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Abstract
Functional near-infrared spectroscopy (fNIRS) is a promising technique for non-invasively assessing cortical brain activ-
ity during learning. This technique is safe, portable, and, compared to other imaging techniques, relatively robust to head 
motion, ocular and muscular artifacts and environmental noise. Moreover, the spatial resolution of fNIRS is superior to 
electroencephalography (EEG), a more commonly applied technique for measuring brain activity non-invasively during 
learning. Outcomes from fNIRS measures during learning might therefore be both sensitive to learning and to feedback on 
learning, in a different way than EEG. However, few studies have examined fNIRS outcomes in learning and no study to 
date additionally examined the effects of feedback. To address this apparent gap in the literature, the current study examined 
prefrontal cortex activity measured through fNIRS during visuomotor learning and how this measure is affected by task 
feedback. Activity in the prefrontal cortex decreased over the course of learning while being unaffected by task feedback. 
The findings demonstrate that fNIRS in the prefrontal cortex is valuable for assessing visuomotor learning and that this 
measure is robust to task feedback. The current study highlights the potential of fNIRS in assessing learning even under 
different task feedback conditions.
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Introduction

Learning processes are most commonly examined using 
behavioral measures (Luu et al. 2009; Webb et al. 1966). 
In addition to behavioral changes taking place during learn-
ing, important changes take place in the brain. Cognitive 
adaptation takes place during learning with connectivity 
within brain networks and activity in specific brain areas 
being altered (Bassett et al. 2011; Nackaerts et al. 2019). 
The advantage of measurements of brain activity is that 
these measures provide insight not only into the outcome 
of learning but also into the learning process itself (Tinga 
et al. 2019, 2020b).

Brain activity can be measured non-invasively through 
brain imaging techniques that record cortical activity. Effects 
of learning on changes in cortical brain activity have been 
reported most frequently at parietal and frontal sites (Tinga 
et al. 2019). Regarding effects at frontal sites, the prefrontal 
cortex (PFC) may be an area of special interest for examining 
learning, as this brain area is involved in cognitive control 
over and coordination of thoughts and actions (Ayaz et al. 
2011) and mediates most higher cognitive functions includ-
ing learning new skills, rules and behavior (Leff et al. 2011; 
Wood and Grafman 2003). Additionally, the PFC has been 
linked to visuomotor sequence learning (Leff et al. 2011). 
During visuomotor sequence learning the correct order of 
movements needs to be acquired and executed while simulta-
neously optimizing sensorimotor parameters such as the tra-
jectory, timing and velocity of the movement (Penhune and 
Steele 2012). This type of learning plays an essential role 
as we acquire motor skills in our daily life (Moisello et al. 
2009). Visuomotor sequence learning is often contrasted 
with motor adaptation learning in which a learned movement 
needs to be adapted to a changed environment (Penhune and 
Steele 2012). To measure visuomotor sequence learning in 
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the lab, several experimental tasks have been developed. The 
most commonly applied paradigm in research is the serial 
reaction time task (SRT) (Nissen and Bullemer 1987). In this 
task, participants respond to stimuli successively appearing 
at different locations by making a spatially corresponding 
response. Unknown to the participants, the responses that 
need to be made follow a continuous complex sequence. 
Generally, performance on the SRT, conventionally meas-
ured through a number of correct responses and reaction 
times, improves over time, both due to implicitly learning 
the sequence of responses and due to learning the princi-
ples of the task. Regarding PFC activity during visuomotor 
learning, activity generally decreases as the task becomes 
less cognitively demanding and its execution becomes more 
automatic (Bassett et al. 2011; Wu et al. 2004).

A promising technique for assessing PFC activity in 
visuomotor learning is functional near-infrared spectroscopy 
(fNIRS), as this cortical area is imminently accessible using 
fNIRS (Leff et al. 2011). fNIRS measures cortical hemody-
namic activity through the use of near-infrared light. Specifi-
cally, near-infrared light is shone on the scalp, whereupon 
light absorption is measured and hemodynamic activity is 
inferred from attenuations in light levels (Leff et al. 2011). 
This technique is therefore based on the assumption that 
neural activation and dynamics of blood flow are coupled 
(León-Carrión and León-Domínguez 2012). fNIRS is safe, 
non-invasive, portable and, compared to other imaging 
techniques, relatively robust to head motion, ocular and 
muscular artifacts and environmental noise (Balardin et al. 
2017a, b). These properties make fNIRS a promising and 
versatile tool for studying brain activation not only in the 
laboratory but also in more natural settings. Yet, fNIRS 
is applied relatively infrequently as it is still a rather new 
measurement technique (Kopton and Kenning 2014). In our 
meta-analysis (Tinga et al. 2019) on studies examining neu-
rophysiological changes during learning within an 11-year 
window we found 69 experiments incorporating electroen-
cephalography (EEG) measures of brain activity compared 
to only four experiments using fNIRS. EEG has a temporal 
resolution superior to fNIRS, yet the spatial resolution of 
fNIRS is superior to EEG (Crosson et al. 2010; Zama and 
Shimada 2015). With fNIRS having its own strengths, it 
is surprising that the number of studies examining fNIRS 
is relatively low. Another systematic review on motor pro-
cesses and fNIRS (Leff et al. 2011) only reported five studies 
examining visuomotor learning using fNIRS, of which three 
reported effects in the PFC. While fNIRS holds promise in 
assessing (visuomotor) learning, it is clear there is a need 
for more studies examining this technique in learning (Leff 
et al. 2011; Tinga et al. 2019).

