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The mitochondrial genome of Carex pseudochinensis H. L�ev. & Vaniot, 
an endemic sedge in Korea
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ABSTRACT 
Carex pseudochinensis H. L�ev. & Vaniot is an endemic species in Korea and is included in the clade of 
section Paludosae in the recent classification system. We present the complete mitochondrial genome 
sequence of C. pseudochinensis based on the POLAP pipeline with both long- and short-read sequen-
ces. The mitochondrial genome is 997,628 bp in length, containing two large regions of 536.94 and 
419.04 kbp, respectively, and a pair of direct repeat regions of about 20.25 kbp. The genome contains 
57 genes, including 31 protein-coding genes, 20 tRNAs, and 6 rRNAs. Phylogenetic analysis based on 
mitochondrial proteomes, including those from ten species of related taxa, confirmed a close phylo-
genetic relationship between C. breviculmis and C. pseudochinensis.
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Introduction

Carex L. (Cyperaceae) comprises approximately 2,000 species, 
representing the fifth-largest genus among angiosperms 
(Smith and Faulkner 1976). As an endemic Carex to Korea, 
Carex pseudochinensis H. L�ev. & Vaniot (1902) is morphologic-
ally distinguished from other Korean sedges by its reddish- 
brown basal sheath of the stem and ovate perigynium 
having gradually narrowed beak (Korea National Arboretum 
2016). The morphology of this species has traditionally placed 
it in section Anomalae, a name derived from the Latin word 
‘anomalous,’ reflecting irregular or distinctive morphological 
features (Dai and Koyama 2010a, 2010b; Roalson et al. 2021). 
However, according to the recent classification systems 
(Roalson et al. 2021), this species has been reclassified to the 
section Paludosae based on molecular phylogenetic data 
(Jim�enez-Mej�ıas et al. 2016; Villaverde et al. 2020). Despite its 
endemic status, C. pseudochinensis has received limited scien-
tific attention. Recent studies have reported its distribution in 
Heoninlleung, Seoul (Kim et al. 2010) and emphasized its crit-
ical role in maintaining biodiversity within the herbaceous 
plant communities of Mt. Cheongoksan, Korea (Son et al. 
2014). This lack of research is also reflected in the absence of 
genetic and genomic data, which leaves significant gaps in 
our understanding of the evolution of the genus. In particu-
lar, reporting on the mitochondrial genome of an unstudied 
taxon will improve our understanding of its speciation, 
hybridization, and genome structure evolution. To date, the 
only reported mitochondrial genome in the genus is that of 
C. breviculmis (NC_068626). Given the considerable size of the 

mitochondrial genome of C. breviculmis (1.5 Mb) and the 
reported polymorphism in plant mitochondrial genomes 
(Gualberto et al. 2014), assembling the mitochondrial gen-
ome of C. pseudochinensis presents a significant challenge.

This study presents the complete mitochondrial genome 
of C. pseudochinensis based on the Plant Organelle Long-read 
Assembly Pipeline (POLAP) with both long- and short-read 
sequences. As the first report of the mitochondrial genome 
of this endemic species, it will significantly contribute to 
taxonomic and genetic studies relevant to future conserva-
tion, propagation, and ecosystem restoration of the species.

Materials and methods

We collected C. pseudochinensis at Wolchon-ri, Gunbuk- 
myeon, Haman-gun, Korea (N35.306179�, E128.320333�), and 
a voucher specimen deposited at the Sungshin Women’s 
University Herbarium (SWU0036913, Y. Cho, s. n.; Sangtae 
Kim, amborella@sungshin.ac.kr) (Figure 1). The species was 
identified based on the recently published Korean 
Cyperaceae manuals, Cho et al. (2016) and Park et al. (2016). 
We employed a recently developed high-molecular-weight 
(HMW) DNA extraction method (Kang et al. 2023) for effective 
third-generation genome sequencing. Long-read sequencing 
data were obtained using the MinION platform with the R9 
version flow cells and SQK-LSK109 library preparation kit 
(Oxford Nanopore Technologies, Oxford). Short-read sequenc-
ing was performed using the Illumina NovaSeq 6000 S4 plat-
form with TruSeq Nano DNA Kit (Illumina, San Diego).
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The mitochondrial genome of C. pseudochinensis was 
assembled using the long-read data and polished with short- 
read data based on the POLAP (https://github.com/goshng/ 
polap). The pipeline includes the extraction of mitochondrial- 
originated seed contigs considering three factors: (1) mito-
chondrial gene annotation, (2) sequence depth, and (3) graph 
connectivity of contigs from the long-read whole-genome 
assembly using Flye (v2.9.2; Kolmogorov et al. 2019). We 
employed the GeSeq tool (v2.03; Tillich et al. 2017) to annotate 
the mitochondrial genome with the mitochondrial genome of 
C. breviculmis as a reference genome (Xu et al. 2023). A circular 
genome map of the mitochondrial DNA was created using the 
OGDRAW software (v1.3.1; Greiner et al. 2019).

