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ABSTRACT Here, we sought to test the resistance of human pathogens to unaltered
environmental free-living amoebae. Amoebae are ubiquitous eukaryotic microorganisms
and important predators of bacteria. Environmental amoebae have also been proposed
to serve as both potential reservoirs and training grounds for human pathogens.
However, studies addressing their relationships with human pathogens often rely on a
few domesticated amoebae that have been selected to feed on rich medium, thereby
possibly overestimating the resistance of pathogens to these predatory phagocytes.
From an open-air composting site, we recovered over 100 diverse amoebae that were
able to feed on Acinetobacter baumannii and Klebsiella pneumoniae. In a standardized
and quantitative assay for predation, the isolated amoebae showed a broad predation
spectrum, killing clinical isolates of A. baumannii, K. pneumoniae, Pseudomonas aeruginosa,
and Staphylococcus aureus. Interestingly, A. baumannii, which was previously reported to
resist predation by laboratory strains of Acanthamoeba, was efficiently consumed by closely
related environmental amoebae. The isolated amoebae were capable of feeding on highly
virulent carbapenem-resistant or methicillin-resistant clinical isolates. In conclusion, the nat-
ural environment is a rich source of amoebae with broad-spectrum bactericidal activities,
including against antibiotic-resistant isolates.

IMPORTANCE Free-living amoebae have been proposed to play an important role in host-
ing and disseminating various human pathogens. The resistance of human pathogens to
predation by amoebae is often derived from in vitro experiments using model amoebae.
Here, we sought to isolate environmental amoebae and to test their predation on diverse
human pathogens, with results that challenge conclusions based on model amoebae. We
found that the natural environment is a rich source of diverse amoebae with broad-spec-
trum predatory activities against human pathogens, including highly virulent and antibiotic-
resistant clinical isolates.

KEYWORDS amoebae, bactericidal activity, Gram-negative bacteria, host-pathogen
interactions

Amoebae are unicellular eukaryotic microorganisms that are found in natural aquatic
and terrestrial environments in temperate climates but also in more extreme environ-

ments such as polar melt water, arid land, and tropical forests (1, 2). These protists move
and feed by emitting cytoplasmic extensions called pseudopods. While some, such as
Entamoeba histolytica, are parasitic (3), others that do not depend on a host are classified as
free-living (1). Amoebae have at least a two-step life cycle, i.e., the trophozoite form and the
cyst form (4). The trophozoite form is a vegetative state during which the cells are metabol-
ically active, move, feed, and reproduce (4). Under adverse environmental conditions (such
as osmotic stress, temperature, pH, predators, or antagonistic compounds), the amoebae
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can adopt a quiescent form, the cyst, in order to persist in their environment. Once favorable
conditions return, they can excyst back to the trophozoite form. In the environ-
ment, amoebae graze naturally on bacteria, fungi, or other protists, which they
engulf by phagocytosis into digestive vacuoles (1, 5).

Thus, amoebae are predators that naturally regulate populations of multiple microor-
ganisms in the environment and play an important ecological role (5, 6). However, the
relationships of amoebae and bacteria are complex and can extend to mutualistic and
parasitic interactions (2, 7). While predatory interactions can have ecological implications
(8), parasitic interactions have attracted considerable interest in biomedical research.
Indeed, some parasitic amoeba-resistant bacteria are also human pathogens (9), high-
lighting a role of amoebae as reservoirs and/or means of dissemination (10) but also as a
training ground for pathogens (11). The latter hypothesis primarily resulted from the ob-
servation that amoebae could support the growth of the human pathogen Legionella
pneumophila (12) and that this pathogen uses the same mechanisms to survive and to
replicate in human macrophages (13). It is now well established that amoebae are true
natural hosts and reservoirs of Legionella and that grazing by these environmental pred-
ators has selected for traits that are also required to infect and to kill human phagocytes
(14). Beyond L. pneumophila, it has been proposed that adaptation and resistance to
trophic interactions can select for traits that can contribute to pathogenesis in mamma-
lian hosts (15). Accordingly, well-characterized and easy-to-grow amoebae, such as
Acanthamoeba castellanii and the social amoeba Dictyostelium discoideum, have
emerged as models to identify factors contributing to virulence in mammalian hosts
(16). For instance, they allowed the identification of the now highly studied type VI secre-
tion system (17) and the contribution of the capsule of Klebsiella pneumoniae to resist-
ance to phagocytosis by D. discoideum, which also plays a role in resistance to human
neutrophils (18). A number of studies used the same domesticated amoebae to test the
hypothesis that human pathogens, such as Helicobacter pylori, Vibrio cholerae, pathogenic
Escherichia coli, Mycobacterium avium, Listeria monocytogenes, Staphylococcus aureus, and
Coxiella burnetii, could resist predation by related environmental amoebae (19–32). While
H. pylori could indeed be recovered from natural isolates of amoebae (33), associations of
most other pathogens with amoebae in natural environments are often not available (2).
Studies aimed at finding associations of amoebae and bacteria in natural settings have
reported that Legionella, Mycobacterium, Chlamydia, and Pseudomonas species are the most
common bacteria found coexisting with amoebae (2, 34). It may be that the use of domesti-
cated amoebae, which have been selected to feed on liquid medium rather than on bacteria,
tends to overestimate the resistance of other pathogens to amoebae in the environment.
Owing to the difficulties of identifying negative associations in natural settings, the ability of
amoebae to predate on human pathogens is possibly underestimated.