Measures of brain activity appear to be sensitive to 
task-related aspects such as the presentation of task feed-
back informing the trainee on performance. A considerable 

number of studies have examined the effect of task feed-
back on brain activity measured through EEG, demonstrat-
ing differences between for example positive and negative 
feedback(Arbel et al. 2014; Fairclough and Roberts 2011; 
Opitz et al. 2011; Venables and Fairclough 2009), imme-
diate feedback or feedback with a short delay (Opitz et al. 
2011), and feedback in younger and older adults (Eppinger 
and Kray 2011; Eppinger et al. 2008). Yet, to the best of 
our knowledge, studies examining the effects of task feed-
back during learning on fNIRS outcome measures are non-
existent.1 Consequently, in addition to the need for studies 
examining fNIRS in learning, it is important to explore the 
effects of task feedback during learning on fNIRS outcome 
measures.

In light of this need for studies, the goal of the current 
study is to assess PFC activity using fNIRS during visu-
omotor learning and examine how results are affected by 
feedback. In a recent study (Tinga et al. 2020a) we experi-
mentally manipulated whether participants were provided 
with direct feedback on task performance (Feedback) or 
not (No-Feedback) during a visuomotor sequence learning 
task. Additionally, half of the participants were presented 
with a switch in Feedback to No-Feedback or the other way 
around, while no switch occurred for the other half of the 
participants. A range of neurophysiological outcomes were 
measured including skin conductance level, heart rate, heart 
rate variability, respiration rate, eye tracking metrics and 
brain activity assessed through EEG. Changes during learn-
ing in these outcome measures were sensitive to feedback 
and especially to whether a switch in feedback occurred, 
while changes in behavioral outcome measures were not. 
Regarding EEG outcome measures specifically, only a gen-
eral effect of Feedback versus No-Feedback on alpha power 
was found, demonstrating a higher power with No-Feedback, 
suggesting lower cognitive effort investment without feed-
back during the task in general. Changes in EEG during task 
performance, which would be reflective of learning, were, 
however, not affected by (a change in) feedback. To gain 
insight into how brain activity as measured through fNIRS 
is affected by learning and how this is affected by feedback, 
the current study applies the same task as this previous study 
to examine (1) changes in brain activity during visuomo-
tor learning in activity in PFC measured using fNIRS, (2) 
whether these changes are affected by feedback and changes 
in feedback and (3) whether PFC activity assessed through 
fNIRS provides insight into behavioral learning.

1  Concluded based on a literature search conducted in the Web of 
Science database on November 5th 2019 using a combination of the 
search terms ‘learning’, ‘feedback’, ‘*NIR*’ and “near infrared spec-
troscopy” in addition to searching through all the cited literature in 
the current manuscript.
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We expected PFC activity to decrease and to be related to 
behavioral performance in the course of visuomotor learn-
ing, which would be in line with the findings on a range of 
neurophysiological outcome measures including EEG in a 
recent study by Tinga et al. (2020b) and in line with the 
notion that less cognitive effort needs to be exerted over the 
course of learning with behavioral performance improving 
over time as explained in Tinga et al. (2020c). Changes in 
PFC activity as assessed through fNIRS could be stronger 
when No-Feedback is presented. This would be in line with 
the findings on neurophysiology and brain activity in gen-
eral in the meta-analysis reported in Tinga et al. (2019) and 
experimental work demonstrating EEG to be sensitive to 
feedback as reported in Arbel et al. (2014), Fairclough and 
Roberts (2011), Opitz et al. (2011) and Venables and Fair-
clough (2009). It would also be in line with the notion that 
performance might be supported through feedback (Faulkner 
et al. 2011), leading to a stronger decrease in cognitive effort 
exertion over the course of learning. Alternatively, these 
changes may be unaffected by feedback, in line with the 
findings on EEG specifically in Tinga et al. (2020a).

Methods

Participants

Forty-two (28 female, 14 male) students at Tilburg Univer-
sity participated in the experiment of the current study. Par-
ticipants were on average 21.40 (SD = 2.44, range 18–26) 
years old. Participants were included if they reported no cur-
rent cardiovascular disease, neurological disorder, and lung 
disease (following Tinga et al. 2020a, b). None of the par-
ticipants reported to be colorblind. The study was approved 
by the Research Ethics Committee of Tilburg School of 
Humanities and Digital Sciences and was carried out in 
accordance with the Declaration of Helsinki. Informed con-
sent was obtained from all individual participants included 
in the study.

