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Simple Summary: Chronic pain is being increasingly recognized and addressed in small animal
practice. The recent recognition that inability to communicate does not negate the possibility to
experience pain requires veterinarians to actively recognize, assess and manage animal pain. In order
to successfully treat pain while limiting side effects, a combination of different therapeutic weapons
(e.g., analgesic drugs, acupuncture, physiotherapy and dietary interventions) is currently preferred.
In this perspective, the endocannabinoid-like palmitoylethanolamide represents a promising option,
since it is naturally occurring in food sources and animal tissues, addresses the mechanisms of
chronic pain (i.e., immune cell hyperactivity) and is presently used in complementary feeds for
dogs and cats in highly absorbable micronized formulations (i.e., micro-palmitoylethanolamide).
In the present paper, the role of immune non-neuronal cells in chronic pain is reviewed. Moreover,
the function of body-own palmitoylethanolamide in controlling pain through non-neuronal cell
modulation is discussed. Finally, data on pain-relieving effects provided by dietary supplementation
with micro-palmitoylethanolamide are presented. The critical mass of data here reviewed might help
veterinary practitioners in the process of evidence-based decision-making regarding the management
of chronic pain in cats and dogs.

Abstract: The management of chronic pain is an integral challenge of small animal veterinary
practitioners. Multiple pharmacological agents are usually employed to treat maladaptive pain
including opiates, non-steroidal anti-inflammatory drugs, anticonvulsants, antidepressants, and
others. In order to limit adverse effects and tolerance development, they are often combined with
non-pharmacologic measures such as acupuncture and dietary interventions. Accumulating evidence
suggests that non-neuronal cells such as mast cells and microglia play active roles in the pathogenesis
of maladaptive pain. Accordingly, these cells are currently viewed as potential new targets for
managing chronic pain. Palmitoylethanolamide is an endocannabinoid-like compound found in
several food sources and considered a body’s own analgesic. The receptor-dependent control of
non-neuronal cells mediates the pain-relieving effect of palmitoylethanolamide. Accumulating
evidence shows the anti-hyperalgesic effect of supplemented palmitoylethanolamide, especially in
the micronized and co-micronized formulations (i.e., micro-palmitoylethanolamide), which allow
for higher bioavailability. In the present paper, the role of non-neuronal cells in pain signaling is
discussed and a large number of studies on the effect of palmitoylethanolamide in inflammatory and
neuropathic chronic pain are reviewed. Overall, available evidence suggests that there is place for
micro-palmitoylethanolamide in the dietary management of chronic pain in dogs and cats.

Keywords: N-acylethanolamines; palmitoylethanolamide; chronic pain; small animals; microniza-
tion; endocannabinoids; microglia; mast cells
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1. Introduction

The revised definition of pain endorsed and approved by the International Associa-
tion for the Study of Pain (IASP) defines pain as “An unpleasant sensory and emotional
experience associated with, or resembling that associated with, actual or potential tissue
damage” [1]. An important change with respect to the previous definition (1979) consists
in the recognition that verbally expressing pain is no more a prerequisite to experiencing
pain. The IASP further explains that “Verbal description is only one of several behaviors to
express pain; inability to communicate does not negate the possibility that a human or a
nonhuman animal experiences pain” [1].

From a veterinary perspective, this represents a definitive recognition of animal pain
and poses veterinary practitioners in an “algological position”, i.e., to play a proactive
role in recognizing, assessing and managing animal pain. Indeed, many efforts have been
made in this direction during the last decades and several European and US groups are
moving toward the development of better protocols to detect [2–7], measure [8–14] and
treat [7,15–18] animal pain accordingly. The ever-increasing availability of well-designed
pain scales for acute and chronic pain in dogs and cats [19–26] and the Pain Management
Guidelines [27,28] are good examples.

On the treatment side, one of the most up-to-date and clinically relevant issues consists
in the multimodal approach to pain management, i.e., a combination of different therapeutic
weapons, like analgesic drugs, acupuncture and physiotherapy techniques, as well as
dietary interventions [29–33]. With regard to the last measure, calorie restriction and omega-
3 fatty acids are the most investigated approaches to chronic pain in pets, particularly
osteoarthritis pain [34,35].

Increasing evidence is accumulating on the beneficial effects of N-acylethanolamines
(NAEs) in chronic pain. NAEs have been detected in several food sources of vegetable [36–38]
and animal origin [39]. Moreover, chronic or subchronic high-fat diet, as well as deficient
intake of essential fatty acids have been shown to profoundly affect NAE levels in animal
body [40–45]. One of the most studied NAEs is the endocannabinoid-like mediator palmi-
toylethanolamide (PEA). Its levels in food sources and its pro-homeostatic role have been
recently reviewed [46].

Interestingly, the autoprotective function of PEA was first suggested in dogs, when it
was found that the canine myocardium produced PEA in response to ischemic injury [47]
and canine brain possessed the biosynthetic and degradative machinery for PEA [48,49].
Since then, an increasing body of literature has emerged highlighting the importance
of dietary intervention with micro-PEA—i.e., the bioavailable form of PEA—for pain
relief [50–53].

The present paper outlines current information on the involvement of immune cells in
chronic pain and reviews the role of endogenous PEA in pain control, as well as the experi-
mental and clinical data on pain relieving effects provided by different PEA formulations.

Given that some micro-PEA-containing dietary supplements for dogs and cats are
currently being available on the European market, this review wishes to provide scien-
tific evidence to make informed decisions about the management of chronic pain in cats
and dogs.

2. Pain Classification

Pain includes at least two dimensions, i.e., physical and emotional components. From
a physical perspective, although pain is often conceived as a homogeneous sensory entity,
several distinct types exist: transient, inflammatory, neuropathic and functional pain
(Figure 1) [54].

Transient pain develops when a potentially harmful insult is applied to a superficial or
deep tissue (cutaneous/mucous or musculoskeletal/visceral, respectively) for such a short
time that it does not cause tissue damage (potential damage). It develops rapidly and has a
transient nature, disappearing with the end of the harmful stimulus or shortly thereafter.
Transient pain acts like an alarm signal, capable of activating a sudden withdrawal reflex
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that protects the tissues from the noxious stimulus (adaptive pain). It develops thanks to
the activation of the nociceptive system and the transduction, transmission, modulation
and integration events that follow (nociceptive pain).

Figure 1. Schematic representation of the four different types of pain, based on their etiopathogenesis.
Modified from [29].

Inflammatory pain derives from damage-induced inflammation to somatic or visceral
tissues (actual damage). It can be acute or chronic, depending on the nature of the underly-
ing disease. While the former still has a protective purpose, as it limits movements and
further damage until the repair is completed (adaptive pain), the latter lacks any biologi-
cal purpose (maladaptive pain). Inflammatory pain is the result of nociceptor activation
by inflammatory soup mediators released from immune cells, mainly mast cells. This
leads to the development of neurogenic inflammation and brings about subsequent neuro-
chemical changes, like wind-up and long-term potentiation, as well as translational and
transcriptional modifications (e.g., lower activation threshold of nociceptors and increased
expression of functional proteins involved in pain processing). The increased firing rate of
the first and projection neuron (i.e., peripheral and central sensitization, respectively) is the
main feature of inflammatory pain and leads to primary or secondary hyperalgesia (i.e.,
increased response to painful stimuli at the site of, or distant to the stimulus) and allodynia
(i.e., painful response to harmless stimuli).