In this study, we aimed to test the hypothesis that environmental amoebae can predate
on a wide range of human pathogens, including multidrug-resistant strains. We used a cul-
ture-based approach to obtain undomesticated amoebae based on their capacity to feed
on specific species, and we characterized their predatory activity against other bacterial spe-
cies and diverse clinical isolates harboring distinct virulence traits and often resistance to anti-
biotics. Amoebae predating on human pathogens were found in five genera, Tetramitus,
Acanthamoeba, Vermamoeba, Vahlkampfia, and Stemonitis. Interestingly, pathogens previously
reported as resisting predation by domesticated amoebae were found to be consumed by
natural isolates of the same amoebal genera/species. Most amoebae could predate on multi-
ple pathogens (Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa,
and Staphylococcus aureus), regardless of presumed virulence traits or antibiotic resistance.
Specifically, one isolate presented high levels of predatory activity against all tested patho-
gens, decimating outnumbering antibiotic-resistant bacterial populations by up to 6 orders of
magnitude in 24h. This study documents the characteristics of trophic interactions between
diverse undomesticated amoebae and bacteria. Voracious amoebae with high levels of preda-
tory activity may represent an untapped resource to control and fight populations of antibi-
otic-resistant pathogens.
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RESULTS
Isolation and identification of amoebae feeding on multidrug-resistant bacteria.

We set out to isolate amoebae based on their ability to feed on two multidrug-resistant
bacterial human pathogens, A. baumannii and K. pneumoniae. Two K. pneumoniae clinical
isolates were selected, strain zt246 and 26425, with the latter producing an extended-spec-
trum b-lactamase (ESBL). A. baumannii strain AB5075 is a clinical isolate that is resistant to car-
bapenems. In order to facilitate microscopic observation, we genetically modified it to produce
the superfolder green fluorescent protein (GFP); here, it is referred to as AB5075F. In order to
test a possible role of capsule production in resistance to amoebal predation (18), we obtained
a strain with a spontaneous mutation in the wzc gene, here designated AB5075F-M, which
forms highly mucoid colonies and constitutively expresses a thick capsule (see Fig. S1 in the
supplemental material). The two K. pneumoniae isolates and the two A. baumannii strains
were then used as food source to isolate amoebae from a compost sample. In a first isolation
campaign, suspensions of the diluted compost samples were deposited on nonnutritive agar
(NNA) plates coated with either the parental or mucoid strains. This resulted in the isolation of
57 amoebae with the ability to grow using A. baumannii as their sole nutrient source (Fig. 1,
open and solid blue circles). Of these, 28 were isolated in the presence of the A. baumannii
AB5075F strain (Fig. 1, solid blue circles), while the remaining 29 were obtained with the con-
stitutively capsulated mutant AB5075F-M (Fig. 1, open blue circles). Following the same proce-
dure, a second isolation campaign using another sample from the same composting site led
to the isolation of 47 amoebae capable of growing using K. pneumoniae as the only nutrient
source. Of these, 20 were isolated in the presence of the K. pneumoniae strain zt246 (Fig. 1, red
circles), while the other 27 were isolated with the ESBL-producing K. pneumoniae strain 26425
(Fig. 1, orange circles). All 104 amoebal isolates were purified, and phylogeny and taxonomic
attribution was performed using the sequence of the 18S small subunit (SSU) rRNA region
(Fig. 1).

In all, the amoebae belonged to five genera, Tetramitus, Acanthamoeba, Vermamoeba ver-
miformis, Vahlkampfia, and Stemonitis (Fig. 1). Amoebae identified as Tetramitus sp. were
distributed around Tetramitus entericus, Tetramitus rostratus, Tetramitus dokdoensis, and
Tetramitus waccamawensis (formerly Learamoeba waccamawensis) (35) and may belong
to different and possibly new species. Amoebae belonging to the Tetramitus genus have
been isolated from aquatic or soil environmental samples but remain poorly studied
(36–38). Because it is one of the most frequently isolated amoebal genera in the environ-
ment, we were not surprised to isolate a large number Acanthamoeba isolates (39).
Isolates clustered around different genotypes defined by the hypervariable regions
found in the 18S SSU rRNA gene (40, 41) and appeared diverse, grouping with genotypes
T2, T3, T4, and T11 (Fig. 1). Amoebae isolated and identified as Vermamoeba vermiformis
appeared less diverse, and this genus includes only one species (42, 43). This species has
been frequently isolated from aquatic environments and soil samples, as well as a compost
facility (38, 42, 44). The amoebae identified as Vahlkampfia grouped closer to the species
Vahlkampfia inornata than to Vahlkampfia avara. Like Tetramitus, this amoebal genus has
been isolated from environmental samples but remains poorly described and studied (35,
45, 46). Two amoebae were identified as Stemonitis (formerly Hyperamoeba), amoebae that
are close to slime molds and whose phylogeny has long been a source of debate (47, 48).
Also, but not displayed in the tree of Fig. 1, we isolated one ciliate (Telotrochidium sp.)
feeding on A. baumannii, two ciliates belonging to the Kreyellidae family and Colpoda ge-
nus, and one kinetoplastid microorganism (Dimastigella sp.) feeding on K. pneumoniae
strains. Tetramitus is the amoebal genus that was most frequently isolated in the presence
of the A. baumannii AB5075F strain (96%), followed by the Acanthamoeba genus (4%). The
Vermamoeba vermiformis amoebal species was isolated only in the presence of the mucoid
mutant AB5075F-M. Tetramitus and Acanthamoeba amoebae were isolated in similar pro-
portions on the wild-type strain and the constitutively capsulated mutant of AB5075
(Fig. 1). Acanthamoeba is the amoebal genus that was most frequently isolated on both
strains of K. pneumoniae, followed by V. vermiformis. While the Tetramitus genus was domi-
nant in the isolates feeding on A. baumannii, only one amoeba belonging to this genus
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was isolated on K. pneumoniae. In contrast, the isolation campaign on K. pneumoniae
uncovered genera not found on A. baumannii. Six amoebae from the Vahlkampfia genus
were isolated on both K. pneumoniae strains, and two amoebae, identified as Stemonitis
sp., were isolated on K. pneumoniae zt246.

