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Purpose: To determine the refractive predictability of Argos (Movu, a Santec company) measurements and the Barrett Universal II 
formula in long and short eyes implanted with an extended depth of focus (EDOF) intraocular lens (IOL).
Methods: This retrospective, non-interventional study included 86 eyes (55 long and 31 short) of 55 patients. Preoperative biometry 
was performed using the Argos. Preoperative IOL power formulas were the preprogrammed Barrett Universal II (BUII). Data were 
collected for refractive outcomes, postoperative prediction error (directional and absolute), and monocular corrected distance visual 
acuity (CDVA, Snellen).
Results: The mean absolute prediction error for BUII was 0.27 ± 0.26 D overall, 0.24 ± 0.20 D in long eyes, and 0.33 ± 0.33 D in 
short eyes. Overall, the percentage of eyes with ≤ 0.5 D prediction error was 84% for BUII. In long eyes, the percentage of eyes with ≤ 
0.5 D prediction error was 90% for BUII. In short eyes, the percentage of eyes with ≤ 0.5 D prediction error was 74% for BUII. The 
percentage of eyes with ≤ 0.5 D of MRSE was 89% for long eyes and 94% for short eyes. Visual acuities were excellent in both long 
and short eyes, with > 90% of eyes 20/25 or better in each group.
Conclusion: The prediction error of Argos using BUII was low in long and short eyes at one month after EDOF IOL implantation.

Plain Language Summary: An intraocular lens (IOL) is an artificial lens that can be implanted in the eye to replace a natural lens 
that has become opaque. The power of the IOL must be carefully chosen for clear vision after implantation. Cataract surgeons use 
devices called biometers to measure the eye and calculate the most appropriate IOL power to implant. A novel biometer is available 
that may offer good accuracy, for predicting the IOL power, in eyes that are longer or shorter than average. The purpose of this study 
was to determine the refractive predictability of this biometer in long and short eyes implanted with an extended depth of focus 
(EDOF) IOL. The results of this study suggest that the refractive predictability was excellent in long and short eyes at one month after 
EDOF IOL implantation, resulting in great vision postoperatively. 
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Introduction
The success of cataract surgery and intraocular lens (IOL) implantation can be measured by the postoperative refractive 
outcomes. Both patients and surgeons have high expectations for clear vision after surgery, and good refractive outcomes are 
key for clear vision. This is especially true with presbyopia-correcting lenses such as trifocals or extended depth of focus 
(EDOF) IOLs.1

Hitting the refractive target is influenced by accurate and precise preoperative measurements of the eye. Optical 
biometry is the standard of care to determine anterior chamber depth (ACD), axial length (AL), and keratometry (K). 
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Currently available optical biometers include those based on partial coherence interferometry (PCI),2 optical low 
coherence reflectometry (OLCR),3 optical low coherence interferometry (OLCI),4 and swept-source optical coherence 
tomography (SS-OCT).5,6

Refractive accuracy is also influenced by the IOL power formula used. Many optical biometers are available 
preprogrammed with the latest generation IOL power formulas, and these newer IOL formulas are reported to result 
in excellent refractive outcomes.7–9 However, it can still be challenging to achieve the refractive target in eyes with long 
(≥ 24.5 mm) or short (≤ 22.5 mm) axial lengths.

The Argos (Movu, a Santec company) is an SS-OCT biometer that measures the eye utilizing a wavelength of 1060 
nm.10 Rather than using one refractive index for the entire eye, the Argos uses refractive indices of 1.376 for the cornea, 
1.410 for the lens, and 1.336 for the aqueous and vitreous, and a sum of these segments to determine the axial length.11,12 

This allows for adjustments to the axial length calculation based on variability in the lengths of each segment. This sum- 
of-segments approach has been reported to result in excellent refractive outcomes compared to using a single refractive 
index.13–15 In addition, Shammas et al12 observed good refractive outcomes with the Argos in long and short eyes with 
a monofocal IOL. However, to date, there is minimal data on the refractive and visual outcomes of the Argos in long and 
short eyes with presbyopia correcting IOLs.

The purpose of this study was to determine the refractive predictability of Argos measurements in long and short eyes 
implanted with an EDOF IOL.