Neuropathic pain is defined by IASP as “pain that arises as a direct consequence of a
lesion or disease affecting the somatosensitive system”. It results from an abnormal activa-
tion of the pain pathways, due to a dysfunction or damage to peripheral nerves and/or
dorsal nerve roots (peripheral neuropathic pain) as well as spinal cord and/or brain (central
neuropathic pain). Accordingly, it is considered disnociceptive, acquires a pathological,



Animals 2021, 11, 952 4 of 31

maladaptive nature and can be viewed as a disease itself rather than a symptom. Neuro-
pathic pain can last for months to years or possibly even a lifetime, being thus considered a
type of chronic pain. Possible mechanisms of peripheral neuropathic pain are (i) persistent
hyperexcitability of nociceptors (even after damage repair), (ii) increased excitability of no-
ciceptive fibers following nerve damage (e.g., after dysmyelinosis or neuroma formation),
and (iii) structural/functional changes of spinal synapses following nerve degeneration.
The resulting burst stimulation of afferent fibers may lead to central sensitization, a hall-
mark of several painful disorders like feline osteoarthritis [55]. Central neuropathic pain
involves spinal cord and supramedullary neuronal structures and results from lesions
affecting the central nervous system or increased activity of thalamic and cortical neurons
due to neurochemical changes (e.g., imbalance of glutamatergic/GABAergic transmission).

Functional pain occurs spontaneously, in the total absence of tissue damage or evident
dysfunction or damage to the nociceptive nervous system. It is probably supported by
persistent plastic modifications of the central neuronal circuits induced by nociceptive or
dysnociceptive algogenic lesions. As a consequence, originally activated central neuronal
circuits remain active even when the lesion has resolved. A possible hypothesis is that
mechanisms underlying the spontaneous processing of pain are similar to those that
underlie memory: modifications of central neuronal circuits, initially induced by tissue or
nerve damage, would remain in the CNS as traces of memory and can be “remembered”
even after the lesion has resolved. Functional pain is therefore non-nociceptive, it can last
months, years or forever, establishing its chronic nature. It has no biological function and
is rather pathological (maladaptive). Like neuropathic pain, functional pain can thus be
viewed as a disease itself [29,54,56].

3. Role of Non-Neuronal Cells in the Development and Resolution of Chronic Pain

As introduced above, chronic pain is an unpleasant experience outlasting the time
of healing. Particular cells of the immune system intimately associated with or located
within the nervous system, i.e., “non-neuronal cells”, are increasingly acknowledged as
major contributors to the development and maintenance of chronic pain [51]. In particular,
mast cells (within the nervous system and in the periphery) and microglia (at spinal and
supraspinal level) interact with neurons under physiological and pathological conditions
(Table 1).

Table 1. Mast cell and microglia ID chart.

Mast Cells Microglia

Cell type Resident long-lived immune-inflammatory cells [57,58] Resident long-lived immune-inflammatory cells [59,60]

Location

Periphery
In association with sensory nerves, forming synapse-like
structures, in virtually any tissue, especially those
exposed to the environment
PNS
Within nerves (endoneural mast cells) [61–64]

CNS
Throughout the brain and spinal cord (largely
outnumbering neurons), where they provide
nourishment to neurons, regulate neural activity and
generate innate immune responses [65]

CNS
Spinal meninges; different brain parenchymal sites (e.g.,
hippocampus and thalamic, hypothalamic region); blood
brain barrier (brain side), generally located near
microglia [66–68]

Activation kinetics

Rapid release of prestored mediator in response to
stimuli (e.g., sensory nerve activation), thanks to a wide
range of receptors
Release more than 50 mediators with vasoactive,
neurosensitizing and pro-inflammatory effects [69–72]

Become activated in response to local stress (e.g., nerve
injury), shifting their phenotype from a quiescent to an
activated state
Release pro-inflammatory cytokines and chemokines
in the brain and spinal cord [73,74]

Type of pain involved in
Inflammatory and neuropathic pain, either visceral and
somatic, e.g., osteoarthritis pain, discogenic pain,
viscerovisceral hyperalgesia [75–88]

Neuropathic pain (e.g., canine intervertebral disk
disease); also involved in allergic-induced neuropathic
pain, acute inflammatory pain, paradoxical pain
associated with long-term opioid administration
[59,89–93]

Abbreviations. CNS, central nervous system; PNS, peripheral nervous system.
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While in the first situation non-neuronal cells support the well-function of neurons
(e.g., through releasing neurotrophic factors), in the latter they may become hyper-activated
and may cause pain to continue after the original injury has healed [94,95]. In fact, pro-
longed activation of non-neuronal cells leads to uncontrolled release of pro-inflammatory
mediators resulting in long-lasting plastic changes of synaptic connectivity, with enhanced
transmission of nociceptive information, alterations of pain signaling pathways and chronic
pain development [96,97].

It should also be considered that a bidirectional crosstalk between mast cells and
microglia exists [98] and is currently acknowledged as a critical event in pain hyper-
sensitivity [64,99]. Accordingly, non-neuronal cell hyper-activation—and the resulting
neuroinflammation—is a key player of pain states (Figure 2) [100–102].

Figure 2. Once hyper-activated spinal microglia and mast cells release a wide variety of media-
tors able to induce chronic neuronal hypersensitivity (i.e., central sensitization) and the resulting
neuropathic pain. MC, mast cell; µG, microglia; N, neuron.

Interestingly, non-neuronal cells are also endowed with crucial protective functions in
resolution of neuroinflammation and pain [59]. Indeed, mast cells and microglia are able
to reduce sensitization by producing pro-resolution mediators, the so-called specialized
pro-resolving lipid mediators [103–105].

In this framework, particular attention is currently devoted to endocannabinoids and
related lipid compounds, such as NAEs and more particularly PEA [106–109]. As detailed
below, PEA and similar endocannabinoids are locally released on demand during injury to
counterbalance the effects of pro-algesic mediators [110,111].

4. Endogenous PEA and Pain Modulation

As briefly introduced above, non-neuronal cells not only dangerously boost pain
signaling, but also exert crucial functions in resolution of neuroinflammation and pain,
through pro-resolution mediators. Among them, endocannabinoids and related NAEs are
increasingly being acknowledged to play key roles in pain modulation, with PEA being one
of the most studied [112]. It has been repeatedly found in dozens of vegetable and animal
food sources (in nanogram per gram level), from soy to carrots and from eggs to beef [39,46].
Moreover, PEA levels have also been detected in virtually any tissue and body fluid [46,51],
where it is enzymatically produced “on demand” in response to actual or potential damage
and enzymatically cleaved when it has served its purpose [51,52,113–115].

The late Nobel prize winner Rita Levi Montalcini first proposed that PEA acts as
an Autacoid Local Injury Antagonist (ALIA), through down-modulating mast cell de-
granulation [116,117]. It was then found that PEA is synthesized by mast cells and mi-
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croglia [118,119] and is able to keep cell reactivity within physiological boundaries [51],
thereby controlling neuroinflammation and chronic pain [120–122].