In all, we isolated 104 amoebae belonging to five genera, three ciliates, and one kineto-
plastid flagellate capable of feeding on either A. baumannii or K. pneumoniae. This indicates
that diverse amoebae and protists can use these pathogens as food sources. Indeed, even if

FIG 1 Phylogeny of 104 amoebae isolated from a composting site using A. baumannii strains (blue circles) or K. pneumoniae strains (red and orange circles)
as a food source. The partial SSU rDNA tree was inferred with the maximum likelihood approach (437 comparison sites) for amoebae isolated from
environmental samples. Isolated amoebae are indicated in bold. Amoebae isolated on A. baumannii AB5075F (solid blue circles) and the constitutively
capsulated mutant AB5075F-M (open blue circles) are labeled NM and M, respectively. Amoebae isolated on K. pneumoniae zt246 and the ESBL-producing
K. pneumoniae 26425 are labeled WT and ES, respectively. Reference sequences of different amoebal genera are written in black. The accession numbers of
reference sequences and the sequences of the isolates of this study are available in Tables S1 and S2, respectively, in the supplemental material. Nuclearia
simplex (Opisthokonta) was used as the outgroup. The scale bar shows the fraction of substitutions per site.
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the isolations on A. baumannii and K. pneumoniae were conducted independently, many
amoebae isolated on one pathogen were phylogenetically undistinguishable from amoebae
isolated on the other pathogen (Fig. 1). This suggests that some of the isolated amoebae
would be able to feed on both species. Also, amoebae isolated on the wild-type strain and
the capsulated mutant were often found within the same clade, suggesting that the consti-
tutive production of a thick capsule by the prey did not select specific amoebae.

Kinetics of amoebal predation on A. baumannii are not altered by constitutive
expression of a thick capsule. We then sought to characterize the predation activity
of eight arbitrarily selected amoebae within the five isolated genera, i.e., two amoebae from
the Acanthamoeba and Tetramitus genera, two from the V. vermiformis species, and one from
the Stemonitis and Vahlkampfia genera. In order to compare the activity of different amoebae
and bacteria, we established a standardized protocol to monitor the effect of predation on
populations of bacteria in excess, relative to the number of amoebae. Amoebae were culti-
vated on lawns of nonpathogenic E. coli K-12, harvested, and starved to induce their develop-
ment into cysts. About 1� 105 cysts were then exposed to 1� 106 bacteria (here, the A. bau-
mannii wild-type strain) on NNA. In the absence of amoebae, this medium allowed the
bacterial population size to slightly increase and remain steady for 72h (Fig. 2A, open circles).
In contrast, in the presence of all eight tested amoebae, this initial AB5075F population was
contained or even fell below the detection limit, with kinetics that differed between the tested
amoebae (Fig. 2A, black inverted triangles). The two tested Acanthamoeba isolates and
Vahlkampfia 4ES E1 could not alter the A. baumannii population during the first 24h.
However, they were able to consume it during the next 48h, so that the A. baumannii popula-
tion was about 10- to 100-fold lower than if it had not been exposed to amoebae. Two tested
Tetramitus amoebae were effective more rapidly, being able to alter the population at 24h
and to steadily consume it, reducing the original population by 3 to 4 orders of magnitude.
The Stemonitis 2ES D3 was also capable of containing the A. baumannii population at 24h
and then consumed it rapidly, resulting in a reduction of the population by over 4 orders of
magnitude at 72h. The two isolated V. vermiformis amoebae showed both stronger and faster
bactericidal activity, with a moderate (M-2 E5) to strong (M-2 B4) reduction in the A. baumannii
population at 24h, leading to a dramatic reduction of the population that fell below the
detection limit within 48h. The same amoebae, which were isolated on K. pneumoniae, wild-
type A. baumannii, or constitutively capsulated A. baumannii, were then tested against the
constitutively capsulated AB5075F-M strain (Fig. 2B, black inverted triangles). V. vermiformis
M-2 E5 seemed to reduce the bacterial population less efficiently but still managed to reduce
it by over 2 orders of magnitude. For all other amoebae, the kinetics of bacterial population
reductions were largely similar to those observed with the wild-type A. baumannii AB5075F
(Fig. 2A, black inverted triangles). We conclude that, under the tested conditions, constitutive
expression of a thick capsule offered little to no protection to predation by undomesticated
amoebae. All tested amoebae proved effective at controlling and killing bacterial populations
of A. baumannii but with large differences in the extent and kinetics of control; these may be
due to distinct morphological properties, trophic activity, excystation rates, and/or production
of bactericidal compounds.

Bactericidal activity of amoebae results from trophic interaction. Amoebae
were isolated based on their ability to feed on A. baumannii or K. pneumoniae and thus
are expected to internalize bacteria in a digestive vacuole by phagocytosis, which constitutes
the basis of their bactericidal activity. However, the bactericidal activities of axenic isolates of
V. vermiformis, Acanthamoeba polyphaga, A. castellanii, Acanthamoeba lenticulata, and D. discoi-
deum toward the rice pathogen Xanthomonas oryzae were reported to essentially stem from
the production of antibacterial compounds (49). X. oryzae was rarely observed within the di-
gestive vacuoles of the amoebae (49). To determine whether the amoebae isolated in this
study produced bactericidal or bacteriostatic compounds, we analyzed bacterial growth in cul-
ture supernatants of V. vermiformis M-2 B4 and Tetramitus NM-2 E12. To test this, bacteria
were inoculated either in fresh medium or in the same medium previously incubated with
V. vermiformis M-2 B4 or Tetramitus sp. strain NM-2 E12. Both bacterial strains showed similar
growth in the fresh medium and in amoebal culture supernatants, indicating that the amoe-
bae had not released bactericidal or bacteriostatic compounds (Fig. 3A). We then tested the
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possibility that amoebae produce these compounds only when presented with their
bacterial prey. We thus tested the growth of A. baumannii in coculture supernatants of the
bacterial strain and amoebae and in supernatants of the bacteria alone. In this situation, bacte-
rial growth was limited because the carbon source had been previously exhausted. Again,

FIG 2 Predation activity of selected isolated amoebae. Amoebal isolates selected on A. baumannii
AB5075F (NM), the capsulated AB5075F-M (M), or K. pneumoniae 26425 (ES) were tested for their
ability to prey on A. baumannii AB5075F and the capsulated AB5075F-M. The size of the initial
bacterial population (;106 bacteria) of AB5075F (A) or the capsulated AB5075F-M (B) was determined
by CFU counting in the absence (open circles) or presence (black inverted triangles) of selected
amoebae. CFU counts at time zero are based on enumeration of the bacteria deposited in the well.
CFU counts at 24, 48, and 72 h correspond to the number of bacteria recovered from the wells. If no
CFU were detected, then the sample was given the value of the detection limit (5 CFU) (gray area),
corresponding to the number of CFU possibly present in the nonplated fraction of the collected
sample.
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however, no bactericidal or bacteriostatic effect of amoebae cocultivation could be detected
after 24 h of exposure (Fig. 3B). At 48 h, a limited reduction was observed but was not statisti-
cally significant.