Apparatus and measures

The task was presented on a desktop monitor (BenQ Zowie 
XL2540, 1920 × 1080 pixels, 240 Hz refresh rate) using 
Unity 3D (version 2017.4.1). Participants used a joystick 
(Ultimarc UltraStik 360, mounted on the table 16 cm in front 
of the subjects’ body midline) to interact with the task. The 
coordinates of the position of the cursor were recorded at 
90 Hz.

A BIOPAC 100 W (BIOPAC Systems Inc, USA) continu-
ous wave wireless fNIRS device was used to measure PFC 
activity at 4 Hz. The device consisted of two sensor pads 
with each one LED light source emitting near-infrared light 

at 730 nm and 850 nm wavelengths, which are absorbed 
primarily by deoxygenated and oxygenated hemoglobin 
respectively. The sensor pads also each had two light detec-
tors (silicon photodiodes with integrated trans-impedance 
preamp), thus resulting in a total of four recording channels. 
The inside of both sensor pads was aligned with the nasion 
and the pads were placed right above the eyebrows, which 
would result in measurements of brain activity from the dor-
sal and inferior frontal cortical areas (Ayaz et al. 2006). Care 
was taken to avoid hair interfering with the light detectors 
and sources. fNIRS data was recorded in the software pro-
gram Cognitive Optical Brain Imaging (COBI) Studio (fNIR 
Devices, Potomac, MD, USA).

Learning task and stimuli

The learning task was comparable to the one employed in 
Tinga et al. (2020a, b) which is a version of SRT in which 
responses to targets needed to be made using arm move-
ments. The target stimuli to which participants needed to 
respond were eight white circles presented on a dark gray 
background. The circles had a diameter of 108 pixels and 
were evenly spaced apart at 360 pixels from the center of the 
screen. Additionally, a white circle with a diameter of 108 
pixels was presented in the center of the screen.

The learning task consisted of two parts. In both parts, 
participants moved the cursor (black small circle with a 
diameter of 33 pixels) with the joystick from the middle of 
the screen to one of the targets and back to the middle. The 
target for the movement was selected by one of the white 
circles turning light gray. Target selection was always in 
synchrony with a 160 ms tone (presented via headphones) 
at an interval of 1 s. The first and the second part began with 
16 and 8 practice trials respectively and each part consisted 
of 4 learning blocks, each with 128 trials of 1 s. Targets for 
movements were selected in a repeating sequence of 16 ele-
ments in which each target was selected twice. Two of such 
sequences were used, one in each of the two parts, with the 
order of the two counterbalanced between participants.

In each of the two parts of the task feedback was provided 
in each trial (Feedback), or in none of the trials (No-Feed-
back). In Feedback trials, the selected target turned green for 
700 ms when the cursor hit the target correctly and it turned 
red for 700 ms when hit incorrectly. In No-Feedback trials, 
the target never changed color when hit by the cursor. The 
pace of the task was rather fast, with each trial only lasting 
1 s and trials within one block following each other without 
any break. A target turned light gray for the complete dura-
tion of the trial (1 s) or until it was hit by the cursor. For 
responses to be correct, a participant had to move from the 
middle of the screen to the target within a single second. 
Therefore, it was more difficult for a participant to establish 
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whether the response as a whole was correct or incorrect 
without any feedback.

Procedure

After obtaining written and verbal informed consent, partici-
pants filled out a questionnaire on demographics. The fNIRS 
sensor pads were placed on the participants (Fig. 1, left), an 
eye tracker was calibrated, and data collection of the fNIRS 
device and eye tracker were started.2 First, participants sat 
calmly and still with their eyes fixated on a black fixation 
cross on a dark gray background for three minutes.

Subsequently, the learning task (Fig. 1, right) was started 
for which participants were instructed to move the cursor 
using the joystick as fast and accurately as possible and to 
reverse sharply within the target circle back to the middle. 
Participants either performed No-Feedback trials or Feed-
back trials in both parts of the task (No Switch) or they 
performed No-Feedback trials in the first part of the task and 
Feedback trials in the second part of the task or the other 
way around (Switch). This resulted in four different groups 
of participants of which one group received feedback in both 
parts of the task, one did not receive feedback in both parts 
of the task, one only received feedback in the first (and not in 
the second) part of the task and one only received feedback 
in the second (and not in the first) part of the task. Partici-
pants were assigned to one of the groups using block rand-
omization to take individual difference factors into account 
and to ensure every possible combination was used an equal 
number of times (Goodwin 2009). A schematic overview of 
the current study’s procedure is depicted in Fig. 2.

After completing the learning task, participants were 
asked to indicate the (most common) order in which the 
circles were selected as a target for each of the two parts of 
the task separately to test their declarative knowledge of the 
presented sequences, following Moisello et al. (2009) and 
Tinga et al. (2020a, b). Participants were instructed to guess 
if they did not recall the order. The experimental session, 
including setting up and removing the fNIRS sensors, took 
about 60–70 min per participant.