We performed phylogenetic analyses using a mitochondrial 
proteome dataset comprising six Cyperaceae taxa, including C. 
pseudochinensis, and representatives of other Poales and eudi-
cots as outgroups based on their phylogenetic relationships 
(Angiosperm Phylogeny Website v14; http://www.mobot.org/ 
MOBOT/research/APweb/) (Table S1). The Orthofinder software 

(v2.5.5; Emms and Kelly 2019) was employed to cluster amino 
acid sequences into 33 homologous groups that were aligned 
using the MUSCLE algorithm (v3.8.1551; Edgar 2004). The 
alignment matrices of the amino acid sequences were used to 
infer the phylogeny of the ten species employing IQ-TREE 
(v2.3.6; Minh et al. 2020) with the partition model (Chernomor 
et al. 2016) and the ultrafast bootstrap option (Hoang et al. 
2018). The resulting tree and a table detailing the presence 
and absence of genes were illustrated using the MEGA 
(v11.0.13; Kumar et al. 2018) and the ggtree R package 
(v3.6.0; Yu et al. 2017; R core Team, 2023), respectively. 
Pairwise sequence alignment of the mitochondrial genomes of 
C. breviculmis and C. pseudochinensis was performed using the 
progressiveMauve software (v2.4.0; Darling et al. 2010).

Results

The circular mitochondrial genome of C. pseudochinensis 
(GenBank accession number: PP465050) was assembled with 

Figure 1. The morphology of C. pseudochinensis. (A) Habitat in Gwangneung Forest, Pocheon, Korea (photo by Minkyung Jung). (B) A representative specimen of 
C. pseudochinensis (SWU0054300) showing reddish-brown basal sheaths of the stems. (C) Ovate perigynia with a gradually narrowed beak.

MITOCHONDRIAL DNA PART B: RESOURCES 89

https://github.com/goshng/polap
https://github.com/goshng/polap
http://www.mobot.org/MOBOT/research/APweb/
http://www.mobot.org/MOBOT/research/APweb/
https://doi.org/10.1080/23802359.2024.2449090


the genome sequencing datasets, which included approxi-
mately 42 million short reads (6.32 Gbp) and 343 thousand 
long reads (2.09 Gbp). The whole-genome assembly generated 

423 contigs (Figure S1(A)). Among these, ten contigs were 
selected as seed contigs based on organelle gene annotation 
(Figure S1(B)). They were used as a reference for mapping and 

Figure 2. Circular genome map (A) and its Bandage graph (B) of the mitochondrial DNA of Carex pseudochinensis. Three trans-spliced genes, nad1, nad2, and nad5, 
are indicated by different special characters, �, #, and @, respectively. Blue arrows indicate direct repeats.
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selecting long-reads (Li 2018), which were used for organelle- 
genome assembly.

The organelle genome assembly generated using the Flye 
assembler (v2.9.2; Kolmogorov et al. 2019) in the POLAP pipe-
line yielded 13 contigs, four of which were found to contain 
mitochondrial genes based on the annotation using GeSeq 
(v2.03; Tillich et al. 2017) with the C. breviculmis mitochon-
drial genome of as a reference (Figure S1(C)). Of these, only 
three contigs (edges 7, 8, and 13) were linked and had high 
sequence coverage (>10�), while the other formed an inde-
pendent contig (edge 6) and had low sequence coverage 
(4�). These three fragments were extracted as a circular DNA 
sequence using Bandage software (v0.8.1; Wick et al. 2015), 
and the resulting DNA was polished with short-read data 
(FMLRC v1.0.0; Mak et al. 2023; Zhou et al. 2023).