The absence of bactericidal activity in culture supernatants suggests that A. baumannii is
killed while intracellular. However, our experimental determination of the fate of the A. bau-
mannii population relied on viable counts on plates (CFU), and we could not exclude the pos-
sibility that the interaction with amoebae triggered a nonreplicative state of extracellular A.
baumannii. To test this, we conducted an experiment in which the fate of A. baumannii in con-
tact with V. vermiformis M-2 B4 and Tetramitus NM-2 E12 was followed both by CFU counting
and by direct quantification of bacterial counts with flow cytometry. To do this, we used the
GFP-expressing A. baumannii AB5075F to distinguish it from other particles or amoebal cells
(see Fig. S2A). We found that the CFU counts were largely consistent with direct bacterial
counts by flow cytometry, indicating that the bacterial cells physically disappear when in con-
tact with the amoebae (see Fig. S2B). We then examined the fate of bacteria incubated with
amoebae using microscopy. Transmission electron microscopy of a Tetramitus sp. isolate incu-
bated with A. baumannii revealed the presence of particles resembling A. baumannii within
vacuolar compartments (see Fig. S3A). Confocal fluorescence microscopy of Tetramitus incu-
bated with GFP-expressing A. baumannii indeed confirmed numerous GFP-positive vacuoles
(see Fig. S3B). We also used holotomographic imaging combined with epifluorescence imag-
ing, in which GFP-positive spherical particles larger than bacteria were also observed to be
associated with the highly motile V. vermiformis M-2 B4 (Fig. 3C). In contrast to extracellular
bacteria (Fig. 3C, yellow arrowheads), these fluorescent compartments moved along with the

FIG 3 Bactericidal activity of isolated amoebae results from trophic interaction. (A) A. baumannii AB5075F was inoculated
in minimal medium conditioned by V. vermiformis M-2 B4 or Tetramitus sp. NM-2 E12 for 24 h. (B) Same experiment as in
panel A but with AB5075F inoculated in spent medium of bacteria (A. baumannii) alone or in coculture with V. vermiformis
M-2 B4 or Tetramitus sp. NM-2 E12. For both panels A and B, CFU counts were determined at 0 h, 24 h, and 48 h, and
growth is expressed as the ratio of the log10 CFU counts at 24 h and 48 h (tx) relative to the inoculated CFU count (t0). (C)
Holotomographic microscopy of V. vermiformis M-2 B4 interacting with the GFP-expressing A. baumannii AB5075F (yellow
arrowheads). Images were recorded using simultaneous holotomographic and epifluorescence imaging. Holotomographic
RI values were recorded with a maximum temporal resolution of 0.5 three-dimensional RI volume per second. Snapshots
were taken at 20-s intervals. Scale bars represent 10mm.
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amoebae, indicating an intracellular localization (Fig. 3C). Thus, the results of microscopic anal-
yses are consistent with A. baumannii being phagocytosed in digestive vacuoles to support
amoebal growth. We conclude that the observed bactericidal activity of the isolated amoebae
is most likely due to their active feeding on bacteria.

Most isolated amoebae display broad-spectrum bactericidal activity. The fact
that the bactericidal activity resulted from trophic interaction suggests that the isolated
amoebae may kill diverse species that they may ingest, including antibiotic-resistant clinical
isolates. We thus challenged eight of the isolated amoebae with four antibiotic-resistant
strains, i.e., A. baumannii 40288 (resistant to carbapenems), K. pneumoniae 26425 (resistant
to cephalosporins), P. aeruginosa PP34 (resistant to carbapenems), and S. aureus (resistant to
methicillin). Bacterial isolates (1� 106 CFU) were inoculated on solid medium with or with-
out encysted amoebae (1� 105 cysts). The bacterial CFU counts for these two conditions
were determined daily, and a fold change (FC) is reported as a log10 ratio (log10FC) (Fig. 4).
Bactericidal activities were globally the highest toward A. baumannii 40288. For this clinical
isolate, the presence of any of the tested amoebae reduced by 2 orders of magnitude the
viable CFU count at 72 h (log10FCof.2). Most amoebae, with the exception of Vahlkampfia
sp. strain 4ES E1, could also reduce the viable counts of P. aeruginosa PP34 by .100-fold
(log10FC of.2) in 72 h. However, bactericidal activity was globally less important against K.
pneumoniae 26425, as the log10FC was ,2 for five of the eight amoebae at 72 h. For
instance, Vahlkampfia sp. strain 4ES E1, which could reduce the viable counts of A. bauman-
nii by 1,000-fold (log10FC of.3), could reduce the viable counts of K. pneumoniae by only
10-fold (log10FC of ;1). The Gram-positive S. aureus proved more resistant than the three
tested Gram-negative bacteria. However, Acanthamoeba sp. strain M-2 B6, V. vermiformis M-
2 B4, V. vermiformis M-2 E5, and Vahlkampfia sp. strain 4ES E1 displayed log10FCvalues of
.2. The two Tetramitus sp. isolates did not display any bactericidal activity against S. aureus
(log10FC of;0), although they efficiently killed A. baumannii. Interestingly, V. vermiformis M-
2 B4 showed the greatest bactericidal activities of all tested amoebae. It could reduce the
viable counts of all tested species by.4 orders of magnitude at 72 h. Moreover, the bacteri-
cidal effect of this amoeba was also high at 24 h, reducing the viable counts of K. pneumo-
niae and P. aeruginosa PP34 by.5 orders of magnitude (Fig. 4). Overall, all tested amoebae
were effective at killing bacteria other than those on which they were selected, as a source
of food. With the exception of Tetramitus, they showed some killing activity against
the Gram-positive S. aureus. Altogether, the results indicate that environmental amoebae

FIG 4 Isolated amoebae display broad-spectrum bactericidal activity against clinical isolates. Encysted amoebae (105 cysts) were
presented with clinical isolates (106 CFU) on solid medium. CFU counts were determined at each time point and expressed as the
log10 ratio of the bacterial population with and without amoebae. If no CFU were detected, then the sample was given the value of
the detection limit (5 CFU).
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have broad-spectrum bactericidal activity, the extent of which varies among amoebal spe-
cies and isolates.