Data processing and analyses

Processing of behavioral data

We computed multiple behavioral outcome measures to gain 
better insight into what aspects of the learning process are 
reflected in fNIRS outcome measures and followed Moisello 
et al. (2009) in computing a range of behavioral outcomes 
per trial: (1) whether the response on a trial was correct (i.e., 
when a movement was initiated from the middle and when 
the selected target was hit within 1 s); (2) time from the start 
of trial until the start of movement (onset time, OT); (3) time 
from the start of movement until the end of the movement 
(movement time, MT); (4) sum of the absolute OT and MT 
(response time, RT); (5) maximum speed of displacement 
between OT and end of the movement (peak velocity, PV); 
(6) linear distance from the endpoint of the movement and 
the center of the target (spatial error, SE), (7) the area in 
which the cursor moved divided by the squared movement 
length (normalized movement area, NMA).

Processing of fNIRS data

Collected fNIRS data were processed using the software 
program fnirSoft (Ayaz 2010). First, data were low-passed 
filtered with a finite impulse response filter with a cut-off 
frequency of 0.1 Hz to attenuate high-frequency noise and 
respiratory and cardiac noise (Izzetoglu et al. 2007). Next, 
a sliding-window motion artifact rejection (SMAR) algo-
rithm was applied to eliminate motion artifacts and to reject 

Fig. 1   Schematic depiction of the placement of the two fNIRS sen-
sor pads (left) above the eyebrows with the inside of both sensor pads 
aligned with the nasion and the learning task (right) with the joystick 
mounted on the table and the task presented on the monitor (cursor in 
black, the eight targets spaced at an equal distance from the middle 
with one selected target being darker)

Fig. 2   Schematic of the study design. Dark boxes depict the two parts 
of the task, in which ‘B’ in a lightbox stands for a block with 128 tri-
als. In each part of the task participants either got direct feedback on 
their performance (Feedback) or not (No-Feedback)

2  For the purpose of the current study, data collected by the eye 
tracker was not included.
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problematic channels (Ayaz et al. 2010). Blood oxygenation 
and volume changes for each optode for each block were 
calculated using the Modified Beer–Lambert Law using a 
3 s local baseline in the resting period before the start of 
each block. Neuronal activation induces an increase in meta-
bolic demand and regional cerebral blood flow which causes 
an increase in oxygenated hemoglobin and a decrease in 
deoxygenated hemoglobin (Kamran et al. 2016). Changes 
in both oxygenated and deoxygenated hemoglobin are 
required for functional activation and therefore both indices 
are important to consider. Changes in oxygenation ([oxygen-
ated hemoglobin] – [deoxygenated hemoglobin]; OXY) and 
total hemoglobin ([oxygenated hemoglobin] + [deoxygen-
ated hemoglobin]; HbT) concentrations in micromolar (µM) 
were both calculated for further analyses, as both indices 
have been reported to be sensitive to training-related pro-
cesses (Ayaz et al. 2012a, b). With increased cerebral blood 
flow HbT is thought to increase (Tachtsidis et al. 2009) 
and with increased oxygenation levels OXY is thought to 
increase (Gentili et al. 2013). As we expected PFC activity 
to decrease during learning, we expect both HbT and OXY 
to decrease over the current experiment’s learning task.

Statistical analyses

A declarative knowledge score was determined for each par-
ticipant for each part of the task (i.e. Task Part 1 and Task 
Part 2) by computing the maximum overlap (in percentages) 
between the order of the sequence indicated by participants 
at the end of the experiment and the real sequence (of 16 
targets).

Behavioral outcomes were averaged for each block. Aver-
ages for OT, MT, RT, PV, SE, and NMA were determined 
for correct trials only. Regarding the fNIRS data, average 
OXY and HbT changes over all four optodes were computed 
for each block.

To determine whether the block randomization was suc-
cessful, we verified that the different groups of participants 
did not differ in age, gender and in baseline HBT and OXY 
by using logistic regression to test the effect of group on gen-
der and using one-way ANOVAs to test the effect of group 
on age and on baseline HBT and OXY.

For all behavioral outcomes, we first tested the effect of 
the block on each outcome measure for each of the two parts 
separately. Subsequently, we tested the effect of task part on 
all behavioral outcome measures to assess learning over the 
whole experiment. The overall effect of the type of feedback 
(Feedback versus No-Feedback) was tested over all blocks. 
The effect of feedback on learning was tested through the 
interaction of task part with feedback. To assess the effect of 
(a switch in) feedback on learning we specifically examined 
the interaction with task part instead of task block as (switch 
in) type of feedback was manipulated for task parts.

Regarding the effects on the changes in OXY and HbT, 
we repeated the analyses on behavioral outcomes for these 
fNIRS outcomes to determine whether these outcomes 
change over the experiment during learning and what the 
effect of (a switch in) feedback is. Subsequently, it was 
tested whether effects on OXY and HbT were indeed spe-
cific to learning by examining the relationship overall blocks 
between these outcomes and behavioral outcomes.