It has also been demonstrated that PEA not only acts through non-neuronal cells, but
may also directly influence neurons. Indeed, PEA was shown to (i) exert protective effects
on cultured cortical and cerebellar neurons [123,124], (ii) control spontaneous GABAergic
synaptic activity in striatal neurons [125], (iii) dose-dependently increase intracellular
calcium concentration in sensory neurons thereby desensitizing pain receptors [126]; (iv)
modulate the activity of dorsal root ganglion neurons [127].

On the molecular side, PEA controls neuronal and non-neuronal cells through direct
or indirect receptor targets, ranging from canonical to putative cannabinoid receptors, i.e.,
cannabinoid receptor type 1 and 2 (CB1 and CB2), peroxisome proliferator-activated re-
ceptor α (PPARα), transient receptor potential vanilloid 1 (TRPV1) and G protein-coupled
receptors 55 and 119 (GPR55, GPR119) [65,126–130]. The indirect receptor agonism—
i.e., a particular kind of entourage effect—depends on PEA ability to increase the lo-
cal levels of the endocannabinoids anandamide (AEA) and/or 2-arachydonoylglycerol
(2-AG) [52,125,131,132]. Different types of cannabinoid receptors have been recently lo-
calized in canine and feline central and peripheral organs. In particular, the target re-
ceptors of PEA have been found in canine and feline skin [133–135], along the gastroin-
testinal tract [136–138], in different brain areas [139–142], spinal cord and dorsal root
ganglia [141,143]. The distribution of cannabinoid receptors in dogs and cats has been
recently addressed by Gugliandolo et al. [46], to whose paper the reader is referred for
more detailed information.

The multiple receptor mechanism(s) of PEA is responsible for innate pain control
(Figure 3) [46,52] and provides PEA with a natural analgesic function, originally proposed
in the late 1990s by Calignano and colleagues [144] and later even better designed by
Piomelli and Sasso [145].

Figure 3. Direct and indirect agonism of PEA (blu key) on canonical (CB1, CB2) and putative (TRPV1, GPR55, PPARα)
cannabinoid receptors expressed on the plasma membrane and/or nucleus of neuronal and non-neuronal cells. The
multitarget receptor mechanism allows for the physiological control of pain pathways by PEA. (eCB, endocannabinoids,
e.g., anandamide, AEA and 2-arachydonoylglycerol, 2-AG; MC, mast cell; µG, microglia; N, neuron).
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Currently, the role of body-own PEA in pain control is unquestionably proven by the
recent case of a pain-insensitive woman who lacks the NAE degradative enzyme [146]. She
feels almost no pain and has much higher levels of NAEs, with PEA levels being around
4-fold higher than normal.

In summary, PEA is an endogenous compound endowed with pain-relieving functions.
It is locally produced on demand by non-neuronal cells and other cell types in response to
an actual or potential damage, and acts as an endocannabinoid direct or indirect agonist to
keep non-neuronal cell response within homeostatic boundaries.

5. Causes and Prevalence of Maladaptive Pain in Dogs and Cats

In the last decades, pets are becoming an increasingly important part of family life,
being often considered real family members. Owners are more and more often seeking
veterinary attention for various diseases affecting their pets, including pain. However,
while most information on pain control in dogs and cats exists regarding peri-operative
analgesic use, chronic pain conditions are still being undiagnosed and under-treated,
especially in the feline species [147].

Indeed, many conditions may cause maladaptive pain in dogs and cats, as summarized
in Table 2.

Table 2. Main causes of maladaptive pain in dogs and cats. From [148].

Main Causes of Inflammatory Pain

Chronic lesions/inflammations affecting superficial tissues (skin, mucous membranes, teeth, some portions of the eye) and
deep somatic tissues (bones, muscles, joints)

Chronic ulcers at skin, mucous, or corneal sites

Chronic inflammatory diseases
Gingivostomatitis

Periodontitis
Pulpits
Otitis
Conjunctivitis
Keratitis
Osteoarthritis

Myofascial trigger points

Discs herniation

Somatic cancers (skin, breast, osteosarcoma)

Chronic injury/inflammation affecting deep visceral tissues

Chronic inflammatory diseases
Inflammatory bowel disease (IBD)
Pancreatitis
Cystitis (i.e., feline idiopathic cystitis)
Prostatitis

Gastrointestinal ulcers

Cancers affecting visceral districts
Primary visceral cancer
Metastatic invasion of viscera

Main Causes of Neuropathic Pain

Peripheral and central nervous system disorders

Poliradiculoneuritis

Diabetic neuropathy

Disk compression radiculopathy with nerve damage

Tumor infiltration neuropathy

Paraneoplastic neuropathies

Myelin sheath cancer

Central nervous system (CNS) cancers

Chronic visceral pathologies with neuropathic component

Chronic pancreatitis

IBD

Feline interstitial cystitis

Visceral cancers
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The incidence of pain in dogs and cats has not received much attention so far. A
cross-sectional study on 317 dogs and 112 cats admitted to an emergency service reported
that 56% and 54% of dogs and cats respectively were painful, with most dogs suffering
from deep somatic pain and most cats from visceral pain [149]. The percentage was lower
in outpatients (1153 dogs and 652 cats), with 20% of dogs and 14% of cats showing evidence
of pain [150]. Neuropathic pain was diagnosed in 7–8% of both species [150,151].

Among the causes listed in Table 2, one of the most frequent painful conditions in
dogs and cats is osteoarthritis (OA), otherwise referred to as osteoarthrosis or degenerative
joint disease. The prevalence of canine OA published so far varies widely. In the UK,
estimates range from 6.6% in primary-care services [152,153] to 20% based on referral
data [154]. Estimates from North America made on radiographic and clinical data from
referral settings show the age-specific prevalence of canine OA, with values ranging from
20% in dogs older than one year to 80% in dogs over eight years [155]. A cross-sectional
study on radiographic signs of feline OA showed an overall prevalence of 92% in randomly
selected domestic cats (mean age of 9.9 years) [156,157].

Finally, it should be mentioned that recognizing and measuring pain in animals is
anything but easy. Further complicating the issue is the discovery that people rate pain
sensitivity differently based on breed-specific stereotypes or phenotypic traits and dog
breed archetypes [158]. Many excellent review papers are available on pain assessment in
companion animals, which the reader is referred to [22–24,159,160].

6. Management of Pain in Dogs and Cats

As previously discussed, chronic pain—regardless of the underlying cause—may
become maladaptive, i.e., without any beneficial role. Neuropathic pain, functional pain
and chronic inflammatory pain are all types of maladaptive pain. Any type of maladaptive
pain is thus considered pathological and must be treated accordingly.

A full discussion on pain management in pets is behind the scope of this article.
Briefly, non-steroidal anti-inflammatory drugs (NSAIDs), opioids and steroids alone or
associated with adjuvant drugs such as gabapentinoids (gabapentin, pregabalin), NMDA-
antagonists (amantadine, memantine), selective serotonin reuptake inhibitors (SSRIs),
serotonin-norepinephrine reuptake inhibitors (SNRIs) or tricyclic antidepressants (TCA,
e.g., amitriptyline), among others, represent the mainstream pharmacologic treatment of
pain [27,161,162]. However, when used alone or even in combination, these drugs may
still fail to provide complete pain relief [149]. Moreover, they can lead to the occurrence
of adverse effects, especially in the chronic use [163,164]. Chronic pain in pets thus still
represents an unmet medical need.