Methods
This was a non-interventional retrospective chart review of visual and refractive outcomes in long (≥ 24.5 mm) and short (≤ 
22.5 mm) eyes using an SS-OCT biometer (Argos). An institutional review board reviewed the study (Salus IRB; approval 
CB-22-001). The IRB granted a waiver of informed consent as this was a non-interventional retrospective chart review of 
anonymized data. All data were maintained with confidentiality. This study followed the tenets of the Declaration of Helsinki, 
International Harmonization (ICH) guidelines, and Good Clinical Practice (GCP). There was no requirement to register this 
study in a clinical trials database (such as clinicaltrials.gov) as this was a retrospective chart review.

Charts were reviewed from subjects who had cataract surgery between December 2021 and January 2023. Eligible 
charts were those from adults who had previous uncomplicated cataract surgery with corrected distance visual acuity 
(CDVA) of 20/30 or better following implantation with AcrySof Vivity IOLs (Alcon Vision, LLC; toric and non-toric), 
and axial lengths ≤ 22.5 mm or ≥ 24.5 mm where biometry and IOL calculations were performed with the ARGOS SS- 
OCT device. Charts were excluded from subjects that had ocular pathology noted in patient chart, moderate-severe 
corneal or retinal pathology, severe dry eye disease, history of corneal refractive surgery, irregular astigmatism, or 
corneal astigmatism greater than 4.00 D.

Preoperative and ≥ 1 month postoperative data were collected. Visual acuities were collected in Snellen and converted 
to logMAR for analysis. Preoperative biometry was performed using the Argos biometer. The Barrett Universal II 
formula (BUII) was used with all eyes, and all eyes were targeted for plano or first minus. Using the data collected with 
the Argos, spherical equivalent predictions using the Barrett True Axial Length formula (BTAL) were back-calculated for 
exploratory analyses. Microincision phacoemulsification was performed by a single experienced surgeon (CB) in all eyes. 
The ORA System with Verifeye+ (Alcon Vision, LLC) was used intraoperatively, though the final implanted IOL was 
based on surgeon discretion. The primary endpoint was the mean absolute prediction error in long and short eyes. 
Secondary endpoints included the percentage of eyes within 0.50 D of predicted postoperative spherical equivalent in 
long and short eyes and postoperative CDVA in long and short eyes. Exploratory endpoints included median absolute 
prediction error in long and short eyes, mean and median absolute prediction error in long and short eyes using back- 
calculations with the Barrett True Axial Length formula, and the percentage of eyes within 0.50 D of predicted 
postoperative spherical equivalent in long and short eyes using back-calculations with the Barrett True Axial Length 
formula. Absolute prediction error was calculated as the absolute difference between predicted spherical equivalent and 
the postoperative manifest refraction spherical equivalent.
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All statistical analyses were performed using the statistical software R version 4.2.2 (The R Foundation for Statistical 
Computing, Vienna, Austria). The study was intended to be descriptive in nature. A total sample size of 80 was 
considered sufficient to characterize the performance of the Argos in long and short eyes.

Results
The chart review identified 86 eyes (55 long and 31 short) of 55 patients that were eligible based on the inclusion and 
exclusion criteria above. Table 1 summarizes the preoperative and patient demographics.

A summary of the absolute prediction error for the BUII formula is shown in Table 2. Overall, mean absolute prediction 
error was 0.27 ± 0.26 D and the percentage of eyes with prediction error ≤ 0.5 D was 84%. In long eyes, mean absolute 
prediction error was 0.24 ± 0.20 D and the percentage of eyes with prediction error ≤ 0.5 D was 90%. In short eyes, mean 
absolute prediction error was 0.33 ± 0.33 D and the percentage of eyes with prediction error ≤ 0.5 D was 74%.

Table 3 summarizes the postoperative refractive outcomes using the BUII formula. The refractive outcomes were 
excellent in both long and short eyes. The percentage of eyes with ≤ 0.5 D of residual cylinder was 90% for long eyes 
and 74% for short eyes. The percentage of eyes with ≤ 0.5 D of MRSE was 89% for long eyes and 94% for short eyes.