All analyses on the effect of task part, block and feedback 
were performed with linear mixed-effects models analyses 
using lme in R (R Core Team 2017) with subject as random 
factor. The main effects of task part and block were tested 
with both whether feedback was provided and whether a 
switch in feedback occurred as random factors. Significant 
interactions were followed-up with post-hoc pairwise com-
parisons through applying the R-package emmeans with a 
Bonferroni correction to the mixed-effects models of the 
significant interactions.

Results and discussion

Out of the 42 participants, 3 participants (7.14% of the 
data) were excluded, based on 2 criteria established in pre-
vious research. First, two participants achieved a declara-
tive knowledge score above 40% (i.e., having a maximum 
overlap between the real and indicated order of 7 or more) 
in one of the two parts of the task. One participant achieved 
a declarative knowledge score of 43.75% in the first part 
of the task and the other achieved a declarative knowl-
edge score of 68.75% in the second part of the task. These 
participants were excluded from further analyses, follow-
ing the exclusion criteria also used by Curran and Keele 
(1993), Moisello et al. (2009), Tinga et al. (2020a, b) and 
Willingham et al. (1989). A declarative knowledge score 
of more than 40% is seen as significant and might influ-
ence the results as learning of the sequence would not be 
implicit for these participants (Moisello et al. 2009). Of the 
40 remaining participants, the average declarative score was 
14.88% (SD = 3.93%, range = 12.50–25.00%) and 15.31% 
(SD = 4.23%, range = 6.25–25.00%) for the first and second 
block respectively. A paired samples t test demonstrated no 
significant difference between the declarative knowledge 
scores in Part 1 and Part 2, t = 1.11, p = 0.269. Second, in 1 
participant it could not be established that behavioral learn-
ing actually took place with performance deteriorating over 
time instead of improving. As an increase in behavioral 
performance over time would be evident in learning (Tinga 
et al. 2019) this participant was therefore removed from all 
further analyses.

The quality of the recorded fNIRS data was checked 
for the 39 remaining participants. The SMAR algo-
rithm excluded data for one optode (out of four optodes) 
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completely for four participants for all blocks. All other 
fNIRS data that remained were included for further analyses.

There were no significant differences between par-
ticipants in the different groups in age (p = 0.537), gender 
(p = 0.322) and in baseline OXY (p = 0.234) and in baseline 
HBT (p = 0.803), demonstrating that the block randomiza-
tion was successful.

Behavioral effects

Learning effects

The details of all behavioral effects (F, p, ηp
2) over blocks 

in the first and second part of the task and from the first 
to the second part of the task are presented in Table 1 in 
columns 1–3. Specifics regarding statistically significant 
effects will be reported in this section. As an illustration of 
changes in behavioral performance, changes over blocks in 
correct responses, OT, PV and NMA are depicted in Fig. 3. 
As expected, performance improved over time during task 
learning. Correct responses increased by 17.13% within 
the first part of the task and by 9.12% from the first to the 
second part of the task, F = 56.51, p < 0.001, ηp

2 = 0.33 and 
F = 68.60, p < 0.001, ηp

2 = 0.20, respectively. OT decreased 
by 36.45 ms within the first part of the task and by 30.83 ms 
from the first to the second part of the task, F = 16.13, 
p < 0.001, ηp

2 = 0.12 and F = 43.75, p < 0.001, ηp
2 = 0.14 

respectively. MT increased by 19.69 ms within the first part 
of the task and RT decreased by 28.12 ms from the first to the 
second part of the task, F = 21.80, p < 0.001, ηp

2 = 0.16 and 
F = 29.21, p < 0.001, ηp

2 = 0.10, respectively. PV decreased 
by 167.87 pixels per second within the first part of the task, 
F = 34.46, p < 0.001, ηp

2 = 0.23, by 65.88 pixels per second 
within the second part of the task, F = 10.96, p = 0.001, 
ηp

2 = 0.09, and by 78.90 pixels per second from the first to 
the second part of the task, F = 35.54, p < 0.001, ηp

2 = 0.12. 
SE decreased by 172.90 pixels within the first part of the 

task, F = 66.24, p < 0.001, ηp
2 = 0.36, by 20.52 pixels within 

the second part of the task, F = 4.53, p = 0.035, ηp
2 = 0.04 

and by 77.32 pixels from the first to the second part of the 
task, F = 52.75, p < 0.001, ηp

2 = 0.16. NMA decreased with 
2.35% within the first part of the task and with 2.85% within 
the second part of the task, F = 17.07, p < 0.001, ηp

2 = 0.13 
and F = 20.18, p < 0.001, ηp

2 = 0.15, respectively. The results 
demonstrate that behavioral improvements mainly occurred 
within the blocks of the first part of the task and from the 
first to the second part of the task, with for example correct 
responses and OT improving clearly within Part 1, while 
outcome measures such as PV and NMA improved both dur-
ing Part 1 and Part 2 as can be seen in Fig. 3. Although it 
could be expected that behavioral learning would take place 
across both task parts, it appears that most (i.e., 6 out of 7) 
behavioral outcome measures only improved within the first 
part of the task. Yet some behavioral learning also took place 
in the second part of the task as demonstrated by 3 out of 
7 behavioral outcome measures also improving within Part 
2. This finding does fit the results of Tinga et al. (2020b), a 
study whose design is most similar to the current study, in 
which the behavioral learning curve on a comparable SRT 
was also the steepest at the beginning of the task. Overall, 
over the course of the task behavioral performance became 
more correct with shorter movement onset times and total 
response times, while peak velocity decreased. Addition-
ally, behavioral responses became more precise with both a 
decrease in spatial error and the total movement area.