The idea that multimodal analgesia tailored to the patient will have most chances of
being effective is increasingly being acknowledged in veterinary practice [165–167]. In
this view, dietary intervention with pro-resolving lipid compounds may represent an ideal
adjunctive approach. PEA is currently one of the most promising options in this regard.

7. PEA and Formulation Challenges: A Size Issue

Before dealing with the effectiveness of PEA in chronic pain, a key formulation
question must be addressed. PEA is a highly lipophilic compound and tends to aggregate
in large particles (up to 2000 microns)—a big pharmaceutical issue since absorption rate is
inversely related to particle size [46,108,168].

Particle size reduction through micronization techniques (down to 0.8 microns) im-
portantly improves the dissolution and thus bioavailability (Figure 4A) [169]. This results
in superior efficacy of orally administered PEA (Figure 4B) [170–172], while ensuring its
safety [171]. Mainly for this reason, in clinical practice (in which oral route is preferred
because of ease of administration) the micronized (PEA-m) and ultra-micronized (PEA-
um) forms (collectively known as micro-PEA [158]) are privileged and are indeed the
most investigated.
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Figure 4. Advantages of PEA micronization. Reducing particle size increases particle surface area, resulting in higher
dissolution rate of micronized PEA compared to the naïve form (A). In the carrageenan-induced hyperalgesia (CAR)
PEA-um exerted a superior anti-hyperalgesic effect compared to naïve PEA after oral administration (B). On the contrary,
no difference was observed after intraperitoneal administration (C). * p < 0.01 vs. CAR. Modified from [172].

On the contrary, in laboratory animals, the intraperitoneal delivery is generally the
easiest and most used administration route. Moreover, it results in faster and more com-
plete absorption compared to oral route [173]. This is especially true if suspension in
carboxymethyl cellulose is used [173], as it is usually the case with intraperitoneally ad-
ministered PEA. Indeed, no difference was observed between PEA-um and naïve PEA in
pain control, in the event of intraperitoneal delivery (Figure 4C), which is absolutely not
the case if oral administration is used [172].

8. Preclinical Evidence for PEA in Pain Relief

The rationale to administer PEA for pain relief and wellbeing was brilliantly foreseen
in the late nineties by the Nobel Prize Winner Rita Levi Montalcini, who stated that
“the observed effects of Palmitoylethanolamide appear to reflect the consequences of
supplying the tissue with a sufficient quantity of its physiological regulator of cellular
homeostasis” [117].

Since then, several studies in preclinical pain models have been performed, with
PEA being given mainly via intraperitoneal route, although intraplantar injection [144,174]
and oral administration of micronised formulations [175] were also used. Interestingly,
the concurrent administration of micro-PEA and morphine for 11 days attenuated the
development of opioid tolerance [176], since micro-PEA strengthens morphine analgesia
and allows prolonged and effective pain relief with low doses [177].

Moreover, a descending analgesic mechanism mediated by the serotonergic system
has been suggested [178].

Tables 3 and 4 summarize the main preclinical investigations. As shown, PEA exerts a clear
anti-nociceptive effect in chronic pain models of either inflammatory [132,144,174–176,179–191],
neuropathic [192–198] or mixed nature [199,200]. In particular, it has been found that the
anti-nociceptive effect of PEA is comparable to synthetic or plant-derived cannabinoids
used for chronic pain, like nabilone [181] and delta-9-tetrahydrocannabinol (∆9-THC)
(Figure 5) [190].
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Figure 5. Anti-nociception elicited by ∆9-THC and PEA after intraperitoneal administration in a
visceral pain model (phenyl-p-quinone, PPQ). The dose response curves for percentage inhibition of
stretching movements (%INH) are reported. ∆9-THC and PEA were administered 15 min and 10 min
prior to PPQ, respectively. Redrawn from [190].

Interestingly, an in-press study by Tagne and collaborators has just shown that hemp
oil extract with 9.3% cannabidiol by weight has little or no effect when administered alone
but synergizes with PEA to produce a greater-than-additive alleviation of neuropathic
pain, upon single-dose administration (Figure 6) [201]. According to the authors, a possible
explanation for the observed synergistic interaction lies in the ability of hemp oil extract to
improve pharmacokinetic profile of PEA [201].

Figure 6. Effects of combining a single sub-optimal oral dose of hemp oil extract (HOE) with PEA
on heat hyperalgesia associated with neuropathic pain. Oral administration of PEA (30 mg/kg)
significantly relieves heat hyperalgesia, increasing the withdrawal latency to nearly control values
(Ctr), while HOE (100 mg/kg) does not exert any effect. The combination of the two compounds at
the indicated doses (orange bar) exerts greater-than-additive antinociceptive effects. * p < 0.001 and
** p < 0.0001 vs. chronic constriction injury (dark grey bar). The source data come from Figures 2B,
4D and 6B published in [201].
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Two particularly interesting issues arise from the above findings. First, PEA is not anal-
gesic sensu stricto since it does not modify the physiological pain threshold of control ani-
mals and rather electively normalizes conditions of hypersensitivity [176,185]. Second, PEA
not only relieves pain itself but also improves pain-induced cognitive impairments [198].

As far as mechanism of action are concerned, reduced mast cell hyperplasia—even
in endoneural sites—and decreased spinal microglia activation were the main observed
events [120,185]. At the molecular level, the reduction of markers of pain pathway activa-
tion (e.g., Fos) and inflammatory mediators (e.g., cytokines, nerve growth factor) as well as
modulation of extracellular signal-regulated kinase (ERK) and nuclear pro-inflammatory
factors (e.g., NF-kB) were detected in the spinal cord [120,132,182,193,195,197]. Restoration
of the glutamatergic synapses homeostasis in the prefrontal cortex and the involvement
of de novo neurosteroid synthesis (i.e., allopregnanolone) in the spinal cord were also
suggested to mediate PEA-induced analgesia [198,202]. Moreover, electrophysiological
signs of decreased neuronal hyper-excitability were reported at the spinal cord level of
PEA-um treated neuropathic animals [176,185,200]. Finally, the involvement of cannabi-
noid receptor(s) (e.g., CB2, CB1, PPARα) in the pain-relieving effect of PEA was repeatedly
confirmed [186,192,194,199,202,203]. The up-regulation of CB2 expression by microglia
through PPARα activation has also been suggested as a possible mechanism underlying
the pain-relieving effect of PEA [204].

According to an impressive meta-analysis by IASP Presidential Taskforce on Cannabis
and Cannabinoid Analgesia, PPARα agonists and, more specifically, PEA, are effective in
attenuating pain-associated behaviors in a broad range of inflammatory or neuropathic
pain models [205].

Table 3. Pain relieving effect of PEA—mainly given via intraperitoneal route—in animal models of chronic inflammatory
pain. Summary of studies in chronological order.

Animal Model Main Behavioural Effect Ref.