The assembled mitochondrial genome of C. pseudochinensis 
is 997,628 base pairs long, with a GC content of 41%, consist-
ing of 28% A, 20% C, 20% G, and 32% T (Figure 2(A)). In the 
circular form of the mitochondrial genome, two small direct 
repeats (20.25 kbp) separate two large regions (536.94 and 
419.04 kbp), as shown in the Bandage graph (Figure 2(B)). It 
contains 57 genes, including 31 protein-coding genes, six ribo-
somal RNAs, and 20 tRNAs. Three coding genes, NADH 
dehydrogenase subunits nad1, nad2, and nad5, were trans- 
spliced [Figure 2; detailed maps generated with PMGmap 
(Zhang et al. 2024) were in Figure S2]. C. pseudochinensis has 
the same number of trans-spliced elements in all three trans- 
spliced genes as C. breviculmis (nad1, 3; nad2, 4; nad5, 3). 
However, compared to Carex, nad5 from Cyperus esculentus 
has five trans-spliced elements.

The phylogeny of nine reported monocot mitochondrial 
genomes was reconstructed along with that of Arabidopsis 
thaliana as an outgroup (Figure 3, Table S1). Among the six 

Cyperaceae species, C. pseudochinensis formed a clade with 
C. breviculmis. In contrast to the close phylogenetic relation-
ship based on the protein-coding genes between these two 
species, the mitochondrial genome structures of these two 
species show remarkable differences (Figure S3).

Discussion and conclusion

The mitochondrial genome of C. pseudochinensis was success-
fully assembled using the POLAP pipeline. The complex struc-
ture and polymorphism of plant mitochondrial genomes, 
especially those of the Cyperaceae, present a challenge for 
the construction of ‘master’ genome sequences. Our initial 
attempt to assemble the C. pseudochinensis mitochondrial 
genome using the ptGAUL pipeline (v1.0.5; Zhou et al. 2023), 
which requires the closest genome, was unsuccessful when 
we used the C. breviculmis genome (Xu et al. 2023) as a refer-
ence (Figure S4), likely due to structural and sequence dis-
similarities between the two species (Figure S3). It confirmed 
the prior observations that the mitochondrial genomes of 
Cyperaceae are challenging to assemble. The C. pseudochi-
nensis mitochondrial genome generated in this study was 
verified by uniform sequencing coverage with short-read 
sequences using Minimap2 (v2.24; Li 2018) and Geneious 
Prime (v11.0.11; Kearse et al. 2012) (Figure S5). The mitochon-
drial genome of C. pseudochinensis will facilitate a deeper 
comprehension of the structural evolution of mitochondrial 
genomes in the genus Carex and provide insights into the 
delimitation of species boundaries.
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Figure 3. Maximum-likelihood tree based on amino acid sequences of 33 coding genes and presence (gray)/absence (white) table. Six Cyperaceae taxa [Carex 
pseudochinensis PP465050 (this study), Carex breviculmis NC_068626 (Xu et al. 2023), Cyperus esculentus NC_058697 (unpublished), Rhynchospora breviuscula 
NC_068215 (unpublished), Rhynchospora pubera NC_068216 (unpublished), Rhynchospora tenuis NC_068217 (unpublished)] and outgroups representing other 
Poales [Juncus effusus NC_069588 (unpublished), Luzula sylvatica NC_069587 (unpublished), Oryza sativa NC_066488 (Jiang et al. 2022)] and eudicots [Arabidopsis 
thaliana NC_037304 (Sloan et al. 2018)] are included. Numbers above the nodes indicate bootstrap support (1,000 replicates). Dark gray indicates two or more dupli-
cated paralogous genes in each taxon, and light gray indicates a single gene. One of the duplicated genes was randomly selected for analysis. Genes shared by five 
or fewer taxa (rpl2, rpl10, rpl14, and rps2A) were excluded from the phylogenetic analysis. The best model for each gene is shown in Table S2.
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