

fly fecal material was scraped from the side of vials containing

infected D. falleni and then PCR screened for the virus, using the

methods described above. These samples were almost invariably

positive for the virus, so fecal material was primarily used for

imaging. To concentrate the virus on a microscope slide, a

crowded vial of infected flies was inverted on a microscope slide

and flies were allowed to defecate for 4 d. A small sample was

scraped and PCR screened for the virus. An attempt was made to

find virus particles in whole flies by dissecting out the digestive

tract for imaging.

The glass slide with deposited feces was fixed in 0.1 M sodium

cacodylate buffered 2.5% glutaraldehyde for 24 hours and post-

fixed in 1.0% buffered osmium tetroxide for 20 min. The slide was

transitioned through a graded series of ethanol to 100% (63) and

infiltrated with Spurr epoxy resin overnight. The next day, size 3

BEEM capsules were filled with fresh resin and inverted and

placed onto the glass slide over the fecal matter. The slide was

placed into a 600uC oven and allowed to polymerize overnight.

The polymerized BEEM capsules were removed from the glass

slide using the ‘‘pop-off’’ technique [42] which involves dipping

several times into liquid nitrogen. The capsules containing the

entrapped fecal material were trimmed with a razor blade to a

small trapezoid and thin sectioned on a Reichert ultramicrotome

using a diamond knife at 70 nm. The sections were placed onto

200 mesh copper grids and stained with aqueous uranyl acetate

and lead citrate. The grids were examined using a Hitachi 7650

Transmission Electron Microscope and micrographs were cap-

tured using an attached Gatan Erlangshen 11 megapixel digital

camera.

Fitness of infected flies
Wild-caught females were used to assess the survival and

fecundity of flies as a function of infection with virus and Wolbachia.

In September 2009, flies were captured near the Southwest

Research Station as described above and transferred to sugar agar

Drosophila Innubila Nudivirus
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for transport to Rochester, NY, which took ,6 d. In Rochester,

flies were placed on mushroom food (instant drosophila medium

plus a piece of commercial Agaricus bisporus mushroom and a cotton

roll) for egg laying. Females were then moved to new vials every

other day until they died. The experiment lasted for 55 days, at

which time no flies were laying fertilized eggs. Females were

screened for the DNA virus and their offspring were counted as

they emerged. In July and August 2010, the same protocol was

followed for D. falleni. In this case, flies were collected around

Rochester, NY and were established in culture the day they were

collected, but the experiment was terminated after 10 days. As

described above, flies from the 2010 D. innubila collection were

dissected on site and mature eggs (stage 10 or later) in both ovaries

were counted to assess fitness costs associated with the virus. All

flies were PCR screened for the DNA virus and, as a control,

insect COI.

Experimental infection of lab-reared flies
To directly assess the fitness consequences of viral infection, flies

were injected with live virus and survival was monitored. Since

cell culture for this virus has not yet been established, live virus

was isolated as follows. Several wild D. innubila females were

homogenized individually in viral buffer (see above) and

centrifuged at low speed for one minute to remove large fly

debris. The supernatant was then spun through a 0.45 mm filter

(UFC30HV25, Millipore USA, Billerica, MA). 10 ml of the filtrate

for each sample was used to PCR screen for the virus, using the

DNA extraction and PCR protocols as described above. The

filtrate from 4 flies identified by PCR as positive for DiNV

infection were pooled as the virus-positive, and 4 flies screening

negative for DiNV were pooled as the virus-negative control. Each

sample was diluted 1:10 before being used for injection. A separate

control, sterile virus buffer was also employed. Six- to eight-day-

old male and female D. innubila and D. falleni were injected with

about 200 nL of one of the three treatments using a Narishige

IM300 microinjector (Narishige, Japan). Fly survival was moni-

tored daily and flies were kept at low density (maximum = 10 per

vial) and transferred to new food every other day until most flies

injected with the virus-positive filtrate were dead. Both the virus-

positive and virus-negative samples were examined using electron

microscopy to be sure a) only DiNV was present in the virus-

positive samples and b) no bacteria were present in either sample.

Vertical transmission
For a subset of wild-caught D. innubila mothers found to be

infected with the DNA virus, offspring were PCR screened to

assess vertical transmission of the virus. Offspring were frozen 2–

6 d after emergence, and DNA was later extracted and screened as

described above. A total of 27 daughters and 2 sons of were

screened from 10 virus-infected females. The low offspring

production of virus-infected females limited the sample size and

male-killing by Wolbachia resulted in the highly skewed sex-ratio.