Effects of feedback

Details (F, p, ηp
2) for main effects of feedback and the 

interaction between task part and feedback effects on each 
behavioral outcome measure are presented in Table 1 in 
columns 4–6. In line with previous findings (Tinga et al. 
2020a), feedback in general influenced overall behavioral 
performance. This effect was statistically significant for 

Table 1   Behavioral effects (F, p, ηp
2) of feedback and task part and its interaction with feedback

***p < 0.001, **p < 0.01, *p < 0.05

Outcome measure Block part 1 Block part 2 Task part Feedback Interaction 
feedback and 
task part

F ηp
2 F ηp

2 F ηp
2 F ηp

2 F ηp
2

Number of correct responses (correct) 56.51*** 0.33 0.41 0.00 68.60*** 0.20 11.65*** 0.04 4.93* 0.02
Onset time (OT) 16.13*** 0.12 0.04 0.00 43.75*** 0.14 6.87** 0.02 0.58 0.00
Movement time (MT) 21.80*** 0.16 0.02 0.00 1.82 0.01 47.95*** 0.14 4.18* 0.01
Response time (RT) 3.65 0.03 0.02 0.00 29.21*** 0.10 24.63*** 0.08 1.75 0.01
Peak velocity (PV) 34.46*** 0.23 10.96** 0.09 35.54*** 0.12 40.74*** 0.13 0.73 0.00
Spatial error (SE) 66.24*** 0.36 4.53* 0.04 52.75*** 0.16 10.64** 0.03 3.17 0.01
Normalized movement area (NMA) 17.07*** 0.13 20.18*** 0.15 0.47 0.00 1.09 0.00 0.57 0.00
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most of the behavioral outcome measures, these significant 
effects will be detailed in this section. Number of correct 
responses was 3.41% lower with Feedback than with No-
Feedback, F = 11.65, p < 0.001, ηp

2 = 0.04. Additionally, 
OT was 6.40 ms higher, MT was 5.61 ms lower, and RT 
was 1.93 ms higher with Feedback, F = 6.87, p = 0.009, 
ηp

2 = 0.02, F = 47.95, p < 0.001, ηp
2 = 0.14 and F = 24.63, 

p < 0.001, ηp
2 = 0.08 respectively. PV was 113.89 pixels 

per second higher and SE was 44.29 pixels higher with 
Feedback, F = 40.74, p < 0.001, ηp

2 = 0.13 and F = 10.64, 
p = 0.001, ηp

2 = 0.03 respectively. These findings demon-
strate that throughout the experiment feedback was associ-
ated with movements that started later but that were faster 
with a higher peak velocity. Yet, the spatial error was higher 
and responses were less correct with feedback, a finding 
that is in contrast to those demonstrating that feedback 
compared to no feedback enhances behavioral performance 

(Faulkner et al. 2011). The fact that feedback led to less 
correct responses and a higher spatial error in the current 
study can perhaps be explained by findings showing that 
trial-by-trial feedback might be distracting, especially when 
participants have a good sense of the task and their perfor-
mance (Stanton and Young 2000), or by findings showing 
that feedback about the outcome of an action can reduce 
motivation (Kluger and Adler 1993).

In addition to the general effects of feedback, we also 
examined how learning was affected by feedback. Feedback 
interacted with task part for number of correct responses and 
MT, F = 4.93, p = 0.027, ηp

2 = 0.02 and F = 4.18, p = 0.042, 
ηp

2 = 0.01 respectively. Post-hoc pairwise comparisons dem-
onstrated that the number of correct responses increased 
from Part 1 to Part 2 with Feedback or No-Feedback in both 
parts and with Feedback in Part 1 and No-Feedback in Part 
2, all t ≥ 2.78 and all p < 0.035. Yet, the number of correct 

