Open Access

Peri-articular administration of tranexamic acid is an alternative route in total knee arthroplasty: a systematic review and meta-analysis

DingYuan Fan^{1,2}, Jia Ma¹, XiaoHua Liu¹ and Lei Zhang^{1*}

Abstract

Background: As an antifibrinolytic agent, tranexamic acid (TXA) is increasingly used in total knee arthroplasty (TKA) to reduce blood loss. The administration of intravenous and intra-articular TXA has been well explored, but the most efficient way to administer TXA remains in question. Peri-articular injection (PAI) of TXA is a recently mentioned method. A meta-analysis of the efficacy of PAI TXA in patients after TKA should be performed.

Methods: A systematic search was performed within PubMed, Embase, and the Cochrane Library up to November 8, 2021. Two authors independently screened studies for eligibility and extracted data for analysis. The primary outcome was haemoglobin change. The secondary outcomes were haematocrit change, total drainage volume, thromboembolic events, and blood transfusion.

Results: A total of ten studies were included in this meta-analysis. The results indicated that there was a significant decrease in haemoglobin change when using PAI TXA compared with no TXA (mean difference - 1.05; 95% CI - 1.28 to -0.81; P < 0.00001; $l^2 = 0\%$), but it had no significant differences compared with IA and IV (mean difference -0.01; 95% CI - 0.17 to - 0.14; P = 0.85; $l^2 = 39\%$). There were no significant differences between the TXA < 1.5 g subgroup $(0.10, 95\% \text{ Cl} - 0.27 \text{ to } 0.46; P = 0.60; l^2 = 0\%)$ and the TXA > 1.5 g subgroup $(0.18, 95\% \text{ Cl} - 0.12 \text{ to } 0.48; P = 0.24; l^2 = 0\%)$ $l^2 = 74\%$). In addition, the combined group (PAI plus IV or IA) was superior to the IV or IA group in terms of haemoglobin change (mean difference -0.51; 95% CI -0.76 to -0.27; P < 0.0001; $l^2 = 19$ %). Regarding haematocrit change, the pooled result showed it was significantly less in the PAI group than the non-TXA group. Similarly, comparing it against the IV subgroup, the result revealed a difference in favour of the PAI group, with a mean difference of -1.89 g/dL (95%) CI - 2.82 to -0.95; P < 0.0001; $I^2 = 67\%$). For total drainage volume, the pooled result was in favour of PAITXA over no TXA (297 ml, 95% CI - 497.26 to - 97.23; P = 0.004; $l^2 = 87\%$), but it had no significant difference compared with IA and IV (mean difference – 37.98; 95% CI – 115.68 to 39.71; P = 0.34; $l^2 = 95\%$). There was no significant difference in thromboembolic events (OR 0.74; 95% CI 0.25 to 2.21; P = 0.59; $l^2 = 0\%$). Blood transfusion was not significantly different between the PAI group and the non-TXA group (OR 0.50; 95% CI 0.23 to 1.06; P = 0.07; $l^2 = 21\%$), and there was no significant difference between PAI and the other two TXA injection methods (OR 0.72; 95% CI 0.41 to 1.25; P = 0.24; $l^2 = 19\%$).

*Correspondence: arthroartist@163.com ¹ Department of Joint Surgery and Sports Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, South Zhonghuan Road, Chaoyang district, Beijing 100102, People's Republic of China Full list of author information is available at the end of the article

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Conclusion: PAI has comparable effects to IV and IA injections. PAI is an alternative injection route of TXA for patients who have undergone TKA.

Keywords: Peri-articular, Intravenous, Intra-articular, Tranexamic acid, TXA, Knee arthroplasty

Introduction

Total knee arthroplasty (TKA) is a safe and reliable surgical procedure for patients with osteoarthritis, rheumatoid arthritis, or fractures [1-3]. Due to the ageing of its population, the annual demand for knee joint replacement continues to grow in the USA [4]. It is important to improve patient safety and satisfaction during and after TKA. Although considerable advances in anaesthetic and surgical techniques have been made, TKA is still associated with much perioperative blood loss [5]. The estimated intraoperative blood loss is between 500 and 1500 ml for total joint arthroplasty [6]. A post-operative haemoglobin decline between 1 and 3 g/dL has also been reported [7]. Tourniquet was used during knee surgical procedures because of its haemostatic function [8, 9]. However, the recent literature that is full of controversy has raised controversy over its use [10-14]. In addition, it may be associated with an increased risk of serious adverse events, pain, and a rising more extended hospital stay [15, 16].

Tranexamic acid (TXA), a synthetic lysine analogue, is a commonly used antifibrinolytic agent that reduces bleeding and the risk of transfusions in TKA [17, 18]. There are several different methods of TXA administration, such as oral, intravenous (IV), intra-articular (IA), and IV combined with IA application. Several meta-analyses have evaluated the efficacy of different TXA administrations [19–21], but the optimal regimen of tranexamic acid administration is still unclear. Recently, peri-articular injection (PAI) of TXA has been mentioned in TKA. Thus, a systematic review and meta-analysis needs to be conducted to evaluate the efficacy of PAI in patients who have undergone TKA.

The purpose of this meta-analysis was to investigate the efficacy of PAI in TKA. We hypothesized that (1) PAI would reduce blood loss compared with no TXA and (2) PAI of TXA would have different effects than IV and IA injections. The primary outcome was haemoglobin change. The secondary outcomes were haematocrit change, total drainage volume, thromboembolic events, and blood transfusion.

Method

This study was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and Review Manager 5.3 [22].

Literature search strategy

We searched three electronic medical databases, Pub-Med, Embase, and Cochrane Library, for articles published until November 8, 2021. We used the following search strategy: (((peri-articular) OR (peri-articular)) OR (peri-articular Injection)) OR (peri-articular Injection) and (tranexamic acid) OR (TXA). No restrictions by language or publication time were employed. We also checked the references of the most relevant articles.

Inclusion and exclusion criteria

The included studies met the following inclusion criteria:

- 1. Patients undergoing total knee arthroplasty.
- 2. Experimental group: PAI of TXA or peri-articular injection of tranexamic acid combined with intravenous injection or intra-articular injection.
- 3. Control group: intravenous injection of TXA, intraarticular TXA, or no TXA.
- 4. Outcomes measured: haemoglobin change, haematocrit change, total drainage volume, thromboembolic events, and blood transfusion.
- 5. Randomized controlled trial (RCT), prospective cohort study, retrospective study.

The exclusion criteria were (1) therapeutic case series; (2) literature reviews; (3) case reports; (4) cadaver studies; and (5) biomechanical studies.

Selection of studies

Two authors independently applied the selection criteria. Eligibility screening consisted of the following steps: first, titles, abstracts, and methods were screened for meeting the inclusion criteria; then, the full-text was screened for eligibility for this meta-analysis. We resolved disagreements by discussion, and the third author made the final decision.

Data extraction

Two independent authors extracted data. Any disagreement on data extraction was resolved by the third author. The data were extracted into a data collection sheet, which included author name, title, year of publication, region, age, sex, BMI, study design, TXA administration, transfusion criteria, prothrombin time (PT), activated partial thromboplastin time (APTT), tourniquet time, haemoglobin change, haematocrit change, drainage volume, thromboembolic events, and blood transfusion. When the outcome measures were presented as median and quartiles, we followed McGrath et al.'s method to estimate the mean and standard deviation (SD) [23]. To calculate the net change in measurements (MD), we used the following formula: measure at end of follow-up (post-operative)—measure at baseline (preoperative).

Risk of bias assessment

Two authors assessed the risk of bias with the Cochrane Collaboration risk-of-bias tool (Version 2.0) for RCTs [24]. The Cochrane Collaboration's tool categorized this risk as "low risk" of bias, "unclear risk" of bias, or "high risk" of bias. The non-randomized clinical studies were assessed by the Newcastle–Ottawa Scale (NOS) [25]. Using the NOS scale, each study is judged on eight items covering three domains: selection, comparability, and outcome. We used the Kappa score to calculate the agreement degree between reviewers [26]. A score of 0-0.20 represents poor agreement; 0.21-0.40 represents fair agreement; 0.41-0.60 represents moderate agreement; 0.61-0.80 represents good agreement; and 0.81-1.00 represents perfect agreement.

Assessment of methodological quality

We used the modified Coleman methodology score (MCMS) to assess methodological research quality [27]. The MCMS has a scaled possible score ranging from 0 to 100. A score of 85–100 is considered excellent, 70–84 is deemed good, 55–69 is deemed fair, and less than 55 is deemed poor [27].