Permits for fly collections
All necessary permits were obtained for the described field

studies. Since it involved protected lands, flies collected in the

Chiricahua Mountains were collected with permission of the

National Forest Service (Drosophila innubila in the Coronado

National Forest System; August 2006 through October 2009;

Authorization ID SUP0040-01). Collections in the Chiricahua

Mountains in 2010 were conducted on the grounds of the

Southwest Research Station with permission from the station

director, Dawn Wilson. Permits were not required for collections

around Rochester, NY and all collections were performed on the

property of the author and principal investigator, John Jaenike.

Flies collected in Germany were processed and sent as DNA by a

third party. No species of Drosophila are listed as threatened or

endangered.

Results

Viral metagenomics
A total of 1225 raw reads and 25 contigs (using 1154 raw reads)

were recovered for the Wolbachia uninfected sample and 44,675

raw reads and 124 contigs (using 5939 raw reads) were recovered

for the Wolbachia infected sample. Raw reads averaged 320.3 bp

for the uninfected sample and 394.9 bp for the infected sample.

Table 1 shows the types of hits for each search and sample. An

E-value cutoff of 0.0001 was used for all searches. Hits to bacterial

and eukaryotic sequences were overwhelmingly to ribosomal RNA

genes (data not shown), which could be due to the high ratio of

ribosomal RNA transcripts to gene-specific mRNA transcripts

and/or because the ribosome somehow protects ribosomal RNA

from RNase digestion.

The Wolbachia-infected sample was spiked with 1 fly that had

been injected with Drosophila C virus (DCV). Two-thirds (26,688)

of reads with significant hits in the infected group had DCV as the

best hit, as opposed to less than 1% (9 reads) in the uninfected

group, demonstrating both the sensitivity and specificity of the

method. Figure S2 shows the distribution of hits across the DCV

genome and simple calculations show that the average coverage is

more than 12006.

All virus hits are summarized in Table 2. There were 27 unique

virus hits, including 9 bacteriophage, and 12 double-stranded

DNA, 3 single-stranded RNA, and 3 double-stranded RNA

viruses. Sixteen virus families were represented, whose normal

hosts include a variety of organisms.

Three viruses in the list stand out. First was DCV, which was

expected to be present in large quantities. The second most

common virus hit was to Cricket paralysis virus (CrPV), which is

closely related to DCV and therefore may represent poor quality

reads that were actually DCV. However, CrPV has a broad host

range and can infect Drosophila melanogaster [43,44], so these reads

may represent a real RNA virus, closely related to CrPV, that

infects Drosophila innubila.

Finally, 29 reads (26 and 3 from the Wolbachia-uninfected and

Wolbachia–infected samples, respectively) had Oryctes rhinoceros

Nudivirus (OrNV), a double-stranded DNA virus, as the best

hit. Narrowing the search database to just viruses did not increase

the number of sequences hitting OrNV, but searches restricted to

Nudiviruses increased this to 31 and 7 (see Table 3) from the

Wolbachia-uninfected and infected samples, respectively, and

searching against OrNV itself increased it to 30 and 3.

OrNV is a member of the small and unclassified Nudivirus

group [45,46]. Nudiviruses have large genomes - OrNV is almost

130 kb - and are characterized by a rod-shaped virion. The search

against all Nudivirus proteins found 16 unique Nudivirus proteins

among the raw reads (Table 3). For 13 of these, the best hit was

OrNV, representing about 10% of the 139 predicted proteins [41]

for OrNV (Figure S3). A total of 9540 bases hit OrNV yielding a

genomic coverage of about 0.076. Two more sequences hit the

closely related dsDNA virus family Baculoviridae and had

marginally significant hits to OrNV when searched against only

the OrNV genome. In accordance with proposed Nudivirus

nomenclature [47], the above virus will be referred to as Drosophila

innubila Nudivirus (DiNV). Table 3 shows the percent identity from

BLAST hits between each DiNV sequence and the other

Nudiviruses yielding matches. Because both sequence and gene

Drosophila Innubila Nudivirus
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Table 1. Summary of BLAST hits from viral metagenomic survey.