Somatic Inflammatory Pain

Carrageenan-induced hyperalgesia Significant reduction of mechanical hyperalgesia [179]

Formalin-induced persistent somatic pain Significant inhibition of both early and late phases
of formalin-evoked pain behaviour [144]

Formalin-induced persistent somatic pain Significant reduction of the second phase behavioural
response (composite pain score) [180]

Formalin-induced persistent somatic pain Marked inhibition of pain behaviour [174]

Carrageenan-induced hyperalgesia Abolishment of hyperalgesic response [181]

Intraplantar NGF-induced hyperalgesia Significant reduction of hyperalgesia and neutrophil
accumulation [189]

Carrageenan-induced hyperalgesia Marked time-dependent reduction of
mechanical hyperalgesia [183]

Carrageenan-induced hyperalgesia (s.c. sponge implant) Significant reduction of new nerve formation and
decrease of granuloma-associated hyperalgesia [184]

Carrageenan-induced hyperalgesia Significant increased mechanical and thermal thresholds
(anti-hyperalgesic effect) [202]

Formalin-induced
nociception

Dose-dependent reduction of nocifensive behaviour in both
early and late phases [202]

Formalin-induced
neuropathic-like behaviour

Significant and dose-dependent decrease of mechanical
allodynia and thermal hyperalgesia [185]

Oxaliplatin-induced
neuropathic pain

Significant decrease of hyperalgesia and allodynia and
improvement in motor coordination [176]

Streptozotocin-induced
diabetic neuropathy

Dose-dependent and significant relief of
mechanical allodynia [186]

Formalin-induced persistent somatic pain Significant attenuation of the first and
early second phases of nociceptive behaviour [132]
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Table 3. Cont.

Animal Model Main Behavioural Effect Ref.

Carrageenan-induced hyperalgesia Significant reduction of thermal hyperalgesia by 57%
(superior effect compared to meloxicam) [187]

CFA-induced joint pain Significant decrease of extravasation and
mechanical allodynia [175]

Formalin-evoked persistent somatic pain Significant attenuation of mechanical allodynia and heat
hyperalgesia (over 90%) [201]

Visceral Inflammatory Pain

Turpentine inflammation of
the urinary bladder

Significant attenuation of the vesical hyper-reflexic
response [180]

Acetic acid-evoked writhing Dose-dependent attenuation of the writhing response [174]

Turpentine inflammation of
the urinary bladder Dose-dependent attenuation of referred hyperalgesia [188]

Kaolin-evoked writhing Potent inhibition of the nocifensive response [174]

Magnesium sulphate-evoked writhing Dose-dependent inhibition of the nocifensive response [174]

NGF-induced inflammation
of the urinary bladder Significant increase of micturition threshold [182]

PPQ-induced persistent visceral pain Dose dependent inhibition of visceral pain measured as
stretching movement inhibition [190]

Cyclophosphamide-induced
cystitis Significant decrease of the pain score [191]

Abbreviations. CFA, Complete Freund’s adjuvant; MIA, monosodium iodoacetate; NGF, nerve growth factor; OA, osteoarthritis; PPQ,
phenyl-p-quinone.

Table 4. Pain relieving effect of PEA—mainly given via intraperitoneal route—in animal models of neuropathic and mixed
pain. Summary of studies in chronological order.

Animal Model Main Behavioural Effect Ref.

Neuropathic Pain

Partial sciatic nerve injury Reduction of hyperalgesia (−79.4%) [192]

Spinal cord injury Significant reduction of the severity of spinal cord trauma [193]

Chronic constriction injury Significant relief of thermal hyperalgesia and
mechanical allodynia [194]

Chronic constriction injury
Significant and time-dependent relief of thermal hyperalgesia and mechanical allodynia
(already
after two administrations)

[120]

Partial sciatic nerve injury Restored thermal and mechanical thresholds.
Decrease of pain-induced memory deficits [195]

Diabetic neuropathic pain Significant antinociceptive effect. Significantly increased thresholds to mechanical
stimuli [196]

Sciatic nerve injury Reduced nerve edema and inflammatory infiltrate (sub-optimal doses of PEA combined
with acetaminophen) [197]

Partial sciatic nerve injury Restored cognitive behaviour and reduced cognitive
decline associated with neuropathic pain [198]

Chronic constriction injury Strong dose-dependent suppression of mechanical allodynia and heat hyperalgesia upon
single and repeated (7 consecutive days) administration [201]

Chronic mixed pain

MIA-induced OA pain Significant decrease of mechanical allodynia and
improved locomotor function [187]

MIA-induced OA pain
Significantly restored paw withdrawal threshold
and weight-bearing compared to the vehicle-treated controls in a dose-dependent
fashion

[199]

Vitamin D
deficiency-induced
chronic pain

Significant reduction of allodynia and neuronal
sensitization [200]

Abbreviations. MIA, monosodium iodoacetate; OA, osteoarthritis.
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9. Clinical Evidence for Micro-PEA Dietary Supplementation in Pain Relief

On the clinical side, micro-PEA (i.e., micronized, ultramicronized or co-micronized
PEA) has been orally administered as a dietary food for special medical purposes to human
patients, either singly [206–225] or in combination with (i.e., add-on dietary intervention
to) opioids, gabapentenoids or NSAIDs [226–248], as well as antioxidant compounds (e.g.,
luteolin, quercetin, polydatin) [249–261] in several painful conditions [53,262].

Altogether, nearly 5000 patients have been clinically investigated so far in dozens of
published trials, showing an important overall effect in chronic pain, either neuropathic
(Table 5), mixed (Table 6) or pelvic pain (Table 7).

Table 5. Pain relieving effect of micro-PEA (i.e., PEA-m or PEA-um) on chronic neuropathic pain: overview of human trials
in chronological order.

Diagnosis
(Trial Design)

No. of
Pts Dose Main Result Ref.

Peripheral neuropathic pain

Sciatic pain due to radicular and/or core
compression of the sciatic nerve and
discopathy
(Double-blind, randomized, two doses of
micro-PEA vs. placebo)

636 300 mg/die or 300 mg/bid for
three weeks

Significant decrease of pain
on VAS (from 7 to 2) [206]

Diabetic neuropathy pain associated with
carpal tunnel syndrome
(Group-controlled, randomized,
micro-PEA treatment vs. standard care)

50 600 mg/bid for two months

Significant relief of pain.
Significant improvement of
neurophysiologic
parameters

[207]

Painful neuropathies
(Open-label study) 27

300 mg/bid for three weeks,
followed by 300 mg/die for four
weeks

Significant reduction of
pain and improvement of
electrophysiological
parameters

[208]

Sciatic pain
(Double-blind, randomized, two doses of
micro-PEA vs. placebo
(as an add-on therapy))

111 300 mg/die or 300 mg/bid for
three weeks

Significant decrease in pain
severity and duration of
treatment with
anti-inflammatory and
analgesic drugs

[226]

Neuropathic chronic pain (diabetic
neuropathy and postherpetic neuralgia)
(Open, combination therapy with GBPs)

30 600 mg/bid for 45 days Significant decrease of pain
on VAS (from 7.6 to 1.8) [227]

Low back pain
(Group-controlled (add-on therapy to
standard analgesics))

81
600 mg/bid for three weeks
followed by 600 mg/die for
four weeks

Significant reduction of
pain intensity compared to
control group

[228]

Sciatic pain
(Group-controlled, randomized, add-on
therapy to standard analgesics)

85 300 mg/bid for 30 days

Significant relief
of pain (scored both on
VAS and Oswestry Low
Back Pain Scale) compared
to the analgesic-only group

[229]

Diabetic neuropathic pain
(Open-label study) 30 300 mg/bid for two months

Significant reduction of
pain, burning, paraesthesia
and numbness

[209]

Carpal tunnel syndrome in diabetic
pts
(Group-controlled, randomized vs.
non-treated pts)

40 600 mg/bid for two months

Significant reduction of
pain and improvement of
functional status and
neurophysiologic
parameters

[210]

Pain associated with carpal tunnel
syndrome
(Group-controlled, randomized, two
doses of micro-PEA vs. non-treated
pts)

26 1st arm: 300 mg/bid for 30 days
2nd arm: 600 mg/bid for 30 days

Significant dose-dependent
reduction of pain and
improvement of
neurophysiologic
parameters compared with
control group

[211]
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Table 5. Cont.