Statistical analysis

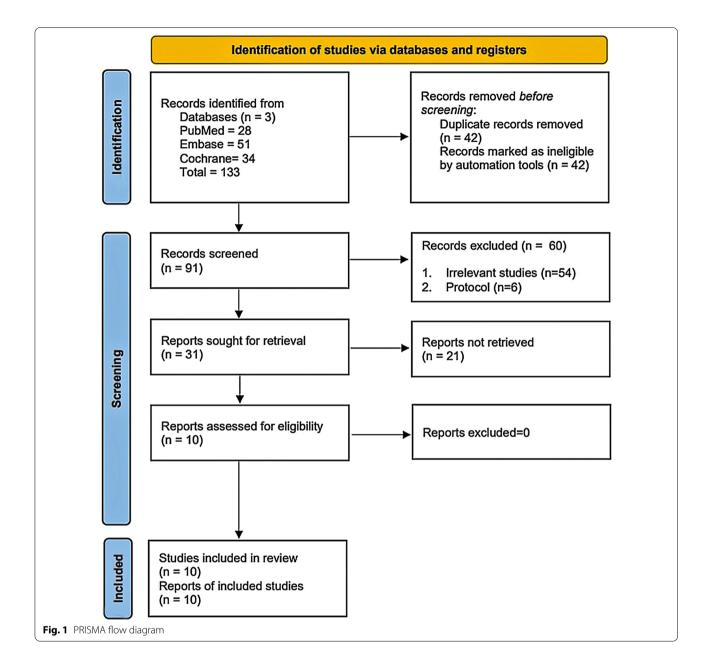
We performed a meta-analysis if two or more studies reported on the outcome of interest. We tested for heterogeneity among the included studies by the I-square test, which quantifies the variability in effect estimates due to heterogeneity. The I-square test was interpreted according to the recommendations of the Cochrane Handbook of Systematic Reviews and Meta-analysis (0-40%, not important; 30-60%, moderate heterogeneity; 50-90%, substantial heterogeneity; and 75-100%, considerable heterogeneity). We used the fixed-effect model when no significant heterogeneity was present ($I^2 < 50\%$;). Otherwise, a random-effect model was used. In addition, we used subgroup analysis to compare PAI and other methods of TXA administration and to exclude potential bias by grouping different literature types if the data were available.

Subgroups:

- Peri-articular injection (PAI) group vs. intravenous
 (IV) group or intra-articular (IA) group
- (2) TXA administration < 1.5 g or TXA administration \geq 1.5 g
- (3) Randomized controlled study or cohort study

Results

In the initial retrieval from the 3 databases, we identified a total of 133 studies, among which 42 studies were duplicate studies excluded by EndNote software (Version X7). After screening the title and abstract, 54 irrelevant studies and six protocols were removed. One case series was removed [28]. Thus, ten studies (5 RCTs, 1 prospective comparative study and 4 retrospective studies) were finally included in the meta-analysis [29–38] (Fig. 1).


Demographics and characteristics

All studies were published between 2016 and 2021. Four studies were conducted in China [30, 32, 34, 37], two in Thailand [29, 36], and one each in Japan [31], Greece [33], Singapore [35], and Korea [38]. Three studies included a comparison of PAI versus IV injection [29, 37, 38], and six studies included a comparison of PAI versus IA [30, 32–36]. One study only compared PAI versus no TXA injection [31] (Table 1).

The doses of TXA used in the included literature varied, and the method of extra-articular injection was inconsistent. Three studies injected into the medial and lateral capsules and the quadriceps tendon [29, 32, 36]. Mao et al. [30] used 2 g TXA and 80 mL normal saline into the soft tissues around the joint cavity. Yozawa et al. [31] injected the area around the medial and lateral capsule, the quadriceps muscle tendon, and the infrapatellar fat pad. Besiris et al. [33] injected 25 ml TXA dilution at the posterior knee joint capsule and surrounding soft tissues. Lin [34] injected 1 g/10 mL TXA into the rectus femoris, vastus medialis, patella tendon, pes anserinus, and posterior capsule. Kim et al. [38] injected it into the area around the medial, lateral, anterior, and posterior capsule; the quadriceps muscle tendon; and the infrapatellar fat pad just prior to cementation. The transfusion criteria were similar in all included studies except for one study that did not describe them [32]. Only two studies reported PT and APTT [30, 32]. Four studies presented their tourniquet time [32, 36-38] (Table 2).

Risk of bias

Five RCTs performed adequate random sequence generation and allocation concealment. Only one study had a low risk of performance bias [37]. All RCTs had unclear risks of detection bias, which may have lowered the accuracy of the results. Incomplete outcome reporting,

selective reporting, and other biases were at low risk in five RCTs. All papers but one were given seven stars. The Kappa score between the two reviewers was 0.84 (Table 3).

Methodologic Quality Assessment

There were six good-methodological-quality studies [29, 32, 33, 36–38] and four fair-quality studies [30, 31, 34, 35]. Eight out of ten studies achieved a perfect score on study size [30-33, 35-38]. Only two studies received two points on the follow-up part [31, 38]. All

studies achieved an ideal score in surgical procedures. Only one study was given no score for disease diagnosis [31]. Three studies received five points [29, 30, 35], and five studies received three points for the description of the surgical procedure [31, 34, 36–38]. No studies received scores for postoperative rehabilitation. In Part B, all studies achieved a perfect score on outcome criteria. Eight out of ten studies obtained good scores on the procedure to assess outcomes [30–36, 38]. Nine studies achieved a perfect score on the subject selection process [29–38] (Table 4; Fig. 2).

Author	Title	Year	Region	Age	Gender	BMI	Study design
Pinsornsak P	Peri-articular tranexamic acid injection in total knee arthroplasty: a randomized controlled trial	2016	Thailand	PAI 67.63 IV 69.97	PAI 5M/25F IV 7M/23F	PAI 27.96 IV 26.52	A randomized controlled trial
Mao Z	A comparative, retrospective study of peri-articular and intra-articular injection of tranexamic acid for the management of postoperative blood loss after total knee arthroplasty	2016	China	PAI 68.5 IA 69.7 Non-TXA 69.6	PAI 8M/41F IA 5M/31F Non-TXA 10M/32F	PAI 25.9 IA 25.6 Non-TXA 26.6	A retrospective study
Yozawa S	Periarticular injection of tranexamic acid reduces blood loss and the necessity for allogeneic transfusion after total knee arthroplasty using autologous transfusion: a retrospective observational study	2017	2017 Japan	PAI 75.1 Non-TXA 73.0	PAI 13M/31F PAI 26.4 Non-TXA 10M/34F Non-TXA 26.0	PAI 26.4 Non-TXA 26.0	A retrospective study
Zhang S	Multi-route applications of tranexamic acid to reduce blood loss after total knee arthroplasty: a randomized controlled trial	2019	China	PAI 66 IA 68.5 PAI+IA 66 Non-TXA 68	PAI 16M/37F IA 14M/38F PAI + IA 11M/39F Non-TXA 12M/43F	PAI 25.98 IA 25.32 PAI + IA 25.52 Non-TXA 25.28	A randomized controlled trial
Besiris GT	Topical use of tranexamic acid in primary total knee arthroplasty: a comparative study	2020	Greece	PAI 72.08 IA 72.27	NR	NR	A observational prospective comparative study
Lin YK	Significantly reducing blood loss via a peri-articular injec- tion of tranexamic acid during total knee arthroplasty: a retrospective study	2021	China	70.46	18M/32F	27.65	A retrospective study
Sivasubramanian H	Local infiltration of analgesia and tranexamic acid is safe and efficacious in reducing blood loss and comparable to intra-articular tranexamic acid in total knee replacements	2021	Singapore	PAI 65.5 IA 66.8	PAI 9M/12F IA 20M/22F	PAI 20.6 IA 21.5	A retrospective study
Pinsornsak P	Efficacy and systemic absorption of peri-articular versus intra-articular administration of tranexamic acid in total knee arthroplasty: a prospective randomized controlled trial	2021	Thailand	PAI 65.6 IA 68.4 Non-TXA 68.6	PAI 2M/34F IA 3M/33F Non-TXA 4M/32F	PAI 27.4 IA 26.9 Non-TXA 25.6	A prospective randomized controlled trial
Peng HM	Multimodal Peri-articular Injection with Tranexamic Acid can reduce postoperative blood loss versus intravenous tranexamic acid in total knee arthroplasty: a randomized controlled trial	2021	China	PAI 68.65 IV 68.13	PAI 7M/39F IV 6M/41F	PAI 26.81 IV 27.06	A randomized controlled trial
Kim Kl	Tranexamic acid in a periarticular multimodal cocktail injection for blood management in total knee arthro- plasty: a prospective randomized study	2021	Korea	IV 72.08 PAI 72.58 PAI + IV 72.35	IV 13M/67F PA 13M/67F PAI+IV 11M/69F	IV 26.36 PAI 26.54 PAI + IV 26.05	A prospective randomized study
		- NA -	UN				

S
studies
t
Ś
Inded
qe
Ģ
2
^c the included studies
the
÷
of
>
'erview
Ξ
e
\leq
0
-
Ð
q

PAI, periarticular injection; IV, intravenous; IA, intra-articular injection; TXA, tranexamic acid; M, male; F, female; NR, not report

ne	
⊒.	
it t	
ne	
iq	
urn	
to	
đ	
an	
Ű	
E	
ti	
lastin	
as	
do	
ã	
υU	
thre	
rtial	
par	
5	
'ated	
٨a	
÷	
e, activ	
ne	
ť	
.⊑	
qu	
ē	
÷	
2	
4	
eria	
÷.	
5	
Ч	
Si.	
Isfu	
an	
μ	
Ć,	
tratior	
tra	
isi	
Ш.	
$\overline{\mathbf{O}}$	
-	
\geq	
the	
of	
Š	
je.	
Ъ	
2	
0	
а О	
Table	
Tal	
•	