Sample Database Reads Hits Euk Bact Viruses Dipt
Other
Arth

Mammal/
Plant/Fungi Nud Bac

RNA
virus*

DNA
virus** DCV OrNV

W2 raw Refseq 1225 930 773 119 37 71 311 43/21/8 26 0 0 2 9 26

W+ raw Refseq 44675 40124 10477 2586 27012 912 3422 964/205/132 3 0 318 2 26688 3

W2 contigs Refseq 25 21 8 11 2 2 1 0/0/1 2 0 0 0 0 2

W+ contigs Refseq 124 113 17 51 29 1 4 2/0/0 0 0 0 0 29 0

W2 raw V. Refseq 1225 41 NA NA 41 NA NA NA 26 2 0 6 9 26

W+ raw V. Refseq 44675 27216 NA NA 27216 NA NA NA 3 0 321 15 26874 3

W2 contigs V. Refseq 25 2 NA NA 2 NA NA NA 2 0 0 0 0 2

W+ contigs V. Refseq 124 33 NA NA 33 NA NA NA 0 0 1 0 32 0

Abbreviations: V. Refseq = viral Refseq database; Euk = Eukaryotes; Bact = Bacteria; Dipt = Diptera; Other Arth = Other Arthropods; Nud = Nudiviruses; Bac = Baculoviruses;
DCV = Drosophila C Virus; OrNV = Oryctes rhinoceros Virus.
*RNA viruses other than DCV.
**DNA viruses other than OrNV.
doi:10.1371/journal.pone.0026564.t001

Table 2. Summary of BLAST hits to viruses.

Virus Species Count Virus Type Virus Family Host

Acanthamoeba polyphaga mimivirus 1 dsDNA Mimiviridae Ameoba

Avian leukosis virus 1 ssRNA(RT) Retroviridae Birds

Bathycoccus sp. RCC1105 virus 1 dsDNA Phycodnaviridae Green algae

Cauliflower mosaic virus 1 dsDNA(RT) Caulimoviridae Brassicaceae

Cricket paralysis virus 312 ssRNA(+) Dicistroviridae Arthropods

Dioscorea bacilliform virus 1 dsDNA(RT) Caulimoviridae Dioscoreaceae

Drosophila C virus 26915 ssRNA(+) Dicistroviridae Arthropods

Enterobacteria phage FI sensu lato 2 ssRNA(+) Leviviridae Bacteria

Enterobacteria phage Qbeta 3 ssRNA(+) Leviviridae Bacteria

Enterobacteria phage WV8 1 dsDNA Caudovirales Bacteria

Great Island virus 3 dsRNA Reoviridae Birds*

Heliothis armigera cypovirus 5 1 dsRNA Reoviridae Arthropods

Klebsiella phage phiKO2 1 dsDNA Siphoviridae Bacteria

Lymantria dispar MNPV 1 dsDNA Baculoviridae Arthropods

Lymphocystis disease virus 1 dsDNA Iridoviridae Fish

Mycobacterium phage TM4 1 dsDNA Siphoviridae Bacteria

Oryctes rhinoceros virus 31 dsDNA Nudivirus{ Arthropods

Ostreococcus lucimarinus virus 1 dsDNA Phycodnaviridae Green algae

Paramecium bursaria Chlorella virus 1 3 dsDNA Phycodnaviridae Green algae

Peruvian horse sickness virus 1 dsRNA Reoviridae Vertebrates*

Phthorimaea operculella granulovirus 1 dsDNA Baculoviridae Arthropods

Prochlorococcus phage P-SSM2 2 dsDNA Myoviridae Bacteria

Prochlorococcus phage P-SSM4 1 dsDNA Myoviridae Bacteria

Pseudomonas phage PA11 1 dsDNA Unclassified Bacteria

Shrimp white spot syndrome virus 2 dsDNA Nimaviridae Arthropods

Synechococcus phage S-RSM4 2 dsDNA Myoviridae Bacteria

Trichoplusia ni ascovirus 2c 1 dsDNA ascoviridae Arthropods

*arthropod vectored;
{no family name.
doi:10.1371/journal.pone.0026564.t002

Drosophila Innubila Nudivirus
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conservation is so low in the Nudiviruses, a phylogenetic analysis

of DiNV within the Nudiviruses is not possible with the current

data. Based on the data in Table 3, it appears that DiNV is most

closely related to OrNV. The remainder of the paper will focus on

DiNV.