V. vermiformisM-2 B4 is bactericidal to highly virulent clinical isolates.We next
tested V. vermiformis M-2 B4, the most bactericidal isolate, against additional clinical
isolates of K. pneumoniae and P. aeruginosa (Fig. 5A). Confirming its potent bactericidal
activity, M-2 B4 reduced the viability of two K. pneumoniae clinical isolates by 5 log
units at 24 h. The clinical isolate 32536, a hypermucoviscous K1 capsular serotype that is
considered hypervirulent (50) and resistant to phagocytosis by neutrophils (51), proved
more resistant, with no reduction in viable counts at 24 h. At 48 h and 72 h, however, the
viable counts in the presence of V. vermiformis M-2 B4 were lower by at least 2 orders of
magnitude (Fig. 5A). V. vermiformis M-2 B4 was then tested against another two P. aerugi-
nosa clinical isolates, including IHMA87, an exolysin-secreting clinical isolate with cytotoxicity
to different eukaryotic cell lines (52, 53). V. vermiformis M-2 B4 brought the viable CFU
counts of the two isolates under the detection limit at 48 h. The high bactericidal activities
of V. vermiformis M-2 B4 prompted us to compare it to the widespread, axenically growing
V. vermiformis CDC-19 (ATCC 50237) (54). While V. vermiformis M-2 B4 could consistently
lower the viable A. baumannii AB5075 population by.5 orders of magnitude, V. vermiformis
CDC-19 did not impact the viable counts, whether the predation assay was initiated with

FIG 5 V. vermiformis M-2 B4 displays strong broad-spectrum bactericidal activity against clinical
isolates. (A) V. vermiformis M-2 B4 kills clinical isolates of K. pneumoniae and P. aeruginosa. Isolates of
K. pneumoniae and P. aeruginosa (;106 bacteria) were deposited alone (open circles) or exposed to
V. vermiformis M-2 B4 (black inverted triangles). CFU counts at time zero are based on enumeration
of the bacteria deposited in the well. CFU counts at 24, 48, and 72 h correspond to the number of
bacteria recovered from the wells. If no CFU were detected, then the sample was given the value of
the detection limit (5 CFU) (gray area), corresponding to the number of CFU possibly present in the
nonplated fraction of the collected sample. (B) V. vermiformis M-2 B4 but not V. vermiformis CDC-19
(ATCC 50237) is bactericidal to A. baumannii. Amoebal cysts or trophozoites (105 cells) were
presented with A. baumannii AB5075F or AB5075F-M (106 CFU) on solid medium. CFU counts were
determined at each time point and expressed as the log10 ratio of the bacterial populations with and
without amoebae. If no CFU were detected, then the sample was given the value of the detection
limit (5 CFU).
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cysts (like M-2 B4) or already active trophozoites (Fig. 5B). This suggests that environmental
amoebae have stronger bacterial activity than domesticated and axenically growing isolates.

DISCUSSION

Here, we report the isolation of free-living amoebae from compost, a medium in
which many microorganisms coexist and promote the breakdown of organic matter
(55). With the objective of testing whether environmental free-living amoebae could
predate on human pathogens, we isolated amoebae based on their ability to feed on
A. baumannii and K. pneumoniae. The isolation of amoebae able to grow on K. pneumoniae
led to the identification of the same three amoebal genera observed during the isolation
campaign with A. baumannii. However, the proportions of each amoebal genus isolated on
K. pneumoniae and A. baumannii differed. Prey size, the presence of surface molecular pat-
terns, or hydrophobicity may influence the phagocytic capacity and the isolation of specific
amoebae (56, 57). However, the difference in amoebal genus proportions isolated in the
two screening campaigns and the specific isolation of Vahlkampfia sp. and Stemonitis sp. on
K. pneumoniae likely do not reflect a differential ability of amoebae to better phagocyte one
of the two bacterial species. Indeed, we subsequently found that amoebae isolated on A.
baumannii could feed on K. pneumoniae and vice versa (Fig. 4). Rather, it is more likely that
seasonal variations between the two screening campaigns could be the cause of the differ-
ences. The campaigns for isolations on A. baumannii and K. pneumoniae were conducted
using samples from the same open-air compost site but 1 month apart, in January and
February, respectively. While the weather in January 2019 in the Auvergne-Rhône Alpes
region was cold and rainy, the end of February 2019 was warmer and dry, and variations in
climatic conditions been observed to influence the abundance of different amoebal genera
(5, 58, 59).

One of the features of pathogens proposed to limit predation by phagocytes is the
production of an extracellular capsule. This was primarily supported in the fungus
Cryptococcus neoformans, whose capsule protected it against A. castellanii (60). A protective
role of the capsule against amoebal predation was also demonstrated in the case of K. pneu-
moniae against the social amoeba D. discoideum (18). Capsule production was found to
shield S. aureus, K. pneumoniae, and Streptococcus pneumoniae from phagocytosis by mam-
malian phagocytes (61–64). The two K. pneumoniae clinical isolates selected as food sources
displayed a mucoid phenotype on plates, as is expected for this species, which is known for
expressing a thick capsule (65). A. baumannii also naturally displays a polysaccharidic cap-
sule, but its production is stimulated by subinhibitory concentrations of antibiotics and
increases bacterial virulence during infection (66). We thus included in our study a constitu-
tively mucoid strain with a mutation (S551L) in the autokinase domain of wzc that causes a
regulation defect in capsule production (66). Isolation of amoebae on this constitutively cap-
sulated mutant of A. baumannii did not prove more challenging than that on the parental
strain. Overall, the constitutive production of a thick polysaccharide capsule by the A. bau-
mannii strain did not seem to impact the predation capacity and the kinetics of killing by
the different amoebae (Fig. 2). This was rather unexpected, given the aforementioned
reports that capsule production provided resistance to phagocytes. We cannot exclude the
possibility that the difference in capsule production by the parental strain and the wzc mu-
tant observed on the agar plates is not retained under amoebal predation. It is also possible
that capsule production offers some relative protection, but amoebae can overcome it
when the capsulated bacteria are their only food source. Consistent with this, V. vermiformis
M-2 B4 could even predate on the hypermucoviscous capsular serotype K1 of K. pneumo-
niae, albeit less efficiently than on other K. pneumoniae isolates (Fig. 5). Thus, although cap-
sule production can alter predation kinetics, it does not constitute a bulletproof vest against
predatory amoebae.