Author	TXA Administration	Transfusion criteria	РТ	APTT	Tourniquet time
Pinsornsak P	PAI: 750 mg TXA into the medial, lateral capsules and the quadriceps tendon prior to capsular closure and tourniquet deflation IV: 750 mg TXA before tourniquet deflation	Hb <10 g/dl, anaemia, congestive heart failure, unexplained tachycardia, hypoten- sion unresponsive to fluid replacement	R	а Х	۲
Mao Z	PAI: 2 g TXA and 80 mL normal saline into the soft tissues around the joint cavity, 5 to 10 mL at each point, such as posterior joint capsulae synovial membrane and ligaments, especially the sites of soft tissue release and incisal edges in the synovial membrane A: 2 g TXA and 80 mL normal saline into the knee joint cavity after wound closure	Hb <8 g/dl, 8–10 g/dl with hemodynamic instability	PAI 11.5 ± 2.5 IA 11.1 ± 0.7 Non-TXA 11.1 ± 0.6	PAI 27.0±4.3 IA 27.0±3.3 Non-TXA 27.0±2.9	Ĕ
Yozawa S	PAI: 40 ml of 0.25% ropivacaine with 1: 2000 epinephrine containing 1000 mg TXA(25 mg/ml)into injected into the area around the medial and lateral capsule, the quadriceps muscle tendon, and the infra- patellar fat pad prior to capsular closure Non-TXA: 40 ml of 0.25% ropivacaine with 1: 2000 epinephrine	Hb<8 g/dl	Ϋ́Ζ	۳	Ϋ́
Zhang S	PAI: TXA solution (1 g TXA, 20 ml saline) comprising 5 ml to the medial capsule, 5 ml to the lateral capsule, and 10 ml to the soft tissue around quadriceps femoris IA: TXA solution of 20 ml (TXA 1 g + 20 ml saline) was injected into the articular cavity after suture incision Non-TXA: injection of the same amount of saline at the same place	XX	PAI 11.60 (11.20,12.15) IA 11.65 (11.00,12.05) PAI+IA 11.50 (10.98,12.00) Non-TXA 11.50 (11.10,12.00)	PAI 25.40 (22.85,27.50) IA 24.05 (21.63.26.38) PAI + IA 24.25 (22.35,26.75) Non-TXA 24.10 (23.00,27.00)	PAI 50.00 (42.00,62.50) IA 49.50 (40.00,59.75) PAI + IA 53.00 (37.50,63.25) Non-TXA 44.00 (36.00,68.00)
Besiris GT	PAI: 1.5 g TXA diluted in 50 ml of normal saline. Prior to final prostheses placement 25 ml of the dilution were injection at the posterior knee joint capsule. Following the final prostheses placement, the remaining dilution was injection at the surrounding soft tissues for at least 5 min prior to tourni- quet deflation IA: 1.5 g of TXA diluted in 50 ml of normal saline was injected into the knee joint after knee capsule closure for at least 5 min prior to tourniquet deflation	Hb <8 mg/dl or < 10.0 mg/dl with concomitant symptoms of anaemia or anaemia-related organ dysfunction	Ĕ	Ϋ́	Ĕ

Author	TXA Administration	Transfusion criteria	РТ	APTT	Tourniquet time
Lin YK	PAI: 1 g/10 mL TXA into the rectus femoris, vastus medialis, patella tendon, pes anseri- nus, and posterior capsule IA: 1 g/10 mL TXA	Hb < 8 mg/dl, Hb > 3.0 mg/dl with intoler- able symptoms or organ dysfunction	NR	R	R
Sivasubramanian H	PAI: 1 g TXA IA: 1 g TXA	Hb < 8.5 g/dl, symptomatic, cardiovascular comorbidities	NR	ЛR	NR
Pinsornsak P	PAI: 15 mg/kg TXA was mixed with the anaesthetic cocktail and injected into peri-articular soft tissue without posterior capsular infiltration, including the medial gutter, lateral gutter, and quadriceps mus- cle before capsular closure IA: 2 g TXA	Hb <8 g/dl, Hb 8–10 g/dl with hemody- namic instability	R	Ж	PAI 77.4 ± 4.1 IA 76.5 ± 4.7 Non-TXA 76.1 ± 4.7
Peng HM	PAI: 1000 mg/10 ml TXA, 110 ml of saline as a placebo N: 1000 mg TXA (110 ml total volume)	Hb < 8 g/dl or < 10 g/dl with symptomatic anaemia, at high risk of cardiac comorbidi- ties	NR	R	PAI 82.93 ± 3.21 IV 82.36 ± 4.54
Kim Kl	PAI: 1 g of TXA mixed with PAMC (150 mg ropivacaine, 0.3 mg epinephrine, 45 mg ketorolac, 40 mg triamcinolone, 5 mg morphine, 1 g cefotiam, and 60 ml normal saline) injected into the area around the medial, lateral, anterior and posterior capsule; the quadriceps muscle tendon; and the infrapatellar fat pad just prior to cementation IV: a dose of 15 mg/kg TXA with 100 ml normal saline twice in the TKA periopera- tive period PAI + IV: both IV and PAMC injections	8.0 g/dL with clinical symptoms of anaemia	٣	٣	W 64.31±6.63 PAI 63.54±5.42 PAI + IV 63.71±5.13

Table 2 (continued)

Author	Selection				Comparability	Outcome			Score
	Representativeness of the exposed cohort	Selection of nonexposed cohort	Ascertainment of exposure	Demonstration that the outcome of interest was not present at the start of the study	Comparability of cohorts on the basis of the design or analysis	Assessment of outcomes	Follow-up was long enough for outcomes to occur	Adequacy of follow-up	
Mao Z	*	*	*	*	*	*	*	-	7
Yozawa S	*	*	*	*	*	*	*	-	7
Besiris GT	*	*	*	*	*	*	*	-	7
Lin YK	*	*	*	*	*	*	*	*	8
Sivasu- brama- nian H	*	*	*	*	*	*	*	_	7

Haemoglobin change PAI vs. non-TXA

Four studies compared that the PAI group to the non-TXA group on haemoglobin change [30–32, 36]. A total of 359 patients were included in the two groups. The results indicated a significant reduction from using PAI (mean difference -1.05; 95% CI -1.28 to -0.81; P < 0.00001; $I^2 = 0\%$) (Fig. 3).

The subgroup of cohort studies showed similar results. (mean difference -1.05; 95% CI -1.28 to -0.81; P < 0.00001; $I^2 = 0\%$) (Fig. 4).

PAI vs. IV or IA

Eight studies compared the PAI group to the IV or IA group on haemoglobin change [29, 30, 32, 33, 35–38]. However, one study expressed the results as the mean without standard deviation [35]. Collectively, the mean difference was -0.01 (95% CI -0.17 to 0.14; P=0.85; $I^2=39\%$) (Fig. 5).

In the IV subgroup, the PAI showed no significant difference from IV (mean difference -0.08; 95% CI -0.30 to 0.15; P=0.51; $I^2=0\%$). PAI was also not superior to IA (mean difference 0.04; 95% CI -0.18 to 0.27; P=0.69; $I^2=65\%$). There was no heterogeneity for subgroup differences (Fig. 6a). In the TXA ≤ 1.5 g subgroup, the mean difference was 0.10 (95% CI -0.27 to 0.46; P=0.60; $I^2=0\%$), and in the TXA ≥ 1.5 g subgroup, the mean difference was 0.18 (95% CI -0.12 to 0.48; P=0.24; $I^2=74\%$) (Fig. 6b). The subgroups of randomized controlled studies (mean difference -0.09; 95% CI -0.27 to 0.10; P=0.35; $I^2=0\%$) and cohort studies (mean difference 0.18; 95% CI -0.12 to 0.48; P=0.24; $I^2=74\%$) showed similar results (Fig. 6c).

PAI combined with IV or IA vs. IV or IA alone

Only two studies reported PAI combined with IA or IV. The results revealed that the combined group (PAI combined with IV or IA) was superior to the IV or IA group. (mean difference -0.51; 95% CI -0.76 to -0.27; P < 0.0001; $I^2 = 19\%$) (Fig. 7).

Haematocrit change

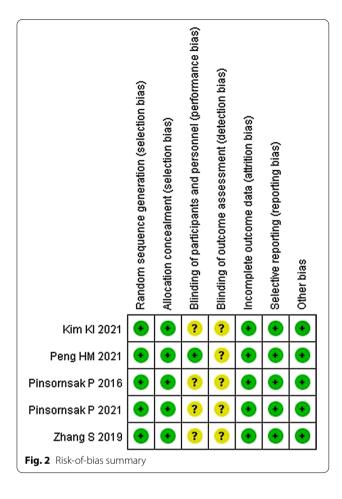
PAI vs. non-TXA

Only three studies reported haematocrit changes in the PAI and non-TXA groups [31, 32, 36]. However, the measurement units of haematocrit in one study [32] were inconsistent with those in the other two studies [31, 36]. The pooled mean difference was -3.07 g/dL in favour of PAI (95% CI -4.14 to -2.00; P < 00,001; $I^2 = 16\%$) (Fig. 8).