Survey of wild flies
DiNV virus is present in several Drosophila species, including

members of 3 subgenera, from both northeastern and southwest-

ern United States, but is not found in a small sample of D. phalerata

from Europe (Table 4). The prevalence of infection varies among

species and is most common within members of the quinaria

group. If all species are included, males (36%) were infected

significantly more often than females (25%; P = 0.005, FET).

Within the 2010 collection of D. innubila, males were also

significantly more likely to be infected than females (P = 0.0037,

FET). A phylogenetic tree of P47 sequences from each species is

presented in Figure S3. All isolates from the Arizona collection had

identical sequences, while there was some variation in sequences

from New York. The sequences from a Drosophila simulans male and

a Drosophila melanogaster or simulans female (both from the subgenus

Sophophora) were identical, but were nested within sequences

from other members of the subgenus Drosophila.

Electron microscopy
The fecal material contained numerous virus particles morpho-

logically similar to Baculoviruses and Nudiviruses (Figure 1). The

capsid is approximately 120630 nm, with an envelope ,135 nm

in diameter, making it small among the Nudiviruses [47]. No virus

particles were observed from the digestive tracts of flies.

Fitness effects in wild-caught flies
Among female D. innubila collected in 2009, those infected with

DiNV had significantly decreased lifespan (median survival = 18

and 43 d for virus-infected and uninfected flies, respectively;

Kaplan-Meier analysis, P,0.0001; Figure 2A). DiNV-infected

females produced ,80% fewer daughters (mean infected = 11.63;

S.E. = 2.03; mean uninfected = 62.96; S.E. = 4.54; t = 10.3;

d.f. = 122.87; P,0.0001; Figure 2B), which could result in part

from the reduced lifespan of infected flies. Considering only the

Table 3. Amino acid sequence similarity between Drosophila innubila Nudivirus sequences and other Nudiviruses.

Read bp Accession
OrNV best hit
(Accession)

OrNV AA%
ID (length) GbNV best hit

GbNV
AA %ID
(length) HzNV1 best hit

HzNV1
AA %ID
(length)

8IZQUB 125 NA* polh/gran (YP_002321327) 46% (37)

8JTQNZ 158 NA* vp91 (YP_002321417) 52% (51) VP91 capsid protein (YP_001111269) 44% (49) p91 capsid protein
(NP_690465)

28% (51)

8JQMLB 174 NA* gp78-like protein
(YP_002321338)

53% (37) hypothetical protein GrBNV_gp78
(YP_001111345)

40% (58)

ConA 194 NA* gp72-like protein
(YP_002321333)

58% (53) hypothetical protein GrBNV_gp72
(YP_001111339)

33% (42)

7IIS77 314 JN680861 rr1 (YP_002321362) 31% (36) ribonucleotide reductase large subunit
(YP_001111349)

45% (31) Rr1 (NP_690514) 31% (32)

8JFHBN 415 JN680862 pif-2 (YP_002321328) 60% (134) per os infectivity factor 2 (YP_001111333) 52% (135) Orf123 (NP_690542) 33% (123)

7H8E3L 426 JN680863 Rr1 (NP_690514) 34% (107)

7H5KKI 453 JN680864 gp97-like protein
(YP_002321355)

68% (91) hypothetical protein GrBNV_gp97
(YP_001111364)

33% (84)

8I1EHP 481 JN680865 vp39 (YP_002321326) 49% (84) hypothetical protein GrBNV_gp64
(YP_001111331)

33% (81)

ConB 521 JN680866 dnahel (YP_002321345) 41% (68)

ConC 662 JN680867 gp67-like protein
(YP_002321329)

66% (41) hypothetical protein GrBNV_gp67
(YP_001111334)

50% (42)

ConD 757 JN680868 guanylate kinase-like
protein (YP_002321334)

34% (164) putative guanylate kinase
(YP_001111341)

31% (112)

ConE 761 JN680869 odv-e56 (YP_002321426) 26% (144) occlusion-derived virus envelope-56
protein (YP_001111272)

29% (140)

ConF 900 JN680870 rr2 (YP_002321413) 58% (264) ribonucleotide reductase small subunit
(YP_001111330)

31% (225) Rr2 (NP_690492) 20% (191)

ConG 1525 JN680871 P47 (YP_002321331) 51% (335) hypothetical protein GrBNV_gp69
(YP_001111336)

26% (323)

Ac146-like protein
(YP_002321330)

56% (81) hypothetical protein GrBNV_gp68
(YP_001111335)