Diagnosis
(Trial Design)

No. of
Pts Dose Main Result Ref.

Chemotherapy-induced painful
neuropathy
(Open-label study)

20 300 mg/bid for two months

Significant pain reduction
on NRS and significantly
increased conduction
velocity of myelinated
fibers on
neurophysiological
assessment

[212]

Low back pain
(Open, combination therapywith OPI) 20 600 mg/bid for 30 days Significant decrease of pain

on VAS (from 7 to 2.5) [230]

Various chronic pain-associated disorders
(Open, combination therapy
with GBPs and OPI)

517
600 mg/bid for three weeks
followed by 600 mg/die for
four weeks

61% decrease of mean pain
score on NRS [231]

Diabetic neuropathic pain
(Group-controlled (micro-PEA + GBPs
vs. GBPs))

74

600 mg/bid for the first 10 days,
then 600 mg/die for 20 days,
followed by 300 mg/die for
30 days

Significantly higher rate of
responders (i.e., >60%
decrease in pain score)
compared to GBP group

[232]

Chronic neuropathic pain from
lumbosciatica
(Multicentral prospective,
group-controlled study (add-on therapy
to standard analgesics vs. standard
analgesics))

118 300 mg/bid for 30 days

Significantly larger
improvements in VAS and
QoL compared to standard
therapy alone

[233]

Chronic pain associated to different
pathological conditions
(Observational study (add-on to poorly
effective standard analgesics))

610
600 mg/bid for three weeks
+ 600 mg/die for the following
four weeks

Significant decrease of the
mean score of pain on NRS
(even in pts without
concomitant analgesics)

[234]

Diabetic neuropathy
(Open-label study) 30 300 mg/bid for two months

Significant decrease of pain
severity and related
symptoms evaluated by
Michigan Neuropathy
Screening instrument
and NPSI

[213]

Diabetic or traumatic chronic neuropathic
pain, with VAS greater than 6 in spite of
the best therapeutic regimen with GBPs
and/or OPI
(Open-label study (add-on))

30 1200 mg/die for 40 days

Significant and time
dependent decrease of pain
on VAS and NPSI, as well
as QoL on EQ-5D

[235]

Pain associated to fibromyalgia syndrome
(Retrospective + prospective study (SNRI
+ GBPs vs. SNRI + GBPs +
micro-PEA))

80
600 mg/bid in the first month and
300 mg/bid in the next
two months

Further reduction in the
number of positive tender
points and significant
reduction in pain,
compared to
SNRI + GBPs only

[236]

Low back pain
(Case report (combined to low dose
SNRI))

2 600–1200 mg/bid for two months Significant decrease of pain
on NRS [237]

Failed back surgery syndrome (caused by
laminectomy, discectomy, or vertebral
stabilization)
(Observational study (add-on to 1-month
standard analgesic treatment, i.e., OPI +
GBPs))

35
1200 mg/die for the first month
and 600 mg/die for the
second month

Further and significant
decrease in pain intensity
compared to the first
month of standard
analgesics

[238]

Chronic, non-cancer, non-ischemic pain in
the back, joints or limbs in elderly pts (≥
65 years)
(Series of N-of-1 randomized trials)

10 600 mg/bid

Statistically significant
favorable impact on either
pain intensity or function
impairment in some of the
three of the pts

[239]
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Table 5. Cont.

Diagnosis
(Trial Design)

No. of
Pts Dose Main Result Ref.

Chronic low back pain
(Two arm (prospective and retrospective),
pilot observational study (add-on to OPI
compared to OPI only))

55 600 mg/bid for six months

Significantly higher
reduction in:
- pain intensity on VAS
- neuropathic

component (on DN4
questionnaire)

- degree of disability
(on Oswestry
Disability Index)

- OPI dosage
assumption
compared to OPI
only group

[240]

Neuropathic pain associated with
nonsurgical lumbar radiculopathies
(Retrospective study (add-on to 4-day
treatment with ACT + OPI))

100 600 mg/bid for 30 days followed
by 600 mg/die for 30 days

Significant pain relief in pts
with mild, moderate and
severe baseline painful
symptoms

[241]

Neuropathic pain associated with
nonsurgical lumbar radiculopathies with
X-ray signs of spondylosis and CT/MRI
signs of IVD protrusion or dehydration
(Prospective single-blind (add-on to 7-day
treatment with fixed combination
ACT + OPI))

155

1200 mg/die for 30 days.
If unsuccessful, further 30 days
with 600 mg/die followed, if
needed, by a second cycle of ACT
+ OPI for 30 days

Significant improvement of
pain and disability after 30
or 60 days depending on
the baseline pain severity
(VAS 3–8). In pts with
baseline VAS ≥9 the
second ACT + OPI cycle
was needed.

[242]

Carpal tunnel syndrome
(Open, controlled study (PEA-um +
surgery vs. surgery only))

42
600 mg/bid for 2 months before
and 2 months after surgery + 600
mg/die for 30 days

Significant improvement in
painful symptoms and
overall sleep quality
on PSQI

[243]

Burning mouth syndrome
(Case report (add-on to poorly
effective GBPs))

1 600 mg/bid for three months

Significant decrease of pain
on VAS (from 9 to 5). Great
reduction of the frequency
of episodes

[244]

Chronic orofacial neuropathic pain
(post-traumatic neuropathy)
(Open-label clinical trial)

22 300 mg/tidfor six weeks

Overall reduction in
ongoing pain on VAS.
Normalized activity
patterns in the ascending
pain pathway

[214]

Burning mouth syndrome
(Preliminary randomized double-blind
controlled trial)

35 600 mg/bid for two months

Statistically significant
higher reduction of
burning mouth sensation
on NRS compared
to placebo

[215]

Fibromyalgia Syndrome
(Retrospective observational study
(add-on to concomitant pharmacological
therapy, i.e., SSRI (n = 71), SNRI (n = 66),
GBPs (n = 41), TCA (n = 40), BZD (n =
94),OPI (n = 78), NSAIDs (n = 87), MR (n
= 35), ACT (n = 45))

407

600 mg/tid for 10 days followed
by 600 mg/bid for 20 days
followed by 600 mg/die for
125 months

Statistically significant
decrease of pain on VAS
and statistically significant
improved QoL on FIQ

[246]

Low back pain—sciatica
(Post-hoc analysis of a
placebo-controlled study)

600 600 mg/die

NNT of 1.7 (1.4–2) for the
effect on pain and 1.5
(1.4–1.7) for the effect
on function

[216]

Chronic low back pain
(i.e., lumbo-sciatica and lumbo-cruralgia
due to multiple herniated discs in the
lumbar spine)
(Open, add-on to standard analgesics +
functional rehabilitation session)

120 600 mg/bid for 20 days, followed
by 600 mg/die for 40 days

Significant decrease of pain
intensity scores (from 6.3 ±
0.1 at baseline to 3.7 ± 0.09
and 2 ± 0.09 at 30 and 60
days, respectively)

[245]
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Table 5. Cont.