Differences in the kinetics of bactericidal activity between isolates of different genera
were noticeable (Fig. 2 and 4). For instance, one isolate of V. vermiformis was able to kill the
bacterial population as early as 24 h, while no isolates of Acanthamoeba could show bacteri-
cidal activity before the 48-h time point. It should be noted that all amoebae were encysted
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at the time they were exposed to bacteria and the excystment time could vary between
amoebae and was shorter for V. vermiformis than for Acanthamoeba (67, 68). While excyst-
ment into the first trophozoites was observed after approximately 9h for V. vermiformis
ATCC 50237 (68), we observed that a majority of cysts of V. vermiformis excysted as tropho-
zoites in as little as 3h and no cysts were observed at 6h (see Fig. S4 in the supplemental
material). Thus, amoebae that excysted faster could predate on bacteria sooner and reduce
bacterial viability more rapidly. Some amoebae, such as the Tetramitus and Vahlkampfia iso-
lates, displayed an initial ability to reduce the bacterial population by 10- to 100-fold but no
further decline occurred over time, suggesting that predation stopped, establishing a form
of equilibrium. Predation activity was found to be dependent on prey density for strains of
Tetramitus, Hartmanella, Naegleria, and Vahlkampfia toward Rhizobium meliloti bacteria, pos-
sibly because feeding is limited by the ability to capture rare prey (69). The cessation of pre-
dation activity by these amoebae could also be linked to the production of molecules by P.
aeruginosa and A. baumannii that force the amoebae to encyst (70) or lead to their death
(71), respectively. P. aeruginosa may also kill amoebae using the type III secretion system
(72). However, the two members of V. vermiformis displayed strong and sustained bacteri-
cidal activity, bringing A. baumannii populations down to the detection limit (Fig. 2). Indeed,
although the axenic V. vermiformis laboratory strain CDC-19 could not predate on A. bau-
mannii, the natural isolate M-2 B4 of the same species could efficiently kill this pathogen.
Similarly, we observed that wild A. castellanii isolates could kill and feed on A. baumannii,
which was previously reported to be resistant to laboratory strains of A. castellanii (71, 73). It
may be that laboratory strains have diminished bactericidal activity. Laboratory-domesti-
cated amoebae have been selected to grow axenically by feeding on liquid medium
through micropinocytosis rather than by predating on bacteria through phagocytosis (74).
Although this is reversible, axenic D. discoideum grows less efficiently on bacteria (75), indi-
cating that axenic amoebae may be partly defective in predating on pathogens. However,
high bactericidal activity could also be unique to specific isolates, such as V. vermiformisM-2
B4, which could eliminate K. pneumoniae and P. aeruginosa but also consume the Gram-pos-
itive pathogen S. aureus. V. vermiformis M-2 B4 could clear populations of P. aeruginosa,
including the PP34 isolate, which contains the type III secretion system and produces the
ExoU toxin (52) involved in killing A. castellanii (72, 76), and also the highly virulent CHA iso-
late, which can induce ExoU-independent oncosis in phagocytic cells (77) (Fig. 5). It is possi-
ble that the exceptionally high bactericidal activity of M-2 B4 is due to the fact that it is
immune to mechanisms used by bacteria to mitigate predation by amoebae.

Importantly, M-2 B4 was found by characterizing only a subset of the 104 amoebae
isolated in this study, and other isolates may display similar characteristics. While some
amoebae seem to have intrinsically high predatory activities, it should be noted that
we monitored the outcome of the interaction of amoebae and bacteria outside their
natural environment, by offering amoebae a single bacterial source of nutrient.
However, soil bacteria are expected to face complex bacterial communities and may
discriminate and feed on specific bacteria (57). For instance, in an experimental soil sys-
tem, A. castellanii was found to preferentially predate on Betaproteobacteria and
Firmicutes, rather than on Actinobacteria, Nitrospira, Verrucomicrobia, or Planctomycetes,
rapidly inducing shifts in the bacterial community composition (6). In the same line of
thinking, although we found that capsulated and noncapsulated bacteria were both
digested by wild amoebae, it remains possible that amoebae may preferentially con-
sume the noncapsulated bacteria in more natural settings.

In conclusion, we report here that free-living amoebae capable of predating on
human pathogens can be easily recovered from natural environments. Pathogens such
as A. baumannii and K. pneumoniae, which were previously reported to be resistant to
killing by domesticated Acanthamoeba strains (71, 73, 78), were easily consumed by
natural isolates of the same species. Our work supports the idea that axenically grow-
ing laboratory amoebae poorly reflect the relationship of human pathogens and amoe-
bae in natural environments, overestimating the chance of pathogen survival in the
war against predatory amoebae. Rather, we propose that the natural environment is a
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rich source of diverse amoebae with broad-spectrum predatory activities against
human pathogens, including against antibiotic-resistant isolates.