PAI vs. IV or IA

Four studies compared the PAI group to the IV or IA group on haemoglobin change [29, 35–37]. However, one study expressed the results as the mean without standard deviation [35]. Collectively, PAI showed a significant reduction in haematocrit change, with a mean difference of -1.75 g/ dL (95% CI -2.55 to -0.96; P<0.0001; $I^2=39\%$). There was no heterogeneity for subgroup differences (Fig. 9).

In the IV subgroup, the results revealed a difference in favour of the PAI group, with a mean difference of -1.89 g/dL (95% CI -2.82 to -0.95; P < 0.0001; $I^2 = 67\%$) (Fig. 10).


Total drainage volume

PAI vs. non-TXA

Two studies compared the PAI group to the non-TXA group in terms of total drainage volume [30, 31]. The pooled result (mean difference -297.24 ml 95% CI -497.26 to -97.23; P=0.004; $I^2=87\%$) indicated a significant reduction in the PAI group (Fig. 11).

Table 4 Modified Coleman Methodology Score (MCMS)

Author	Part A							Part B			
	1. Study size	2. Mean Follow-up	1.Study size 2. Mean 3.Number of Follow-up different surgical procedures	4. Type of study	5. Diagnostic certainty	6. Description of surgical procedure given	7. Description of postoperative rehabilitation	1. Outcome criteria	2. Procedure to assess outcomes	3. Description of Total score subject selection process	Total score
Pinsornsak P	7	0	10	15	5	5	0	10	15	15	82
Mao Z	10	0	10	0	5	5	0	10	11	15	66
Yozawa S	10	2	10	0	0	c	0	10	11	15	61
Zhang S	10	0	10	15	5	0	0	10	11	15	76
Besiris GT	10	0	10	10	10	0	0	10	11	10	71
Lin YK	7	0	10	0	5	c	0	10	11	15	61
Sivasubrama- nian H	10	0	10	0	Ŋ	Ŀ	0	10	1	15	66
Pinsornsak P	10	0	10	15	5	£	0	10	15	15	83
Peng HM	10	0	10	15	5	S	0	10	11	15	79
Kim Kl	10	2	10	10	5	3	0	10	11	15	76

PAI vs. IV or IA

Five studies compared the PAI group to the IV or IA group in drainage volume [29, 30, 34, 37, 38]. There were 255 patients in the PAI group, who showed no significant difference from the 243 patients in the non-PAI group (mean difference -37.98; 95% CI -155.68 to 39.71; p=0.34; $l^2=95\%$) (Fig. 12).

In the IV subgroup, the 156 patients in the PAI group showed no significant difference from the 157 patients in the IV group (mean difference -22.83 ml; 95% CI -88.32 to 42.65; P=0.49; $I^2=80\%$). In the IA subgroup,

the pooled result indicated no significant reduction from PAI (mean difference -53.44 ml 95% CI -186.09 to 79.22; P = 0006; $I^2 = 91\%$). There was no heterogeneity for subgroup differences (Fig. 13a). The subgroups of randomized controlled studies (mean difference -22.83; 95% CI -88.32 to 42.65; P = 0.49; $I^2 = 80\%$) and cohort studies (mean difference -53.44; 95% CI -186.09 to 79.22; P = 0.43; $I^2 = 91\%$) showed similar results (Fig. 13b).

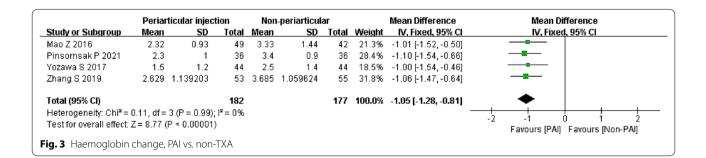
Thromboembolic events *PAI vs. IV or IA*

Seven studies compared the PAI group to the IV or IA group on thromboembolic events [29, 30, 32, 35–38]. There was no significant difference between the groups (OR 0.74; 95% CI 0.25 to 2.21; P = 0.59; $I^2 = 0\%$) (Fig. 14).

The IV subgroup showed no significant difference from the PAI group (OR 0.74; 95% CI 0.25 to 2.21; P=0.59; $I^2=0\%$) (Fig. 15a). A similar result was shown in the randomized controlled study subgroup (OR 0.74; 95% CI 0.25 to 2.21; P=0.59; $I^2=0\%$) (Fig. 15b).

PAI combined with IV or IA vs. IV or IA alone

Only two studies reported on thromboembolic events after PAI combined with IA or IV. The mean difference in the pooled results was 3.04 (95% CI 0.12 to 75.69) (Fig. 16).


Blood transfusion PAI vs. non-TXA

Three studies compared the PAI group to the non-TXA group regarding the transfusion rate [30–32]. There was no significant difference between the groups (OR 0.50; 95% CI 0.23 to 1.06; P=0.07; $I^2=21\%$) (Fig. 17).

The subgroup of cohort studies (OR 0.75; 95% CI 0.28 to 2.06; P = 0.58; $I^2 = 0\%$) showed similar results (Fig. 18).

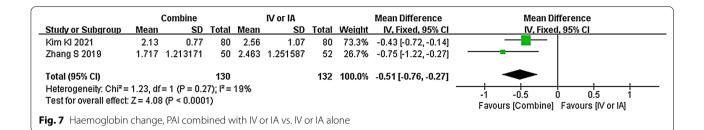
PAI vs. IV or IA

Seven studies compared the PAI group with the IV or IA group on transfusion rate [29, 30, 32, 33, 35, 37, 38]. Collectively, there was no significant difference

	Periar	ticular injecti	ion	Non	-periarticul	ar		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
1.1.1 Randomized cont	trolled s	tudy							
Pinsornsak P 2021	2.3	1	36	3.4	0.9	36	28.4%	-1.10 [-1.54, -0.66]	
Zhang S 2019	2.629	1.139203	53	3.685	1.059624	55	31.8%	-1.06 [-1.47, -0.64]	
Subtotal (95% CI)			89			91	60.2 %	-1.08 [-1.38, -0.77]	◆
Heterogeneity: Chi ² = 0.	.02, df =	1 (P = 0.89);1	l² = 0%						
Test for overall effect: Z	= 6.99 (P < 0.00001)							
1.1.2 Cohort study									
Mao Z 2016	2.32	0.93	49	3.33	1.44	42	21.3%	-1.01 [-1.52, -0.50]	_
Yozawa S 2017	1.5	1.2	44	2.5	1.4	44	18.5%	-1.00 [-1.54, -0.46]	
Subtotal (95% CI)			93			86	39.8%	-1.01 [-1.38, -0.63]	\bullet
Heterogeneity: Chi ² = 0.	.00, df=	1 (P = 0.98); I	l² = 0%						
Test for overall effect: Z	= 5.31 (P < 0.00001)							
Total (95% CI)			182			177	100.0%	-1.05 [-1.28, -0.81]	◆
Heterogeneity: Chi ² = 0.	.11, df=	3 (P = 0.99); I	I²=0%						
Test for overall effect: Z	= 8.77 (P < 0.00001)							-2 -1 U 1 2 Favours (PAI) Favours (Non-PAI)
Test for subaroup differ	rences: (Chi² = 0.09. di	f=1 (P	= 0.77).	I ² = 0%				Favours (FAij Favours (Non-PAij
Fig. 4 Haemoglobin c	hange,	PAI vs. non-1	TXA sub	aroup	analvsis				
				- <u>9</u> . oup					

	Periar	ticular inject	tion	Non	-periarticul	аг		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
Besiris GT 2020	2	0.8	33	1.5	1	33	12.9%	0.50 [0.06, 0.94]	
(im KI 2021	2.55	0.86	80	2.56	1.07	80	27.3%	-0.01 [-0.31, 0.29]	-+-
1ao Z 2016	2.32	0.93	49	2.43	1	36	14.2%	-0.11 [-0.53, 0.31]	
eng HM 2021	2.409	0.963	46	2.627	1.017	47	15.3%	-0.22 [-0.62, 0.18]	
insornsak P 2016	1.85	0.95	30	1.87	1.37	30	6.9%	-0.02 [-0.62, 0.58]	
insornsak P 2021	2.3	1	36	2.7	1	36	11.6%	-0.40 [-0.86, 0.06]	
(hang S 2019	2.629	1.139203	53	2.463	1.251587	52	11.8%	0.17 [-0.29, 0.62]	
otal (95% Cl)			327			314	100.0%	-0.01 [-0.17, 0.14]	. ◆
leterogeneity: Chi² =	9.78, df=	6 (P = 0.13);	I ² = 39%	6					
est for overall effect:	7 = 0.19 (P = 0.85)							-2 -1 0 1 2 Favours (PAI) Favours (Non-PAI)

between PAI and the other two TXA injection methods (OR 0.72; 95% CI 0.41 to 1.25; P = 0.24; $I^2 = 19\%$). The test for subgroup differences of heterogeneity yielded a value of 46.4% (Fig. 19).