Diagnosis
(Trial Design)

No. of
Pts Dose Main Result Ref.

Central neuropathic pain

Neuropathic pain associated with
multiple sclerosis
(Open-label study)

20 300 mg/bid for two months Significant decrease of
neuropathic pain [217]

Neuropathic pain and spasticity in
post-stroke pts
(Open, controlled micro-PEA + P
vs. PT only)

20
600 mg/bid for two months
followed by
600 mg/die for 30 days

Significant decrease of pain
and spasticity [247]

Pain associated with stroke
(Observational study
(co-um PEA-Lut in association with the
stroke therapy, e.g., thrombolytics))

250 700 mg + 70 mg for two months Pain on NRS halved after
30 days [249]

Migraine without aura—at least 6 months’
duration
(Open-label study)

50 600 mg/bid for three months

Significant decrease of
- day per month with

migraine
- pain intensity
- amount of analgesics;
Reduction of hypothermia
and response to trigger
factors (thermography)

[218]

Nummular headache
(Case report (add-on to
decreasing topiramate dose))

1 600 mg/die

Improvement in pain
symptoms
and on pain
measuring scales

[219]

Occipital Neuralgia
(Case report]) 1 1200 mg/die

Significant improvement of
pain, after around 2 weeks
of treatment

[220]

Migraine with Aura
(Single blind study (add-on to acute
NSAIDs, i.e., ibuprofen, diclofenac
sodium, or nimesuilde for about 2 days
during acute migraine attack))

20 1200 mg/die for three months

Statistically significant and
time-dependent pain relief,
already evident at 60 days
and lasting until the end of
the study

[221]

Migraine without aura in a pediatric
population
(Open-label pilot study)

70 600 mg/die for three months

Significant decrease of
- the number of

monthly attacks
- the mean intensity of

attacks
- percent of pts with

severe attacks
- monthly assumption

of drugs for the
attacks

[222]

Abbreviations. ACT, Acetaminophen; bid, bis in die = twice daily; BZD, benzodiazepines; co-um PEA-Lut, co-ultramicronized palmi-
toylethanolamide and luteolin; CT, computed tomography scans; die, daily; EQ-5D, Health Questionnaire Five Dimensions; FIQ, Fi-
bromyalgia Impact Questionnaire on quality of life; GBPs, gabapentinoids; IVD, intervertebral disk; MR = muscle relaxants; MRI, magnetic
resonance imaging; NNT, Number Needed to Treat; NPSI, Neuropathic Pain Symptom Inventory; NRS, Numeric Rating Scale; NSAIDs,
non-steroidal anti-inflammatory drugs; OPI, opiates; PSQI, Pittsburgh Sleep Quality Index; PT, physiotherapy; pts, patients; QoL, quality of
life; tid, ter in die = three times daily; SSRI, serotonin selective reuptake inhibitors; SNRI, serotonin noradrenaline selective inhibitors; TCA,
tricyclic antidepressants; VAS, visual analogue pain scale.
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Table 6. Pain relieving effect of micro-PEA (i.e., PEA-m or PEA-um) on chronic mixed pain: overview of clinical trials in
chronological order.

Diagnosis
[Trial Design]

No. of
Pts Dose Main Result Ref.

TMJ pain caused by OA
(Double-blind randomized
vs. NSAIDs)

24

300 mg in the morning
+ 600 mg in the eveningfor
7 days; followed by 300 mg/bid
for 7 days

Significant decrease of pain on VAS
(from 7 to 0.7) and significantly
improved maximum mouth opening
compared to NSAIDs

[223]

OA-induced TMJ arthralgia
(Case series
(initially combined
with NSAIDs))

12

600 mg/die
(together with NSAIDs for the
first 4 days, then singly for the
following 10 days)

Significant pain reduction after 4 days.
Significant improvement of maximum
mouth opening

[248]

Knee OA pain
(Double-blind randomized
placebo-controlled study
(two doses))

111 300 mg/die or
600 mg/die

Significant reduction of
WOMAC, pain on NRS and anxiety [224]

Pain in arthrogenic TMJ
dysfunction and similar
disorders
(Systematic review of 5 studies
(4 RCTs + 1 retrospective
cohort study))

227 300 mg/die and over

Effective in arthrogenic TMJ
dysfunction and related disorders,
with a superior analgesic effect to
some NSAIDs and a low rate of
adverse events

[225]

Abbreviations. bid, bis in die = twice daily; die, daily; NSAIDs, non-steroidal anti-inflammatory drugs; pts, patients; OA, osteoarthritis;
RCTs, randomized clinical trials; TMJ, temporomandibular joint; VAS, visual analogue pain scale; WOMAC, Western Ontario and McMaster
Universities Osteoarthritis Index.

Table 7. Pain relieving effect of PEA-Pol (i.e., PEA co-micronized with the antioxidant polydatin in 10:1 ratio) on chronic
pelvic pain: overview of clinical trials in chronological order.

Diagnosis
[Trial Design]

No. of
Pts Dose Main Result Ref.

Chronic pelvic pain
associated with
endometrio-
sis/dysmenorrhea/
interstitial cystitis
(Open-label study)

25 (200 + 20) mg/tid for 40 days
Significant reduction of pain on VAS
(from 6.8 to 1.7); significant decrease
in the use of NSAIDs.

[250]

Adolescent primary
dysmenorrhea
(Open-label study)

20 (400 + 40) mg/bid
for six months 70% decrease in pelvic pain [251]

Chronic pelvic pain and
dyspareunia associated
with
endometriosis
(Open (case series))

4 (200 + 20) mg/bid for
three months

Significant decrease of pelvic pain
and dyspareunia; significant
reduction in the use of analgesics.

[252]

Pudendal neuralgia
(Case report) 1

PEA-um
300 mg/tid gradually decreased to
300 mg/die for one year

Resolution of chronic pelvic pain [253]

Chronic pelvic pain
associated with
endometriosis
(Double-blind, randomized
parallel-group (celecoxib),
placebo-controlled)

61 (400 + 40) mg/tid for three months
Significant decrease of chronic
pelvic pain, dysmenorrhea
and dyspareunia

[254]
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Table 7. Cont.

Diagnosis
[Trial Design]

No. of
Pts Dose Main Result Ref.