Fig. 3   Overview of changes in correct responses (upper left, proportion correct), OT (upper right, seconds), PV (lower left, pixels per second), 
and NMA (lower right) per block. Error bars represent standard error of the mean
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responses did not increase when No-Feedback was pre-
sented in Part 1 and Feedback in Part 2, t = 2.02, p = 0.266. 
Additionally, participants had more correct responses in 
Part 1 with No-Feedback compared to Feedback, t = 4.05, 
p < 0.001, yet no differences in correct responses between 
No-Feedback and Feedback were found in Part 2, t = 0.82, 
p = 1.000. These findings demonstrate that responses became 
more correct over blocks unless there was a switch from No-
Feedback in Part 1 to Feedback in Part 2, which might have 
been caused by responses being more correct in Part 1 when 
no feedback was provided. Regarding MT, post-hoc pairwise 
comparisons showed a significant difference for all 4 pos-
sible comparisons between Feedback and No-Feedback, all 
t ≥ 3.21 and all p ≤ 0.009, but with no difference between 
Part 1 with Feedback and Part 2 with Feedback and no dif-
ference between Part 1 with No-Feedback and Part 2 with 
No-Feedback, all t < 2.45 and all p ≥ 0.09. These findings 
reflect that MT was higher with No-Feedback in general, 
but that there was no significant decrease in MT from Part 1 
to Part 2 when there was no switch in the type of feedback.

fNIRS effects

Learning effects

The average OXY and HbT changes per block are depicted 
in Fig. 4. The details of all effects (F, p, ηp

2) over blocks on 
OXY and HbT in the first and second part of the task and 
from the first to the second part of the task are presented 
in Table 2 in columns 1–3. Specifics regarding statistically 
significant effects will be reported in this section. OXY 
decreased with 0.34 µM within the first part of the task, 
F = 4.56, p = 0.035, ηp

2 = 0.04. HbT decreased with 0.21 µM 
within the first part of the task and with 0.18 µM from the 
first to the second part of the task, F = 4.51, p = 0.036, 

ηp
2 = 0.04 and F = 5.22, p = 0.023, ηp

2 = 0.02 respectively. 
Even though OXY seems to change within the second part 
of the task (see Fig. 4), effects over blocks within this second 
part and from the first to the second part were not significant. 
The significant changes in fNIRS outcomes suggest that less 
cognitive effort needed to be exerted overtime during learn-
ing. As HbT decreased both within the first part of the task 
and over the two task parts, HbT might be more sensitive to 
learning than OXY.

Effects of feedback

Details (F, p, ηp
2) for main effects of feedback and the inter-

action between task part and feedback effects on both OXY 
and HbT are presented in Table 2 in columns 4–6. Both 
fNIRS outcomes were not sensitive to feedback. This finding 
suggests that fNIRS is unaffected by task feedback.

Relationship with behavioral outcome measures

Details (ηp
2) for all effects on the relationship between the 

fNIRS outcome measures and behavioral performance 
overall blocks are presented in Table 3. Specifics regard-
ing statistically significant effects will be reported in this 
section. A decrease in HbT was related to an increase in 
correct responses and a decrease in SE, F = 11.50, p < 0.001, 
ηp

2 = 0.04 and F = 12.34, p < 0.001, ηp
2 = 0.04 respectively. 

Although HbT was related to behavioral performance, no 
such relationship was found for OXY. These results sug-
gest that changes in HbT (but not OXY) are coinciding with 
changes in behavioral performance. Considering the finding 
that HbT was also more sensitive to changes over time than 
OXY, HbT seems to be a more suitable outcome measure for 
measuring learning effects in the current task.

Fig. 4   Overview of changes in OXY (left) and HbT (right) per block. Error bars represent standard error of the mean
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General discussion

fNIRS is a promising technique for assessing PFC activity 
in learning (Leff et al. 2011). As changes in brain activity 
during learning are thought to be affected by (a change in) 
whether feedback is provided or not (Tinga et al. 2019), 
brain activity as assessed through fNIRS might poten-
tially be sensitive to feedback. Yet, only a few studies have 
examined fNIRS outcomes in learning and studies addi-
tionally examining the effects of feedback are non-existent. 
To address this gap in the literature, the goal of the cur-
rent study was to examine PFC activity measured through 
fNIRS during visuomotor learning and to examine how 
results are affected by feedback and a change in feedback.

Activity in the PFC as measured through fNIRS sig-
nificantly decreased within the first and second part of 
the task and from the first to the second part. This finding 
is consistent with results of previous studies on fNIRS 
specifically (Ayaz et al. 2012a, b; Leff et al. 2011; Sagari 
et al. 2015; Tinga et al. 2019) and previous studies on EEG 
(Tinga et al. 2019, 2020a) and suggests that less cogni-
tive effort needed to be exerted over the course of learn-
ing. Additionally, changes in PFC activity were related 
to behavioral performance, suggesting that these changes 
coincide with behavioral learning, which fits with previous 
studies demonstrating a relationship between behavioral 
performance and fNIRS specifically during visuomotor 
learning (Ayaz et al. 2012a) and brain activity as meas-
ured through EEG (Hamame et al. 2011; Moisello et al. 
2013; Nikolaev et al. 2016; Tan et al., 2016; Tinga et al. 
2019, 2020b).