21% (84)

*The GFAK6NV0 prefix has been removed from all read names.
ConA is a contig of 8JS03H, 8JH2MO.
ConB is a contig of 7H1TKA, 7HXBFS.
ConC is a contig of 8I7N7M, 8JEGW7.
ConD is a contig of 8I715A, 8I4S21, 8JPIRD, 8I5BT9, 8JI2RY, 8I54ZI.
ConE is a contig of 8JUZHW, 8JL8DP.
ConF is a contig of 8JJ75Z, 8JIXU2.
ConG is a contig of 8JDDM9, 8JN0QY, 8JGLGS, 8JIZXS,8JC5KB, 8I4WED, 8JMNLG, 8I1J6U, 8JH7ES, 8JNLK0.
doi:10.1371/journal.pone.0026564.t003
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first 6 days of the experiment and only those flies that survived this

period, there was still a highly adverse effect of infection on offspring

production (mean infected = 11.26; S.E. = 1.66; mean uninfect-

ed = 43.17; S.E. = 2.63; t = 10.27; d.f. = 137.06; P,0.0001). There

was no interaction between Wolbachia and virus infection on

offspring number, suggesting that Wolbachia does not protect against

the adverse effects of DiNV.

In 2010, the number of mature eggs per ovary was determined in

D. innubila within 2 hours of capture. The number of mature eggs

was significantly less in flies infected with DiNV (mean infect-

ed = 14.25; S.E. = 1.86; mean uninfected = 18.54; S.E. = 1.27;

t = 1.91; d.f. = 137.34; P = 0.029; Figure 2B).

Only 3 of 95 wild-caught D. falleni were infected with DiNV.

Because D. falleni is not infected with a male-killing bacteria, total

offspring were considered instead of only female offspring. DiNV-

infected flies produced ,82% fewer total offspring (mean

infected = 3.00; S.E. = 3.00; mean uninfected = 16.57; S.E. = 1.77;

t = 3.89; d.f. = 3.63; P = 0.01; Figure 2B).

Experimental infection of lab-reared flies
After injection, fly survival was monitored daily until most flies

injected with the virus-positive filtrate had died (after 33 days the

experiment was stopped, at which point 3 male D. falleni injected

with the virus were still alive). To assess survival after injection

Table 4. Frequency of DiNV infection in wild species. (AZ = Portal, AZ; NY = Rochester, NY; DE = Munich, Germany).

Species Subspecies (group) Collection Location Prop. R infected (# screened) Prop. = infected (# screened)

D. psuedoobscura Sophophora (obscura) AZ 0.17 (6) 0 (9)

D. melanogaster{ Sophophora (melanogaster) NY 2 (85) 1 (40)

D. grisea Hirtodrosophila AZ 0 (17) 0.10 (29)

D. duncani Hirtodrosophila NY 0 (29) ND

D. neotestacea Drosophila (testacea) NY 0 (46) 0.06 (35)

D. macroptera Drosophila (macroptera) AZ 0.5 (4) ND

D. munda Drosophila (quinaria) AZ 0.27 (11) 0 (1)

D. tenebrosa Drosophila (quinaria) AZ 0.55 (60) 0.65 (20)

D. recens Drosophila (quinaria) NY 0 (22) ND

D. falleni Drosophila (quinaria) NY 0.03 (95) ND

D. innubila Drosophila (quinaria) AZ 0.41 (148)*
0.37 (198)**

ND
0.56 (84)**

D. phalerata Drosophila (quinaria) Germany 0 (4) 0 (3)

{a mix of both D. melanogaster and D. simulans;
*2009 collection;
**2010 collection;
ND = no data.
doi:10.1371/journal.pone.0026564.t004

Figure 1. Electron micrograph of Drosophila innubila Nudivirus isolated from fecal material of Drosophila falleni. Arrowheads point to
virus particles.
doi:10.1371/journal.pone.0026564.g001
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with the three treatments (virus-positive, virus-negative and virus