Endometriosis associated
with severe pelvic pain
(Open-label study)

24 (400 + 40) mg/bid for three months

Statistically significant decrease of
pain, dysmenorrhea and
dyspareunia and improved QoL, as
well as decreased assumption
of NSAIDs

[255]

Pain related to
endometriosis
(Prospective study)

47 (400 + 40) mg/bid for three months

Significant decrease of chronic
pelvic pain, dyspareunia and
dysmenorrhea on VAS since the first
visit (day 30)

[256]

Vestibulodynia
(Randomized,
placebo-controlled,
combined with TENS)

20 (400 + 40) mg/bid for two months

Significant decrease of pain on VAS
in both groups. Superior decrease of
current perception threshold for C
fibers in treated (40%) compared to
placebo group (4.6%)

[257]

Primary dysmenorrhea
(Randomized
placebo-controlled with
follow-up)

220
(400 + 40) mg/die for 10 days (from the
24th day of
cycle)

Improvement of pelvic pain in 98%
of cases in the treated group vs. 56%
in the placebo group. Statistically
superior effect compared to placebo

[258]

Irritable bowel syndrome
(Randomized double-blind
placebo-controlled)

54 (200 + 20) mg/bid for 12 weeks Reduction of abdominal pain
and discomfort [259]

Symptomatic women with
laparoscopic diagnosis of
endometriosis
(Single-arm, open-label)

30 (400 + 40) mg/bid for 80 days, after
10 days PEA-um 600 mg/bid

Significant decrease of symptoms
(pain on VAS, dysmenorrhea,
dyspareunia, and dyschezia,
dysuria); increased QoL and
psychological well-being; significant
reduction in the use of the analgesics

[260]

Interstitial cystitis/bladder
pain syndrome (IC/BPS)
(Pilot, open-label
bicentric study)

32
(400 + 40) mg/tid for three months
followed by (400 + 40) mg/die for
three months

Significant decrease of pelvic pain
intensity on VAS from 6.9 ± 0.4 to
4.6 ± 0.4 (the effect persisting up to
two months after treatment
withdrawal);
PUF significantly and progressively
decreased; significant reduction in
urinary frequency

[261]

Abbreviations. bid, bis in die = twice daily; die, daily; NSAIDs, non-steroidal anti-inflammatory drugs; PUF, Pelvic Pain and Ur-
gency/Frequency Symptom Scale; Pts, patients; QoL, quality of life; tid, ter in die = three times daily; TENS, transcutaneous electrical nerve
stimulation therapy; VAS, visual analogue pain scale.

One of the most interesting findings comes from the neurophysiological assessment of
20 patients with chemotherapy-induced painful neuropathy, with daily administered micro-
PEA 300 mg/bid for two months. Besides significant pain reduction, increased conduction
velocity of myelinated fibers was recorded, with sensory nerve action potentials from sural
and ulnar nerves, compound motor action potentials from peroneal and ulnar nerves and
laser-evoked potentials for Aδ fibers being significantly improved [212].

A further striking finding comes from the so-called “number needed to treat” (NNT),
i.e., a measure depicting the effectiveness of an intervention (the lower the NNT, the more
effective the intervention). The calculation was elegantly made by researchers from the
Department of Human Neurosciences, “Sapienza” University of Rome [216]. In particular,
the percentage of patients who manifested at least 50% pain relief in response to a daily
supplementation of micro-PEA 600 mg/die was calculated based on data from a multi-
center, double-blind, placebo-controlled, randomized study on 636 patients with low back
pain. NNT was found to be 1.7 [216]. It must be pointed out that it is a remarkable NNT
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value within the broad panorama of treatments for low back pain in human patients. A
systematic review on first-line treatments for neuropathic pain has indeed shown that NNT
for 50% pain relief ranges from around 4 to 10 across most positive trials (Table 8) [263]. The
much lower NNT for micro-PEA (i.e., 1.7) emphasizes the good outcome for neuropathic
pain relief. The relevance of the data is further strengthened by the non-significant (and
indeed infinite) number needed to harm [216], that is, how many patients must receive a
particular treatment for one additional patient to experience a particular adverse outcome.

Table 8. NNTs for micro-PEA and the main first-line treatments for neuropathic pain (i.e., the number
of patients to treat in order to obtain one patient with at least 50% pain relief) [216,263].

Intervention NNT

Micro-PEA 1.7

TTAs 3.6

SNRIs 6.4

Gabapentin 6.3

Pregabalin 7.7
Abbreviations. TTAs, tricyclic antidepressants; SNRIs, serotonin-norepinephrine reuptake inhibitors.

Overall, micro-PEA has shown a very favorable treatment profile in the management
of chronic pain in human patients.

As far as privately owned animals are concerned, two trials have recently dealt with
micro-PEA dietary administration for pain relief. The first is a case series in four jumping
horses orally supplemented with PEA-um for non-responsive lameness and significant
impairment of athletic performance [264]. In particular, the diagnoses were the following:
navicular syndrome of the left forelimb (1 case), complicated case of chronic navicular
syndrome and OA of the distal interphalangeal joint of the right forelimb (1 case), and OA
of the distal intertarsal joint of the right hindlimb (2 cases). Horses were fed daily with
PEA-um (2.5 g) mixed with a regular mixture of cereals for four months. At the end of
the first month of supplementation, lameness on the AAEP scale (American Association
of Equine Practitioners 0–5 scale, with zero indicating no perceptible lameness, and five
being most extreme) showed improvement in all horses. Three months later, lameness was
graded zero, allowing successful return to showjumping without disease recurrence [264].

The second study is an open-field trial performed in 13 medium-to-large-breed client-
owned adult dogs, with chronic OA and persistent lameness longer than one month.
All dogs were supplemented for 4 weeks with a complementary feed containing PEA
co-ultramicronized with the natural antioxidant quercetin (i.e., PEA-q, 24 mg/kg body
weight). The Canine Brief Pain Inventory (CBPI) questionnaire was used to assess the
severity of chronic pain (PSS, Pain Severity Score) and how it interfered with the dog’s
normal functioning (PIS, Pain Interference Score). With success defined as a reduction
of ≥1 in PSS and PIS, treatment was classified as successful in 54.5% dogs as early as
week 2 and CBPI scores significantly decreased throughout the study (Figure 7). Moreover,
lameness (either scored by the veterinarian on a 0–4 clinical scale or objectively assessed
through a dynamic gait analysis) was found to significantly improve during the treatment
period [265].

The findings of the trials summarized above provide clinical evidence on PEA-um
(eventually co-micronized with quercetin) as a promising treatment option for chronic pain
and related functional disability in horses, as well as dogs.



Animals 2021, 11, 952 20 of 31

Figure 7. Dietary administration of PEA-q to privately owned dogs with chronic pain reduced
the CBPI score. (A) During the four-week treatment, the mean severity of pain on PSS decreased
significantly (*, p = 0.023). (B) The decrease of mean PIS was already statistically significant at the
first control (week 2) and maintained a statistically significant decrease at the end of the study (week
4) (*, p = 0.009 for both comparisons). Drawn from data presented in [265].

10. Conclusions

The management of chronic pain is the burden of veterinary practitioners. Multiple
pharmacological agents have been employed to treat diverse pathological pain states,
including opiates, NSAIDs, anticonvulsants, antidepressants, and others [29]. However,
adverse effects could limit dosing and therapeutic efficacy [163,164].

The recent understanding of the role of non-neuronal cells in pain processing is
uncovering potential new targets for managing chronic pain [104]. Furthermore, it is
becoming increasingly clear that enhancing endocannabinoid signalling may prevent
patients from developing persistent or chronic pain states mainly through non-neuronal
cell modulation [266–269]. One such strategy is the dietetic use of the endocannabinoid-like
PEA in bioavailable formulations (i.e., micro-PEA). As reviewed here, there is now strong
evidence supporting the dietary supplementation with micro-PEA (either as alternative
or add-on to conventional treatment) in the management of chronic pain. Such a critical
mass of data is being generated that PEA is currently listed among the novel nonopioid
interventions to chronic pain [270].

Although clinical studies in veterinary patients are warranted, the reviewed findings
lay the foundations for a scientific and rational use of micro-PEA in the dietary management
of chronic pain in dogs and cats.
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