In the current study, learning effects were more pro-
nounced on HbT than on OXY, suggesting that HbT might 
be more sensitive to learning than OXY. A previous study 
by Ayaz et al. (2012a) employing fNIRS in the PFC to study 
visuomotor learning during a flight simulator task only 
reported changes in HbT, while another previous study by 
Ayaz et al. (2012b) only reported changes in PFC in OXY 
during learning of a similar flight simulator task. While Har-
rison et al. (2014) explicitly reported computing both OXY 
and HbT changes in PFC during air traffic monitoring learn-
ing, the authors only presented results on OXY, with changes 
occurring over the course of learning. Thus, although both 
OXY and HbT are features computed based on oxygenated 
and deoxygenated hemoglobin, it is still unclear which of the 
two features is most suitable for gaining insight into learn-
ing. HbT is mostly related to cerebral blood flow, while OXY 
is mostly related to oxygenation levels (Gentili et al. 2013; 
Tachtsidis et al. 2009), with changes in brain activity induc-
ing changes in both OXY and HbT. We recommend future 
studies to include both features to contribute to establishing 
which one is the most suitable under what circumstances.
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Changes in both OXY and HbT during learning were 
unaffected by feedback. This result is consistent with 
findings on EEG in our previous experiment (Tinga et al. 
2020a) in which changes in EEG activity over the course 
of visuomotor learning were also unaffected by feedback. 
Yet, these findings are in contrast to the finding demon-
strated through meta-analysis that neurophysiological 
changes, including changes in brain activity, during learn-
ing are affected by feedback (Tinga et al. 2019) and to 
findings from experimental work demonstrating EEG is 
affected by different types of feedback (Arbel et al. 2014; 
Fairclough and Roberts 2011; Opitz et al. 2011; Vena-
bles and Fairclough 2009). Although the findings of the 
current study suggest that PFC activity measured through 
fNIRS during visuomotor learning is unaffected by feed-
back, it might be the case that different types of feedback 
manipulation would have different effects. For example, 
the current study presented participants both with positive 
and negative feedback for correct and incorrect responses 
respectively. Feedback reflecting actual performance obvi-
ously has more ecological validity and it has been demon-
strated that it enhances the learning of new (motor) skills 
compared to ‘false’ feedback not reflecting actual task 
performance (Hirst et al. 2013; Mackworth 1964; Palmer 
et al. 2015). Yet, as previous research established differ-
ent effects on EEG of positive versus negative feedback 
while generally presenting participants with false feed-
back (Arbel et al. 2014; Fairclough and Roberts 2011; 
Venables and Fairclough 2009), effects of feedback on 
fNIRS could be different when presenting either only false 
positive or negative feedback not reflective of actual task 
performance.

Another aspect possibly affecting the fNIRS results in 
the current study may be the fact that behavioral perfor-
mance primarily improved in the first part of the learning 
task, while improvements were less evident in the second 
part of the task. Effects of learning on fNIRS outcome 
measures might be more pronounced with a steep learn-
ing curve throughout the complete learning task. Addi-
tionally, behavioral performance was less correct with 
an increased spatial error with feedback compared to no 
feedback. Feedback has the potential to improve behav-
ioral performance (Faulkner et al. 2011) and the effects 
of feedback leading to improvements could have differ-
ent effects on fNIRS outcome measures. Therefore, future 
studies may examine effects on fNIRS outcome measures 

with a different study design attaining different effects on 
behavioral performance.

Moreover, while the current study only examined PFC 
activity, changes during visuomotor learning have also been 
reported with fNIRS in other brain areas, such as the sup-
plementary motor area and the pre-supplementary motor 
area (Hatakenaka et al. 2007; Sagari et al. 2015) and the sen-
sory-motor cortex (Hatakenaka et al. 2007; Hiyamizu et al. 
2014; Ikegami and Taga 2008; Sagari et al. 2015). Effects of 
visuomotor learning on brain activity are not only reflected in 
reduced activity suggesting a decrease in the cognitive effort; 
enhanced brain activity during learning has also been demon-
strated. For example, activity in the supplementary motor area 
has been demonstrated to increase during visuomotor learn-
ing (Hatakenaka et al. 2007; Hiyamizu et al. 2014), which is 
thought to be related to skilled motor execution in particular 
(Hatakenake et al. 2007). Therefore, an interesting endeavor 
for future work is to examine other cortical brain areas as well 
and to examine whether learning as assessed through fNIRS 
in other cortical areas is affected by task feedback reflecting 
actual performance.

The current study is the first to explore PFC activity meas-
ured through fNIRS during visuomotor learning and the 
effects of task feedback. All in all, the findings demonstrate 
that fNIRS in the PFC is valuable for assessing visuomotor 
learning and that this measure is robust to task feedback. The 
current study highlights the potential of fNIRS in assessing 
learning even under different task feedback conditions and 
when changes in task feedback occur.
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Table 3   fNIRS explanatory 
power (ηp

2) in behavioral 
outcome measures

***p < .001

Outcome measure ηp
2 Correct ηp

2 OT ηp
2 MT ηp

2 RT ηp
2 PV ηp

2 SE ηp
2 NMA

Oxygenation (OXY) 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Total hemoglobin (HbT) 0.04*** 0.00 0.00 0.00 0.01 0.04*** 0.01
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