Postoperative monocular CDVA for long and short eyes is summarized in Figure 1. Visual acuities were similarly 
excellent in both long and short eyes, with > 90% of eyes 20/25 or better in each group.

Absolute prediction error for the BTAL formula was back-calculated for exploratory analyses. A summary is shown in 
Table 4. Overall, mean absolute prediction error was 0.28 ± 0.27 D, and the percentage of eyes with prediction error ≤ 0.5 D was 
85%. In long eyes, mean absolute prediction error was 0.26 ± 0.26 D, and the percentage of eyes with prediction error ≤ 0.5 D was 
84%. In short eyes, mean absolute prediction error was 0.31 ± 0.28 D, and the percentage of eyes with prediction error ≤ 0.5 
D was 87%.

Table 1 Preoperative and Demographic Data

Baseline Factor Long Eyes (≥ 24.5mm) Short Eyes (≤ 22.5mm)

Number of Eyes 55 31

Gender (number of eyes)
Female 21 (38) 22 (71)

Male 34 (62) 9 (29)

WTW (mm) 12.25 ± 0.52 (11.16 to 13.46) 11.72 ± 0.39 (11.16 to 12.50)
Axial Length (mm) 25.12 ± 0.57 (24.50 to 27.42) 22.21 ± 0.24 (21.55 to 22.50)

Average K (D) 43.56 ± 1.43 (40.20 to 47.78) 45.36 ± 1.10 (43.39 to 47.66)

Cylinder (D) 1.07 ± 0.86 (0.22 to 3.96) 0.85 ± 0.54 (0.18 to 2.39)
Lens Model (n)

DAT015 25 (45.4) 8 (25.8)

DAT315 16 (29.1) 18 (58.1)
DAT415 5 (9.1) 1 (3.2)

DAT515 4 (7.3) 2 (6.4)

DAT615 5 (9.1) 2 (6.4)

Note: Data presented as mean ± SD (range) or n (%). 
Abbreviations: D, diopters; SD, standard deviation; WTW, white to white.

Table 2 Absolute Prediction Error for the BUII Formula

Group n Mean ± SD (Range) D Median (D) 0–0.25 D (%) 0.26–0.50 D (%) 0.51–0.75 D (%) 0.76–1.00 D (%) > 1D (%)

Overall 86 0.27 ± 0.26 (0.01 to 1.67) 0.17 56.98 26.74 12.79 2.33 1.16

Long 55 0.24 ± 0.20 (0.01 to 0.82) 0.16 62.82 27.27 7.27 3.64 0.00

Short 31 0.33 ± 0.33 (0.01 to 1.67) 0.27 48.39 25.81 22.58 0.00 3.23

Abbreviations: BUII, Barrett Universal II; D, diopters; SD, standard deviation.
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Discussion
Achieving the refractive target following cataract surgery is crucial for good postoperative visual outcomes. The UK 
National Health Service (NHS) released benchmark standards in 2009 of 55% and 85% of patients to be within 0.5 D and 
1.0 D of the predicted refraction, respectively.16 It has been estimated that refractive outcomes are within 0.5 D of target 
refraction in only 73% of eyes.17 Refractive accuracy is influenced by the accuracy and precision of the preoperative 
biometry measurements, and also by the IOL power formula selected. In long eyes, missing the refractive target often 
leaves residual hyperopia.18,19 In short eyes, small changes in the final position of the implanted IOL can have large 
effects on the residual refractive error compared to average or long eyes.20 In this study, we determined the predictive 
accuracy of the BUII and BTAL formulas, which were available preprogrammed on the Argos biometer, in long and short 
eyes that were implanted with an EDOF IOL.