MATERIALS ANDMETHODS
Bacterial growth conditions and strains. All bacterial isolates were cultivated in liquid or solid

lysogeny broth (LB) or tryptic soy broth (TSB). Acinetobacter baumannii AB5075 is a human clinical isolate
that is highly virulent in a mouse model (79) and is resistant to carbapenems (80). A. baumannii 40288 is
an animal clinical isolate from the ST25 lineage and is resistant to carbapenems (81). AB5075F is a deriva-
tive of AB5075 that was naturally transformed with a synthetic PCR product to insert the genes encoding
the superfolder GFP (sfgfp) and resistance to apramycin (82) at the attTn7 site downstream of the glmS
gene (83). The 40288 strain used in this study was also naturally transformed to become resistant to
apramycin. AB5075F-M is a naturally occurring mutant of AB5075F harboring a S551L mutation in the
wzc gene. K. pneumoniae zt246 is sensitive to most classes of antibiotics (except first-generation b-lac-
tams), while K. pneumoniae 26425 is resistant to cephalosporins (cefotaxime, ceftazidime, and cefurox-
ime), fluoroquinolones (ofloxacin and enrofloxacin), the aminoglycoside tobramycin, and sulfonamides.
K. pneumoniae 32536 is a K1 capsular serotype strain that is sensitive to most antibiotics except the
b-lactam amoxicillin. The hypermucoviscous phenotype of the K1 capsular serotype was confirmed by
the formation of a string of .5mm when an inoculation loop was stretched upward from colonies on
an agar plate (84). P. aeruginosa PP34 is a clinical isolate that produces the cytotoxic exoenzyme ExoU
and is resistant to the fluoroquinolones ciprofloxacin and moxifloxacin, to the cephalosporin cefepime,
and to the carbapenem imipenem (85). P. aeruginosa CHA is a highly virulent clinical isolate with a
mucoid phenotype (86). Staphylococcus aureus SF8300 is a USA300 clone and is resistant to methicillin,
erythromycin, and cefotaxime (87).

Isolation of environmental free-living amoebae feeding on A. baumannii or K. pneumoniae. The
samples used to isolate amoebae capable of feeding on A. baumannii or K. pneumoniae were collected
from an open-air compost site in l’Arbresle, France. The first sample, which was used to isolate amoebae
that could grow on A. baumannii, was collected in January 2019. Five grams of sample was mixed with
10ml of Page’s amoeba saline (PAS) (2mM NaCl, 0.016mM MgSO4, 0,0.027mM CaCl2, 0.79mM Na2HPO4,
0.99mM KH2PO4) for 5min using a vortex mixer. Serial dilutions of the suspension were spotted on NNA
(4.6mM Na2HPO4, 2.9mM KH2PO4, 15 g/liter bacteriological agar) coated with A. baumannii AB5075F
lawns and were incubated for 7days at 30°C. Equal numbers of petri dishes were coated with the A. bau-
mannii AB5075F strain and with the constitutively capsulated A. baumannii AB5075F-M strain. Daily micro-
scopic observations allowed isolation of emerging amoebae. Each isolated amoeba was then subcultured
two more times on fresh NNA with the same bacterial lawn. Isolated amoebae were stored at 280°C in a
mixture of peptone-yeast-glucose (ATCC medium 712) [0.05 M CaCl2�2H2O, 0.4 M MgSO4�7H2O, 0.25 M
Na2HPO4�7H2O, 0.25 M KH2PO4, 0.1% sodium citrate dehydrate, 5mM Fe(NH4)2(SO4)2�6H2O, 0.1 M glucose
[pH 6.5]] and 10% dimethyl sulfoxide (DMSO). Isolation of amoebae capable of phagocytosing K. pneumoniae
was performed with another sample collected from the same composting site at the end of February 2019.
The new sample was processed as described above, and dilutions were spotted on NNA coated with K. pneu-
moniae zt246 or K. pneumoniae 26425. Amoebae able to grow on those bacteria were isolated and stored as
described above.

Identification of isolated amoebae. To identify amoebae, 1-week cultures of each isolated amoeba
were collected in 2ml of 1� phosphate-buffered saline (PBS) (0.13 M NaCl, 8mM Na2HPO4�2H2O,
0.18mM KH2PO4, 2.7mM KCl) and heated at 80°C for 10min. Amplification of an;650-bp fragment of the 18S
SSU rRNA region was carried out by PCR using specific primers F-566 (59-CAGCAGCCGCGGTAATTCC-39) and R-
1200 (59-CCCGTGTTGAGTCAAATTAAGC-39) (88). PCR products were then purified using AMPure XP magnetic
beads (Beckman Coulter, USA) and sequenced (Eurofins Genomics, Germany). Sequences were aligned in
SeaView v5.0.4 (Pôle Rhône-Alpes de Bioinformatique Site Doua, Lyon, France) using the MUSCLE algorithm
before being manually inspected. Reference sequences and representative sequences of different amoebal
genera and Acanthamoeba genotypes were retrieved from the NCBI database. The accession numbers for all
reference sequences are available in Table S1 in the supplemental material. Maximum likelihood tree construc-
tion was carried out with 437 selected sites of SSU ribosomal DNA (rDNA) using the PhyML v3.0 algorithm (89)
of the ATGC Montpellier Bioinformatic Platform with a GTR model, optimized equilibrium frequencies, NNI tree
improvement, and 1,000 bootstrap replicates.

Quantification of amoebal predation activities against A. baumannii AB5075. A. baumannii
AB5075F and AB5075F-M were cultured in LB for 3 h and then washed twice in PBS. The suspensions
were next adjusted to 108 CFU/ml on the basis of absorbance, and the CFU counts were verified by plat-
ing. Ten microliters of each bacterial suspension (;106 bacteria) was spotted at the center of a well of a
24-well plate containing 2ml of NNA-Gelrite (NNA with 10 g/liter Gelrite [Carl Roth, Germany]) and then
dried. Amoebal isolates were cultured on NNA on a lawn of E. coli K-12 bacteria for 7 days at 30°C. Each
amoeba was then collected, washed twice in PBS, and incubated overnight in a PBS solution containing
penicillin-streptomycin (1,000 units/ml penicillin and 1mg/ml streptomycin; Thermo Fisher Scientific,
USA). Amoebal suspensions were then washed twice with PBS and starved for 1 week in Neff’s encyst-
ment medium (NEM) (containing, in 1 liter of distilled water, 0.1 M KCl, 0.39mM MgSO4, 0.3mM CaCl2,
0.9mM NaHCO3, and 0.2mM 2-amino-2-methyl-1,3-propanediol [pH 8.8 to 9]). On the day of the experi-
ment, suspensions of amoebae were washed twice in PBS and then diluted to obtain a concentration of
107 cysts/ml. Ten microliters of each suspension was spotted on top of the previously spotted bacteria
in the 24-well plate. Plates were then incubated for 72 h at 30°C, and the contents of the wells were
recovered by adding 150 ml of PBS and two or three glass beads, followed by gentle shaking. The liquid
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(;100 ml) was recovered, and serial dilutions were plated on LB medium containing apramycin at
30mg/ml to determine CFU counts. Each experiment consists of three bacterium-cyst mixtures (from
three independent bacterial cultures), for which two replicates were used to determine CFU counts. The
experiments presented were conducted at least twice.