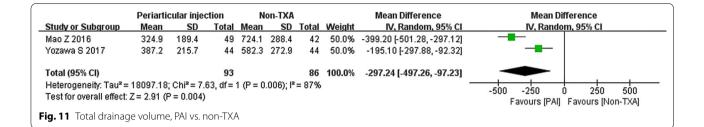

In the IV subgroup, there was no significant difference with the PAI group. (OR 1.34; 95% CI 0.46 to 3.88; P = 0.59; $I^2 = 0\%$). Similarly, PAI showed no significant difference from the IA group (OR 0.56; 95% CI 0.29 to 1.08) (Fig. 20a). In the randomized controlled study subgroup, there was no significant difference between the two groups (OR 1.34; 95% CI 0.56 to 3.21; P = 0.52; $I^2 = 0\%$). However, in the cohort study subgroup, the PAI group had a lower transfusion rate than the non-PAI group (OR 0.46; 95% CI 0.22 to 0.96; P = 0.04; $I^2 = 33\%$) (Fig. 20b).

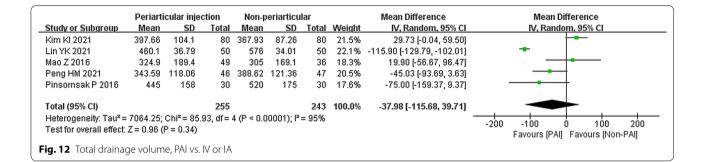
Discussion

To the best of our knowledge, this study is the first systematic review and meta-analysis of TXA extra-articular injection methods. The results showed that PAI significantly improved postoperative bleeding compared with non-TXA. More importantly, our study found no significant difference between PAI and IV or IA in haemoglobin change, total drainage volume, thromboembolic events, or blood transfusion. When injecting TXA with PAI, there was no significant difference between a dose less than 1.5 g and a dose equal to or greater than 1.5 g. In addition, when PAI was combined with IV or IA, it was superior to the IV or IA group in terms of haemoglobin change (Fig. 21).

TXA, as an antifibrinolytic agent blocking the lysine binding site of plasminogen, can effectively reduce the duration and quantity of blood loss and has been used in orthopaedic surgery [39–41]. Various routes of TXA administration have been used in surgical practice. IV and IA are the two common routes in joint surgery. IV administration requires systemic distribution to exert its antibleeding effects. Concern remains about the safety, as it may cause systemic toxicity, such as thrombosis, acute renal impairment, and systemic hypersensitivity reactions [29, 42, 43]. In addition, the maximum plasma level time of TXA after IV injection