We used the cutoffs for long (24.50 mm) and short eyes (22.50 mm) reported by Shammas and Jabre,21 although axial 
lengths of exactly 22.50 and 24.50 mm were included in the short eye and long eye groups, respectively, in our study. For 
long eyes, the percentage of eyes with prediction error ≤ 0.5 D was 90% for BUII and 84% for BTAL. Shammas et al12 

also reported on the refractive outcomes using the Argos in long and short eyes using a variety of IOL power formulas 
(including BUII and BTAL) after implantation with a monofocal IOL. The authors observed that the percentage of long 
eyes with prediction error ≤ 0.5 D was approximately 86% for BUII and 85% for BTAL (n=155). In another study, 
Shammas et al13 reported that the percentage of long eyes (defined as axial length ≥ 25 mm) with prediction error ≤ 0.5 
D was approximately 91% using the Argos and the BUII formula (n=57). Yang et al6 observed that the percentage of long 
eyes (defined as axial length ≥ 26 mm) with prediction error ≤ 0.5 D was approximately 82% using the Argos and the 
Haigis formula (n=12). In addition, Omoto et al22 reported that the percentage of long eyes (defined as axial length ≥ 

Table 3 Refractive Outcomes in Long (n=55) and Short Eyes (n=31) Using the BUII Formula

Group Refractive  
Outcome (D)

Mean ± SD (Range) D 0–0.25 
D (%)

0.26–0.50 
D (%)

0.51–0.75 
D (%)

0.76–1.00 
D (%)

> 1D 
(%)

Long (n=55) Sphere −0.30 ± 0.32 (−1.25 to 0.25) 62.82 23.64 9.09 3.64 1.82

Cylinder 0.27 ± 0.34 (0.00 to 1.25) 66.45 23.64 5.45 0.00 5.45

MRSE −0.16 ± 0.30 (−1.12 to 0.75) 74.55 14.55 9.09 0.00 1.82

Short (n=31) Sphere −0.19 ± 0.41 (−1.00 to 1.00) 58.06 25.81 9.68 6.45 0.00

Cylinder 0.34 ± 0.39 (0.00 to 1.25) 61.29 12.90 12.90 9.68 3.23

MRSE −0.02 ± 0.43 (−0.50 to 1.50) 58.06 35.48 3.23 0.00 3.23

Abbreviations: BUII, Barrett Universal II; D, diopters; MRSE, manifest refraction spherical equivalent; SD, standard deviation.

Figure 1 Cumulative postoperative monocular CDVA between groups.

https://doi.org/10.2147/OPTH.S430535                                                                                                                                                                                                                               

DovePress                                                                                                                                                                 

Clinical Ophthalmology 2023:17 3528

Blehm and Hall                                                                                                                                                       Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


26 mm) with ≤ 0.5 D prediction error was approximately 70% using the Argos and the BUII formula (n=30). The 
outcomes reported in other studies are similar to those reported in our study, though the differences could be due to the 
differences in sample size, A-constant optimization, or surgical technique. The results of our study and other studies 
suggest that using the Argos with the BUII or BTAL formulas in long eyes results in excellent refractive outcomes.

For short eyes, we observed that the percentage of eyes with prediction error ≤ 0.5 D was 74% for BUII and 87% for 
BTAL. Shammas et al12 reported that the percentage of short eyes with prediction error ≤ 0.5 D was approximately 71% 
for BUII and 72% for BTAL (n=120). Yang et al6 observed that the percentage of short eyes with prediction error ≤ 0.5 
D was approximately 71% using the Argos and the Haigis formula (n=12). Shammas et al13 reported that the percentage 
of short eyes (defined as axial length < 22 mm) with prediction error ≤ 0.5 D was approximately 72% using the Argos 
and the BUII formula (n=43). These reported percentages in other studies are less than those reported in our study, 
though the differences are likely due to differences in sample size and definition of short eyes. The results of our study 
and other studies suggest that using the Argos with the BUII or BTAL formulas in short eyes results in good refractive 
outcomes, however this remains a challenge compared to long eyes.

A limitation of this study was the sample size. The study was intended to be descriptive, and we did not power the 
study to be able to perform statistical comparisons between the BUII and BTAL formulas. However, our results suggest 
that both formulas perform well in long and short eyes. Another limitation of this study was the retrospective design. 
A randomized and prospective study designed to compare IOL power formulas would be better, however, given that such 
a study may require at least 400 eyes,12,13 a retrospective study offers significant cost and time advantages.

In conclusion, the prediction error of Argos using BUII was low in long and short eyes at one month after EDOF IOL 
implantation.
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