buffer) a Cox proportional hazard model was used with treatment,

species and sex as factors. Flies injected with the virus-negative

filtrate experienced similar mortality to those injected with virus

buffer (P = 0.44), suggesting that nothing in the virus-negative

filtrate significantly affected fly mortality. This was further

supported by the absence of any recognizable structures (viral,

bacterial or otherwise) in the electron micrographs of the virus-

negative filtrate. Flies injected with the virus-positive filtrate

experienced much higher mortality than those injected with the

virus-negative filtrate (P,1026; Figure 3). The median survival

time for flies injected with the virus-positive sample was less than

that of flies injected with virus-negative filtrate for both males and

females of both species (D. innubila males: 17 vs. 20 d; D. innubila

females: 8 vs. 31d; D. falleni males: 9.5 vs. 31d; D. falleni females: 8

vs 25.5d). There was a moderately significant interaction (P = 0.06)

between sex and treatment with males injected with the virus-

positive filtrate surviving several days longer than females (see

Figure 3). Overall, D. falleni experienced higher mortality

(P = 0.005) than D. innubila regardless of treatment or sex.

Vertical transmission
Of the 27 female offspring screened for infection only 1 was

positive, while neither of the 2 male offspring was positive, for an

overall ‘‘vertical’’ transmission rate of 0.034. Note that the single

positive offspring may have contracted the virus periorally and

therefore, effectively horizontally, making this an upper estimate of

vertical transmission.

Figure 2. Fitness costs of infection with DiNV. A) Survival of wild-
caught D. innubila females infected with DiNV or uninfected, diagnosed
by PCR; B) actual or potential offspring production by wild-caught
females: 2009 innubila – lifetime daughters produced; 2009 innubila* -
daughters produced in the first 6 d after capture; 2010 innubila** -
number of mature eggs in both ovaries; 2010 falleni – daughters
produced in the first 10 d after capture.
doi:10.1371/journal.pone.0026564.g002

Figure 3. Proportion survival of A) D. innubila and B) D. falleni
after injection with ,200 nL DiNV-positive filtrate. For clarity,
only virus-positive and viral buffer control are presented.
doi:10.1371/journal.pone.0026564.g003
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Discussion

Using viral metagenomics a putative Nudivirus was discovered

to infect several species of Drosophila. The virus was termed

Drosophila innubila Nudivirus. Though the host specificity of the

virus is not yet known, the species name was retained for clarity.

This may need to be revised later. The abbreviation of Drosophila

innubila Nudivirus is problematic because conventions and practical

concerns in the Drosophila community are at odds with those in

the Nudivirus community. For example, with more than 2000

species of Drosophila, species abbreviations usually employ the first

three letters of the species name, Dinn for Drosophila innubila. In

addition to the Nudivirus described here, Drosophila is host to

Nora Viruses and Noda Viruses, so using NV could be confusing.

For those working on Drosophila, DinnNuV might be most

informative, although quite cumbersome. Following Nudivirus

conventions, the abbreviation would be DiNV. For the current

manuscript, the simpler DiNV will be used. While several RNA

viruses are well-characterized from D. melanogaster and its close

relatives [27,28], DiNV is the first report of a DNA virus in

Drosophila. As Drosophila are an important model for the study of

the molecular biology and evolution of immunity, this discovery

broadens the scope of host-pathogen interactions that can be

studied in the genus.

Drosophila innubila Nudivirus
DiNV is similar in sequence to the double-stranded DNA

viruses of the Nudivirus group, being most closely related to

OrNV, which infects rhinoceros beetles. Supporting the conclu-

sion that the virus discovered in D. innubila is a Nudivirus, electron

microscopy revealed viral particles in the feces of D. innubila similar

in fine structure to other described Nudiviruses.

DiNV is associated with greatly reduced survival and offspring

production among wild-caught individuals of D. innubila and with

greatly reduced offspring production in D. falleni. While this

association does not prove that these viruses cause the reduced

fitness, the data strongly suggest that DiNV is a highly pathogenic

infection. Furthermore, the prevalence of DiNV infection in

natural populations of D. innubila from the Chiricahua Mountains

of Arizona was consistently high, around 40%, in 2 successive

years, suggesting that this virus may cause a major reduction in

mean absolute fitness within this species. The prevalence of

infection was similarly high in other members of the quinaria

group – D. munda and D. tenebrosa – in collections from the

Chiricahua Mountains. The prevalence of infection within D.

falleni, a quinaria group species common in the eastern North

America, was much lower, around 3%. The frequency of infection

in species outside the quinaria group was more sporadic. Darren

Obbard has found a similar virus in the melanogaster group, but

his nucleotide sequences are about 25% diverged from those found

in this study (personal communication).