(a) Study or Subgroup	Periarti Mean	icular inject SD		Non Mean	periarticul. SD		Weight	Mean Difference IV, Fixed, 95% CI	Mean Difference IV, Fixed, 95% Cl
.1.1 Intravenous injec									
(im KI 2021	2.55	0.86	80	2.56	1.07	00	27.20	0.01 [0.21 0.20]	
						80		-0.01 [-0.31, 0.29]	1
Peng HM 2021	2.409	0.963	46	2.627	1.017	47		-0.22 [-0.62, 0.18]	
Pinsornsak P 2016	1.85	0.95	30	1.87	1.37	30		-0.02 [-0.62, 0.58]	
Subtotal (95% CI)			156			157	49.5%	-0.08 [-0.30, 0.15]	
leterogeneity: Chi² = 0 'est for overall effect: Z			l² = 0%						
.1.2 Intra-articular inj	ection								
Besiris GT 2020	2	0.8	33	1.5	1	33	12.9%	0.50 [0.06, 0.94]	
1ao Z 2016	2.32	0.93	49	2.43	1	36	14.2%	• • •	_
Pinsornsak P 2021	2.3	1	36	2.7	1	36	11.6%	• • •	
hang S 2019		1.139203			1.251587	52	11.8%	0.17 [-0.29, 0.62]	
-	2.025	1.139203	171	2.403	1.231307	157	50.5%	0.04 [-0.18, 0.27]	
Subtotal (95% CI)						157	50.5%	0.04 [-0.18, 0.27]	Ť
leterogeneity: Chi² = 8 est for overall effect: Z			1-= 65%)					
otal (95% CI)			327			314	100.0%	-0.01 [-0.17, 0.14]	
leterogeneity: Chi ² = 9	78 $df = P$	h(P = 0.13)	$1^{2} = 39\%$					• / •	
est for overall effect: Z									-2 -1 0 1 2
est for subaroup differ			lf=1 (P:	= 0.46).	l² = 0%				Favours (PAI) Favours (Non-PAI)
(b)	Periarti	icular inject	ion	Non	-periarticul	ar		Mean Difference	Mean Difference
tudy or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
.2.1 TXA <1.5g									
insornsak P 2016	1.85	0.95	30	1.87	1.37	30	15.2%	-0.02 [-0.62, 0.58]	
hang S 2019	2.629	1.139203	53	2.463	1.251587	52	25.7%		
Subtotal (95% CI)			83			82		0.10 [-0.27, 0.46]	
leterogeneity: Chi ² = 0	.23. df = 1	(P = 0.63);	l ² = 0%						
est for overall effect: Z	•								
.2.2 TXA ≥1.5g									
Besiris GT 2020	2	0.8	33	1.5	1	33	28.2%	0.50 [0.06, 0.94]	
1ao Z 2016	2.32	0.93	49	2.43	1	36	30.9%	-0.11 [-0.53, 0.31]	
Subtotal (95% CI)			82			69	59.1%	0.18 [-0.12, 0.48]	★
leterogeneity: Chi² = 3 est for overall effect: Z	•		l² = 74%	þ					
	•		l² = 74% 165			151	100.0%	0.15 [-0.09, 0.38]	•
est for overall effect: Z otal (95% CI)	.= 1.18 (P	9 = 0.24)	165			151	100.0%	0.15 [-0.09, 0.38]	
est for overall effect: Z otal (95% CI) leterogeneity: Chi ² = 4	.27, df= 3	e 0.24) 8 (P = 0.23);	165			151	100.0%	0.15 [-0.09, 0.38]	
est for overall effect: Z otal (95% CI)	.27, df = 3 .27 (F	P = 0.24) B (P = 0.23); P = 0.22)	165 I² = 30%	5	l²= 0%	151	100.0%	0.15 [-0.09, 0.38]	-2 -1 0 1 2 Favours [PAI] Favours [Non-PAI]
est for overall effect: Ζ otal (95% CI) leterogeneity: Chi ² = 4 est for overall effect: Ζ est for subαroup differ (c)	= 1.18 (F .27, df = 3 = 1.24 (F rences: C Periart	P = 0.24) B (P = 0.23); P = 0.22) chi ² = 0.12. c cular injec	165 ² = 30% lf = 1 (P : tion	5 = 0.73). Non	-periarticul	ar		Mean Difference	Favours (PAI) Favours (Non-PAI) Mean Difference
est for overall effect: Ζ total (95% CI) leterogeneity: Chi ² = 4 est for overall effect: Ζ est for subαroup differ (c) Study or Subgroup	= 1.18 (F .27, df = 3 = 1.24 (F rences: C Periart <u>Mean</u>	P = 0.24) B (P = 0.23); P = 0.22) hi ² = 0.12. d icular injec SD	165 ² = 30% lf = 1 (P : tion	, = 0.73).	-periarticul	ar			Favours (PAI) Favours (Non-PAI)
est for overall effect: Z fotal (95% Cl) leterogeneily: Chi ² = 4 est for overall effect: Z est for subαroup differ (c) <u>Study or Subgroup</u> 1.3.1 Randomized con	:= 1.18 (F .27, df = 3 := 1.24 (F rences: C Periart <u>Mean</u> trolled st	P = 0.24) B (P = 0.23); P = 0.22) $hi^2 = 0.12. c$ icular injec SD udy	165 ² = 30% f = 1 (P = tion Total	= 0.73). Non <u>Mean</u>	-periarticul SD	ar	Weight	Mean Difference IV, Fixed, 95% Cl	Favours (PAI) Favours (Non-PAI) Mean Difference
est for overall effect: Ζ total (95% CI) leterogeneity: Chi ² = 4 est for overall effect: Ζ est for subαroup differ (c) Study or Subgroup	= 1.18 (F .27, df = 3 = 1.24 (F rences: C Periart <u>Mean</u>	P = 0.24) B (P = 0.23); P = 0.22) hi ² = 0.12. d icular injec SD	165 ² = 30% lf = 1 (P : tion	5 = 0.73). Non	-periarticul	ar	Weight	Mean Difference	Favours (PAI) Favours (Non-PAI) Mean Difference
est for overall effect: Z fotal (95% Cl) leterogeneily: Chi ² = 4 est for overall effect: Z est for subαroup differ (c) <u>Study or Subgroup</u> 1.3.1 Randomized con	:= 1.18 (F .27, df = 3 := 1.24 (F rences: C Periart <u>Mean</u> trolled st	P = 0.24) B (P = 0.23); P = 0.22) $hi^2 = 0.12. c$ icular injec SD udy	165 ² = 30% f = 1 (P = tion Total	= 0.73). Non <u>Mean</u>	-periarticul SD	ar Total	<u>Weight</u> 27.3%	Mean Difference IV, Fixed, 95% Cl	Favours (PAI) Favours (Non-PAI) Mean Difference
rest for overall effect: Z total (95% Cl) teterogeneity: Chi ² = 4 rest for overall effect: Z rest for subaroup differ (c) Study or Subgroup I.3.1 Randomized con Kim Kl 2021	:= 1.18 (F .27, df = 3 := 1.24 (F rences: C Periart <u>Mean</u> trolled st 2.55	P = 0.24) B (P = 0.23); P = 0.22) $hi^2 = 0.12. co iccular injec SD udy 0.86$	165 ² = 30% f = 1 (P : tion <u>Total</u> 80	= 0.73). Non <u>Mean</u> 2.56	-periarticul SD 1.07	ar <u>Total</u> 80	<u>Weight</u> 27.3% 15.3%	Mean Difference IV, Fixed, 95% Cl -0.01 [-0.31, 0.29] -0.22 [-0.62, 0.18]	Favours (PAI) Favours (Non-PAI) Mean Difference
rest for overall effect: Z otal (95% CI) Heterogeneity: Chi ² = 4 rest for overall effect: Z rest for subgroup differ (C) Study or Subgroup I.3.1 Randomized con (im KI 2021 Peng HM 2021 Pinsornsak P 2016	:= 1.18 (P .27, df = 3 := 1.24 (P rences: C Periart <u>Mean</u> trolled st 2.55 2.409 1.85	P = 0.24) P = 0.23); P = 0.22); $hi^2 = 0.12. c$ icular injec: SD udy 0.86 0.963	165 I [≠] = 30% If = 1 (P = tion <u>Total</u> 80 46	= 0.73). Non <u>Mean</u> 2.56 2.627	1-periarticul SD 1.07 1.017	ar <u>Total</u> 80 47	<u>Weight</u> 27.3% 15.3% 6.9%	Mean Difference IV, Fixed, 95% Cl -0.01 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.02 [-0.62, 0.58]	Favours (PAI) Favours (Non-PAI) Mean Difference
rest for overall effect: Z total (95% CI) Heterogeneity: Chi ² = 4 rest for overall effect: Z rest for subgroup differ (C) Study or Subgroup I.3.1 Randomized con Kim KI 2021 Peng HM 2021 Pinsornsak P 2016 Pinsornsak P 2021	= 1.18 (F .27, df = 3 = 1.24 (F rences: C Periart Mean trolled st 2.409 1.85 2.3	P = 0.24) P = 0.23); P = 0.22); $hi^2 = 0.12.$ d icular injec: SD udy 0.86 0.963 0.95 1	165 ²= 30% lf= 1 (P : tion Total 80 46 30 36	= 0.73). Non <u>Mean</u> 2.56 2.627 1.87 2.7	1.07 1.07 1.017 1.37 1	ar <u>Total</u> 80 47 30 36	Weight 27.3% 15.3% 6.9% 11.6%	Mean Difference <u>IV, Fixed, 95% Cl</u> -0.01 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.02 [-0.62, 0.58] -0.40 [-0.86, 0.06]	Favours (PAI) Favours (Non-PAI) Mean Difference
est for overall effect: Z fotal (95% CI) leterogeneily: Chi ² = 4 est for overall effect: Z est for subαroup differ (c) Study or Subgroup I.3.1 Randomized con Kim KI 2021 Peng HM 2021 Pinsornsak P 2016 Pinsornsak P 2021 Zhang S 2019	= 1.18 (F .27, df = 3 = 1.24 (F rences: C Periart Mean trolled st 2.409 1.85 2.3	P = 0.24) P = 0.23; P = 0.22); $hi^2 = 0.12.$ of icular injection SD udy 0.86 0.963 0.95	165 ² = 30% f = 1 (P : tion Total 80 46 30 36 53	= 0.73). Non <u>Mean</u> 2.56 2.627 1.87 2.7	1-periarticul SD 1.07 1.017 1.37	ar <u>Total</u> 80 47 30 36 52	Weight 27.3% 15.3% 6.9% 11.6% 11.8%	Mean Difference <u>IV, Fixed, 95% Cl</u> -0.01 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.02 [-0.62, 0.58] -0.40 [-0.86, 0.06] 0.17 [-0.29, 0.62]	Favours (PAI) Favours (Non-PAI) Mean Difference
iest for overall effect: Z otal (95% Cl) leterogeneily: Chi ² = 4 iest for overall effect: Z iest for subaroup differ (C) Study or Subgroup I.3.1 Randomized con Kim Kl 2021 Peng HM 2021 Pinsornsak P 2016 Pinsornsak P 2021 Chang S 2019 Subtotal (95% Cl)	= 1.18 (F .27, df = 3 = 1.24 (P rences: C Periart <u>Mean</u> trolled st 2.409 1.85 2.3 2.629	P = 0.24) 3 (P = 0.23); P = 0.22) hi ² = 0.12. d icular injec SD udy 0.86 0.963 0.95 1 1.139203	165 ² = 30% (f = 1 (P = tion Total 80 46 30 36 53 245	= 0.73). Non <u>Mean</u> 2.56 2.627 1.87 2.7	1.07 1.07 1.017 1.37 1	ar <u>Total</u> 80 47 30 36	Weight 27.3% 15.3% 6.9% 11.6% 11.8%	Mean Difference <u>IV, Fixed, 95% Cl</u> -0.01 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.02 [-0.62, 0.58] -0.40 [-0.86, 0.06]	Favours (PAI) Favours (Non-PAI) Mean Difference
rest for overall effect: Z rotal (95% CI) leterogeneity: Chi ² = 4 rest for overall effect: Z rest for subaroup differ (c) Study or Subgroup I.3.1 Randomized con Kim Kl 2021 Peng HM 2021 Pinsornsak P 2016 Pinsornsak P 2016 Pinsornsak P 2021 Zhang S 2019 Subtotal (95% CI) Heterogeneity: Chi ² = 3	:= 1.18 (F .27, df = 3 := 1.24 (P rences: C Periart Mean trolled st 2.409 1.85 2.409 1.85 2.3 2.629 8.64, df = 4	P = 0.24) 3 (P = 0.23); P = 0.22) hi ² = 0.12. d icular injec SD udy 0.86 0.963 0.95 1 1.139203 4 (P = 0.46);	165 ² = 30% (f = 1 (P = tion Total 80 46 30 36 53 245	= 0.73). Non <u>Mean</u> 2.56 2.627 1.87 2.7	1.07 1.07 1.017 1.37 1	ar <u>Total</u> 80 47 30 36 52	Weight 27.3% 15.3% 6.9% 11.6% 11.8%	Mean Difference <u>IV, Fixed, 95% Cl</u> -0.01 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.02 [-0.62, 0.58] -0.40 [-0.86, 0.06] 0.17 [-0.29, 0.62]	Favours (PAI) Favours (Non-PAI) Mean Difference
rest for overall effect: Z total (95% CI) Heterogeneity: Chi ² = 4 rest for overall effect: Z rest for subgroup differ (C) Study or Subgroup I.3.1 Randomized con Kim KI 2021 Peng HM 2021 Pinsornsak P 2016 Pinsornsak P 2021	:= 1.18 (F .27, df = 3 := 1.24 (P rences: C Periart Mean trolled st 2.409 1.85 2.409 1.85 2.3 2.629 8.64, df = 4	P = 0.24) 3 (P = 0.23); P = 0.22) hi ² = 0.12. d icular injec SD udy 0.86 0.963 0.95 1 1.139203 4 (P = 0.46);	165 ² = 30% (f = 1 (P = tion Total 80 46 30 36 53 245	= 0.73). Non <u>Mean</u> 2.56 2.627 1.87 2.7	1.07 1.07 1.017 1.37 1	ar <u>Total</u> 80 47 30 36 52	Weight 27.3% 15.3% 6.9% 11.6% 11.8%	Mean Difference <u>IV, Fixed, 95% Cl</u> -0.01 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.02 [-0.62, 0.58] -0.40 [-0.86, 0.06] 0.17 [-0.29, 0.62]	Favours (PAI) Favours (Non-PAI) Mean Difference