Quantification of amoebal predation against multiple antibiotic-resistant clinical isolates.
Clinical isolates of human pathogens were grown in LB (A. baumannii, K. pneumoniae, and P. aeruginosa)
or TSB (S. aureus). Cultures were washed in PBS and diluted to 108 CFU/ml as described above. Ten
microliters of each bacterial suspension was placed in 24-well plates containing 2ml of NNA-Gelrite and
then dried. Selected isolates of amoebae were cultured, starved, and adjusted to 107 amoebae/ml as
described above. Ten microliters of each suspension was spotted on top of the bacteria. Plates were
then incubated for 72 h at 30°C, and the contents of the wells were collected as described above to
determine CFU counts. The viability of A. baumannii 40288 was evaluated by plating on LB medium con-
taining apramycin at 30mg/ml. Isolates of K. pneumoniae and P. aeruginosa were plated and counted on
LB medium containing ampicillin at 50mg/ml, while the S. aureus isolate was plated and counted on
tryptic soy agar (TSA) containing ampicillin at 50mg/ml.

Effect of amoebal supernatant on bacterial viability. A. baumannii AB5075F was incubated (106

CFU/ml) at 30°C for 48 h in minimal acetate medium (MAM) [0.07 M KH2PO4, 0.03 M Na2HPO4, 0.02 M
(NH4)2SO4, 0.8mM MgSO4, 0.007mM CaCl2, 0,004mM FeSO4 and 1 g/liter sodium acetate] alone as a con-
trol or coinoculated with encysted Vermamoeba M-2 B4 or Tetramitus NM-2 E12 (105 amoebae/ml). The
amoebae tested were also inoculated (105 amoebae/ml) alone under the same conditions. The different
cultures were then centrifuged gently (600 � g for 10min) to prevent cell lysis. Bacteria were then inocu-
lated (106 CFU/ml) at 30°C in the resultant filtered supernatants (0.2-mm Acrodisc; Pall Corp., USA) from
different culture conditions or in fresh MAM. After 24 h and 48 h of incubation, the suspensions were
plated at 37°C on LB medium containing apramycin at 30mg/ml to determine CFU counts.

Flow cytometric analysis. Interactions between amoebae and AB5075F were set up as described
above. At 0 h, 24 h, 48 h, and 72 h, the amoeba-bacterium mixture was recovered in PBS and fixed with
formaldehyde (final concentration, 3.7%); membranes were stained with FM4-64 (final concentration, 10mg/ml)
for 30min at room temperature and then washed twice with PBS. An Attune acoustic focusing cytometer (Life
Technologies) was used for all flow cytometric acquisitions. Samples were run at a collection rate of 25ml/min,
and fluorescence emission was detected using a 530-nm/30-nm bandpass filter for GFP fluorescence and a 640-
nm long-pass filter for FM4-64 fluorescence. The bacterial population was determined to be positive for GFP fluo-
rescence and FM4-64 fluorescence. Particle counts were determined using the Attune software.

Microscopic observations of amoeba-bacterium interactions. (i) Confocal microscopy. Tetramitus
sp. and AB5075F amoebae were processed as for the quantification of amoebal predation. Contents of
the wells were recovered in 100 ml of PBS and deposited between a slide and a slipcover to be observed
under confocal microscopy using a DMI4000 inverted microscope (Leica Microsystems, Germany)
equipped with a W1 spinning-disk confocal head (Yokogawa, Japan).

(ii) Transmission electron microscopy. Tetramitus sp. amoebae were observed after cocultivation
with A. baumannii AB5075F and suspended in 100 ml of PBS, centrifuged, and then fixed for 15 min in
0.2 M sodium cacodylate-4% glutaraldehyde solution. The fixed cell suspensions were then washed in
0.2 M cacodylate, embedded in 2% agar, and placed in 1% osmium tetroxide solution for 1 h. The sam-
ples were placed in contact with a 1% uranyl acetate solution for 1 h and then progressively dehydrated
by placement in ethanol baths of increasing concentration for 10 min. The samples were then embed-
ded in Epon resin. Ultrathin sections were prepared with an Ultracut UCS ultramicrotome (Leica
Microsystems, USA), stained with a uranyl acetate-citrate solution, and then observed with a CM120kV
transmission electron microscope (Philips, The Netherlands).

(iii) Holotomographic imaging. Holotomographic imaging was used in combination with epifluo-
rescence imaging and was performed as described previously (90). V. vermiformis M-2 B4 was observed
when fed with AB5075F, on a three-dimensional Cell Explorer-fluo (Nanolive, Ecublens, Switzerland)
using a 60� air objective (numerical aperture, 0.8) at a wavelength of 520 nm (class 1 low-power laser;
sample exposure, 0.2 mW/mm2) and a USB 3.0 CMOS Sony IMX174 sensor, with quantum efficiency (typ-
ical) of 70% (at 545 nm), dark noise (typical) of 6.6 e2, dynamic range (typical) of 73.7 dB, field of view of
90 by 90 by 30mm, axial resolution of 400 nm, and maximum temporal resolution of 0.5 three-dimen-
sional refractive index (RI) volume per second. The theoretical sensitivity was 2.71� 1024.

Data availability. Sequences were deposited in GenBank and are available under accession num-
bers MZ338393 to MZ338496, as listed in Table S2 in the supplemental material.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 5.6 MB.
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