Microinjection of DiNV-positive filtrate into lab-reared flies

further suggests that the virus is highly pathogenic. Most flies

injected with the virus died within two weeks of injection. In both

species, males survived longer than females, and in both sexes, D.

falleni survived longer than D. innubila. The difference between

species may be due to size differences in flies (D. falleni used in the

experiment were larger than D. innubila and may therefore require

a higher virus titer for the same pathogenic effect), or could reflect

selection for increased virulence of the virus to its natural host,

since the virus injected was from D. innubila. The difference

between the sexes cannot be explained by size since males are

smaller and survived longer. Interestingly, overall and in the 2010

D. innubila collection, males had higher rates of infection than

females (see Table 4). This is consistent with the lower mortality in

males observed in the lab.

Vertical transmission of DiNV is unlikely to be important in the

population, since the rate of transmission from mothers to

offspring in the laboratory culture was ,5% in D. innubila. The

single instance of mother-offspring transmission may have

mediated via a fecal-oral route, as this is the predominant mode

of transmission in OrNV [41]. Further supporting fecal-oral

transmission, virus genes were PCR-amplified and virus particles

were found using electron microscopy in fly fecal material. Thus,

viral infections in natural populations may result from horizontal

transmission among adult flies and their offspring at their

mushroom feeding and breeding sites.

Phylogenetic analysis of the partial viral P47 shows that the

DiNV infecting D. innubila and D. falleni form closely related but

genetically distinct clades. Thus, DiNV is a geographically

widespread, prevalent, and pathogenic DNA virus for which

members of the Drosophila quinaria group appear to be

particularly important hosts.

A new protocol for virus discovery
One goal of the metagenomics survey was to show that the

protocol could detect virus in a single fly. In a 40-fly sample spiked

with a single fly infected with DCV, 2/3 of all reads had DCV as a

best hit, demonstrating a high level of sensitivity of the protocol.

The almost complete absence of such hits in the sample not spiked

with DCV attests to the specificity of the method. In addition to

DCV, our screen uncovered several putative viral sequences. The

most abundant of these were assigned to DiNV.

Given the success in recovering DCV from the spiked sample,

why weren’t more viruses found? Most sequences found some hits,

so although there could be some virus sequences in our dataset

with no homologs in the Refseq database, most sequences were

readily assignable. There are at least 3 other possibilities. First,

viral capsids may vary in their ability to protect viral RNA from

degradation by RNAse, allowing some viruses to go undetected.

Second, some viruses may be rare in D. innubila. Given that

Wolbachia may provide some protection against RNA virus

infection, the prevalence of RNA virus infection may be driven

down by Wolbachia in D innubila, making them harder to detect.

Finally, rare and virulent viruses may not have been present in the

sample of 80 flies used, since infection frequency and virulence are

usually assumed to be negatively correlated.

Most well-studied viruses of Drosophila have minor fitness effects

in flies that either inherit the virus vertically or contract it through

feeding, but greater effects when flies are injected with the virus

[28]. This lack of virulence is perhaps because those viruses that

are well-studied were discovered in cell culture or laboratory stocks

and are therefore by nature less virulent since stocks and cell lines

with very virulent viruses would not last long. This ascertainment

bias is lessened in surveys of natural populations since captured

flies could be quite sick. While we do not know the natural route of

infection for any Drosophila viruses (although some are at least

partly vertically transmitted), it is probably safe to conclude that

DiNV is not vertically transmitted and infection frequencies are

high enough that infection via mites (which are found at relatively

low frequency on D. innubila), the natural analog of microinjection,

is unlikely. Therefore, DiNV appears to be a virus exhibiting high

virulence without requiring a rather drastic injection to show such

effects.

The discovery of a DNA virus that naturally infects Drosophila

opens the way for study of host immune response to DNA virus

infection in an easily cultured species. The system also lends itself

to studies of host-pathogen coevolution between geographically
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isolated sister species and between semi-isolated Sky Island

populations of D. innubila.
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Material S1 Sequences for short DiNV orthologs of other
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Figure S1 Schematic of viral nucleic acid enrichment protocol.

Note there is no DNA digestion during the RNA extraction.

(EPS)

Figure S2 Distribution of BLAST hits corresponding to

Drosophila C virus according to position in the genome.
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Figure S3 The phylogenetic relationships of DiNV isolated from

Drosophila species collected near Portal, AZ (blue) and Rochester,

NY (red). Branch labels are posterior probability/maximum

likelihood bootstrap support.
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