rest for overall effect: Z otal (95% CI) deterogeneity: Chi ² = 4 rest for overall effect: Z rest for subgroup differ (C) Study or Subgroup I.3.1 Randomized con Kim KI 2021 Peng HM 2021 Pinsornsak P 2016 Pinsornsak P 2021 Pinsornsak P 2021 Zhang S 2019 Subtotal (95% CI) Heterogeneity: Chi ² = 3 Fest for overall effect: Z	:= 1.18 (F .27, df = 3 := 1.24 (P rences: C Periart Mean trolled st 2.409 1.85 2.409 1.85 2.3 2.629 8.64, df = 4	P = 0.24) 3 (P = 0.23); P = 0.22) hi ² = 0.12. d icular injec SD udy 0.86 0.963 0.95 1 1.139203 4 (P = 0.46);	165 ² = 30% (f = 1 (P = tion Total 80 46 30 36 53 245	= 0.73). Non <u>Mean</u> 2.56 2.627 1.87 2.7	1.07 1.07 1.017 1.37 1	ar <u>Total</u> 80 47 30 36 52	Weight 27.3% 15.3% 6.9% 11.6% 11.8%	Mean Difference <u>IV, Fixed, 95% Cl</u> -0.01 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.02 [-0.62, 0.58] -0.40 [-0.86, 0.06] 0.17 [-0.29, 0.62]	Favours (PAI) Favours (Non-PAI) Mean Difference
rest for overall effect: Z otal (95% CI) Heterogeneity: Chi ² = 4 rest for overall effect: Z rest for subgroup differ (C) Study or Subgroup I.3.1 Randomized con Xim KI 2021 Peng HM 2021 Pinsornsak P 2016 Pinsornsak P 2016 Pinsornsak P 2021 Zhang S 2019 Subtotal (95% CI) Heterogeneity: Chi ² = 3 Fest for overall effect: Z I.3.2 Cohort study	= 1.18 (F .27, df = 3 = 1.24 (F rences: C Periart <u>Mean</u> trolled st 2.55 2.409 1.85 2.3 2.629 3.64, df = 4 = 0.94 (F	P = 0.24) 3 (P = 0.23); P = 0.22) hi ² = 0.12. d icular injec SD udy 0.86 0.963 0.95 1 1.139203 4 (P = 0.46); P = 0.35)	165 ² = 30% f = 1 (P : tion Total 80 46 30 36 53 245 ² = 0%	= 0.73). Non 2.56 2.627 1.87 2.7 2.463	1.07 1.07 1.017 1.37 1 1.251587	ar Total 80 47 30 36 52 245	Weight 27.3% 5.3% 5.9% 11.6% 11.8% 72.9%	Mean Difference N, Fixed, 95% Cl -0.01 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.02 [-0.62, 0.58] -0.40 [-0.86, 0.06] 0.17 [-0.29, 0.62] -0.09 [-0.27, 0.10]	Favours (PAI) Favours (Non-PAI) Mean Difference
est for overall effect: Z fotal (95% CI) leterogeneily: Chi ² = 4 est for overall effect: Z est for subaroup differ (c) Study or Subgroup I.3.1 Randomized con Kim KI 2021 Peng HM 2021 Pinsornsak P 2016 Pinsornsak P 2016 Pinsornsak P 2021 Zhang S 2019 Subtotal (95% CI) Heterogeneity: Chi ² = 3 Fest for overall effect: Z I.3.2 Cohort study Besiris GT 2020	= 1.18 (F .27, df = 3 = 1.24 (P rences: C Periart Mean trolled st 2.55 2.409 1.85 2.3 2.629 3.64, df = 4 Z = 0.94 (F	P = 0.24) 3 (P = 0.23); P = 0.22) hi ² = 0.12. d icular injec SD udy 0.86 0.963 0.95 1 1.139203 4 (P = 0.46); P = 0.35) 0.8	165 ² = 30% f = 1 (P = tion Total 80 46 30 36 53 245 245 ² = 0%	= 0.73). Non 2.56 2.627 1.87 2.463	1.07 1.07 1.017 1.37 1.251587	ar Total 80 47 30 36 52 245 33	Weight 27.3% 15.3% 6.9% 11.6% 11.8% 72.9% 12.9% 14.2%	Mean Difference <u>V, Fixed, 95% Cl</u> -0.01 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.02 [-0.62, 0.58] -0.40 [-0.86, 0.06] 0.17 [-0.29, 0.62] -0.09 [-0.27, 0.10] 0.50 [0.06, 0.94]	Favours (PAI) Favours (Non-PAI) Mean Difference
Test for overall effect: Z Total (95% CI) Ideterogeneity: Chi² = 4 Test for overall effect: Z Test for subaroup differ (c) Study or Subgroup I.3.1 Randomized cont Kim Kl 2021 Peng HM 2021 Pinsornsak P 2016 Pinsornsak P 2012 Chang S 2019 Subtotal (95% CI) Heterogeneity: Chi² = 3 Test for overall effect: Z I.3.2 Cohort study Besiris GT 2020 Mao Z 2016	:= 1.18 (F .27, df = 3 := 1.24 (P rences: C Periart Mean trolled st 2.409 1.85 2.409 1.85 2.3 2.629 8.64, df = 4 Z = 0.94 (F 2.32 8.91, df = 1	P = 0.24) P = 0.23); P = 0.22); $hi^2 = 0.12. constraints of the second state in the second state is the second stat$	165 ⁷ = 30% f = 1 (P = tion Total 80 46 30 36 53 32 45 (² = 0% 33 49 82	= 0.73). Non 2.56 2.627 1.87 2.7 2.463 1.5 2.43	1.07 1.07 1.017 1.37 1.251587	ar <u>Total</u> 80 47 36 52 245 33 33	Weight 27.3% 15.3% 6.9% 11.6% 11.8% 72.9% 12.9% 14.2%	Mean Difference <u>IV, Fixed, 95% Cl</u> -0.21 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.20 [-0.62, 0.58] -0.40 [-0.86, 0.06] 0.17 [-0.29, 0.62] -0.09 [-0.27, 0.10] 0.50 [0.06, 0.94] -0.11 [-0.53, 0.31]	Favours (PAI) Favours (Non-PAI) Mean Difference
rest for overall effect: Z rotal (95% CI) leterogeneity: Chi ² = 4 rest for overall effect: Z rest for subgroup differ (C) Study or Subgroup I.3.1 Randomized con Kim Kl 2021 Peng HM 2021 Peng HM 2021 Pinsornsak P 2016 Pinsornsak P 2016 Pinsornsak P 2021 Chang S 2019 Subtotal (95% CI) Heterogeneity: Chi ² = 3 Fest for overall effect: Z I.3.2 Cohort study Besiris GT 2020 Mao Z 2016 Subtotal (95% CI) Heterogeneity: Chi ² = 3	:= 1.18 (F .27, df = 3 := 1.24 (P rences: C Periart Mean trolled st 2.409 1.85 2.409 1.85 2.3 2.629 8.64, df = 4 Z = 0.94 (F 2.32 8.91, df = 1	P = 0.24) P = 0.23); P = 0.22); $hi^2 = 0.12. constraints of the second state in the second state is the second stat$	165 ⁷ = 30% f = 1 (P = tion Total 80 46 30 36 53 32 45 (² = 0% 33 49 82	= 0.73). Non 2.56 2.627 1.87 2.7 2.463 1.5 2.43	1.07 1.07 1.017 1.37 1.251587	ar Total 80 47 30 36 52 245 33 36 69	Weight 27.3% 15.3% 6.9% 11.6% 11.8% 72.9% 12.9% 14.2% 27.1%	Mean Difference <u>V, Fixed, 95% Cl</u> -0.01 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.02 [-0.62, 0.58] -0.40 [-0.86, 0.06] 0.17 [-0.29, 0.62] -0.09 [-0.27, 0.10] 0.50 [0.06, 0.94] -0.11 [-0.53, 0.31] 0.18 [-0.12, 0.48]	Favours (PAI) Favours (Non-PAI) Mean Difference
rest for overall effect: Z fotal (95% CI) leterogeneity: Chi ² = 4 rest for overall effect: Z rest for subaroup differ (C) Study or Subgroup I.3.1 Randomized con Kim Kl 2021 Peng HM 2021 Pinsornsak P 2016 Pinsornsak P 2016 Pinsornsak P 2021 Zhang S 2019 Subtotal (95% CI) Heterogeneity: Chi ² = 3 Fest for overall effect: Z I.3.2 Cohort study Besiris GT 2020 Mao Z 2016 Subtotal (95% CI) Heterogeneity: Chi ² = 3 Fest for overall effect: Z Fotal (95% CI)	= 1.18 (F .27, df = 3 = 1.24 (P rences: C Periart <u>Mean</u> trolled st 2.55 2.409 1.85 2.32 2.629 3.64, df = 4 2.32 3.629 3.64, df = 4 2.32 3.629 5.629 5.629 5.629 5.629 5.629 5.629 5	P = 0.24) 3 (P = 0.23); P = 0.22) hit ² = 0.12. d icular inject SD udy 0.86 0.963 0.95 1 1.139203 4 (P = 0.46); P = 0.35) 0.8 0.93 1 (P = 0.05); P = 0.24)	165 ² = 30% f = 1 (P = tion Total 80 46 30 36 53 245 ² = 0% 33 49 82 82 82 82 82 82 82 82	= 0.73). Non 2.56 2.627 1.87 2.7 2.463 1.5 2.43	1.07 1.07 1.017 1.37 1.251587	ar Total 80 47 30 36 52 245 33 36 69	Weight 27.3% 15.3% 6.9% 11.6% 11.8% 72.9% 12.9% 14.2% 27.1%	Mean Difference <u>IV, Fixed, 95% Cl</u> -0.21 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.20 [-0.62, 0.58] -0.40 [-0.86, 0.06] 0.17 [-0.29, 0.62] -0.09 [-0.27, 0.10] 0.50 [0.06, 0.94] -0.11 [-0.53, 0.31]	Favours [PAI] Favours [Non-PAI] Mean Difference IV, Fixed, 95% CI
est for overall effect: Z otal (95% CI) leterogeneity: Chi ² = 4 est for overall effect: Z est for subaroup differ (C) Study or Subgroup I.3.1 Randomized con Kim KI 2021 Pang HM 2021 Pinsomsak P 2016 Pinsomsak P 2016 Pinsomsak P 2016 Subtotal (95% CI) leterogeneity: Chi ² = 3 rest for overall effect: Z I.3.2 Cohort study Besiris GT 2020 Mao Z 2016 Subtotal (95% CI) leterogeneity: Chi ² = 3 rest for overall effect: Z Total (95% CI) leterogeneity: Chi ² = 9	1.18 (F .27, df = 3 .27, df = 3 .124 (Prences: C Periart Mean trolled st 2.55 2.409 1.85 2.32 3.64, df = 4 2.32 3.64, df = 4 2.32 3.91, df = 7 2.1.18 (F 0.78, df = 1	P = 0.24) 3 (P = 0.23); P = 0.22) hi ² = 0.12. d icular inject SD udy 0.86 0.963 0.95 1 1.139203 4 (P = 0.46); P = 0.35) 0.8 0.93 1 (P = 0.05); P = 0.24) 6 (P = 0.13);	165 ² = 30% f = 1 (P = tion Total 80 46 30 36 53 245 ² = 0% 33 49 82 82 82 82 82 82 82 82	= 0.73). Non 2.56 2.627 1.87 2.7 2.463 1.5 2.43	1.07 1.07 1.017 1.37 1.251587	ar Total 80 47 30 36 52 245 33 36 69	Weight 27.3% 15.3% 6.9% 11.6% 11.8% 72.9% 12.9% 14.2% 27.1%	Mean Difference <u>V, Fixed, 95% Cl</u> -0.01 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.02 [-0.62, 0.58] -0.40 [-0.86, 0.06] 0.17 [-0.29, 0.62] -0.09 [-0.27, 0.10] 0.50 [0.06, 0.94] -0.11 [-0.53, 0.31] 0.18 [-0.12, 0.48]	Favours [PAI] Favours [Non-PAI] Mean Difference IV, Fixed, 95% Cl
est for overall effect: Z otal (95% CI) leterogeneity: Chi ² = 4 est for overall effect: Z est for subgroup differ (c) Study or Subgroup I.3.1 Randomized con Kim Kl 2021 Peng HM 2021 Pinsornsak P 2016 Pinsornsak P 2016 Pinsornsak P 2016 Subtotal (95% CI) Heterogeneity: Chi ² = 3 Test for overall effect: Z I.3.2 Cohort study Besiris GT 2020 Mao Z 2016 Subtotal (95% CI) Heterogeneity: Chi ² = 3 Test for overall effect: Z Total (95% CI) Heterogeneity: Chi ² = 9 Test for overall effect: Z	1.18 (F .27, df = 3 .27, df = 3 .27, df = 4 .27, df = 4 .27, df = 3 .2409 .409 .185 .2.32 .2.629 .8.64, df = 4 .2.32 .391, df = 4 .232 .91, df = 4 .232 .91, df = 4 .232 .931, df = 4 .232 .931, df = 4 .232 .933, df = 1 .78, df = 1 .278, df = 1	P = 0.24) P = 0.23); P = 0.22); $hi^2 = 0.12. constraints of the second state in the second state is the second stat$	165 ⁷ = 30% f = 1 (P = tion Total 80 46 53 245 53 245 ² = 0% 33 49 82 82 82 ² = 74% 327 ² = 39%	= 0.73). Non 2.56 2.627 1.87 2.7 2.463 1.5 2.463	1.07 1.017 1.37 1.251587 1 1.251587	ar Total 80 47 30 36 52 245 33 36 69	Weight 27.3% 15.3% 6.9% 11.6% 11.8% 72.9% 12.9% 14.2% 27.1%	Mean Difference <u>V, Fixed, 95% Cl</u> -0.01 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.02 [-0.62, 0.58] -0.40 [-0.86, 0.06] 0.17 [-0.29, 0.62] -0.09 [-0.27, 0.10] 0.50 [0.06, 0.94] -0.11 [-0.53, 0.31] 0.18 [-0.12, 0.48]	Favours [PAI] Favours [Non-PAI] Mean Difference IV, Fixed, 95% CI
est for overall effect: Z btal (95% CI) eterogeneity: Chi ² = 4 est for overall effect: Z est for subaroup differ (C) tudy or Subgroup 3.1 Randomized con im Kl 2021 eng HM 2021 insornsak P 2016 insornsak P 2021 hang S 2019 ubtotal (95% CI) leterogeneity: Chi ² = 3 est for overall effect: Z 3.2 Cohort study esiris GT 2020 lao Z 2016 ubtotal (95% CI) leterogeneity: Chi ² = 3 est for overall effect: Z otal (95% CI) leterogeneity: Chi ² = 9 est for overall effect: Z otal (95% CI)	1.18 (F .27, df = 3 .27, df = 3 .27, df = 4 .27, df = 3 .27, df = 3 .2409 .409 .409 .409 .209 .64, df = 4 .209 .64, df = 4 .232 .64, df = 4 .78, df = 1 .78, df = 1 .78, df = 10, 19 (F rences: C	P = 0.24) P = 0.23); P = 0.22); $hi^2 = 0.12. constraints of the second state in the second state is the second stat$	165 ⁷ = 30% f = 1 (P = tion Total 80 46 30 36 53 245 ² = 0% 33 49 82 ² = 74% 327 , ² = 39% 31 = 1 (P	= 0.73). Nom 2.56 2.627 1.87 2.463 1.5 2.463 4 5 6 6 6 = 0.14).	1.07 1.017 1.37 1.251587 1 1.251587 1 1	ar Total 80 47 30 36 52 245 33 36 69 314	Weight 27.3% 15.3% 6.9% 11.6% 11.8% 72.9% 12.9% 14.2% 27.1%	Mean Difference IV, Fixed, 95% CI -0.01 [-0.31, 0.29] -0.22 [-0.62, 0.18] -0.02 [-0.62, 0.58] -0.40 [-0.86, 0.06] 0.17 [-0.29, 0.62] -0.09 [-0.27, 0.10] 0.50 [0.06, 0.94] -0.11 [-0.53, 0.31] 0.18 [-0.12, 0.48] -0.01 [-0.17, 0.14]	Favours [PAI] Favours [Non-PAI] Mean Difference IV, Fixed, 95% Cl




Mean Difference Periarticular injection Non-periarticular Mean Difference SD Total Weight IV, Fixed, 95% CI IV, Fixed, 95% Cl Study or Subgroup Mean SD Total Mean Pinsornsak P 2021 55.9% -3.60 [-5.03, -2.17] 6.9 3.1 36 10.5 3.1 36 Yozawa S 2017 4.9 3.6 44 7.3 4.1 44 44.1% -2.40 [-4.01, -0.79] Total (95% CI) 80 80 100.0% -3.07 [-4.14, -2.00] Heterogeneity: Chi² = 1.19, df = 1 (P = 0.28); I² = 16% Ś 10 -10 -5 Ó Test for overall effect: Z = 5.62 (P < 0.00001) Favours [PAI] Favours [Non-PAI] Fig. 8 Haematocrit change, PAI vs. non-TXA

	Periarticu	ılar injed	ction	Non-pe	eriartic	ular		Mean Difference		Mean	Differend	ce	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl		IV, Fix	ed, 95% (CI	
Peng HM 2021	7.39	2.8	46	9.73	2.42	47	55.8%	-2.34 [-3.40, -1.28]	_				
Pinsornsak P 2016	5.4	3.1	30	5.8	4.4	30	17.1%	-0.40 [-2.33, 1.53]			•	_	
Pinsornsak P 2021	6.9	3.1	36	8.3	3.5	36	27.1%	-1.40 [-2.93, 0.13]			+		
Total (95% CI)			112			113	100.0%	-1.75 [-2.55, -0.96]		\bullet			
Heterogeneity: Chi ² =	3.27, df = 2	(P = 0.2)	0); I z = 3!	9%					-4		-	-	
Test for overall effect:	Z = 4.32 (P	< 0.0001)						4	Favours (PA	۱) Favou	ırs (Non-P	AIJ
ig. 9 Haematocrit ch	nange, PAI v	rs. IV or I	A										

	Periarticu	ular injed	ction	Non-pe	eriartic	ular		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
1.1.1 Intravenous inje	ection								
Peng HM 2021	7.39	2.8	46	9.73	2.42	47	55.8%	-2.34 [-3.40, -1.28]	
Pinsornsak P 2016	5.4	3.1	30	5.8	4.4	30	17.1%	-0.40 [-2.33, 1.53]	
Subtotal (95% CI)			76			77		-1.89 [-2.82, -0.95]	•
Heterogeneity: Chi ² =	2.99, df = 1	(P = 0.0)	8); I² = 61	7%					
Test for overall effect:	•	•							
1.1.2 Intra-articular i	njection								
Pinsornsak P 2021	6.9	3.1	36	8.3	3.5	36	27.1%	-1.40 [-2.93, 0.13]	
Subtotal (95% Cl)			36			36	27.1%	-1.40 [-2.93, 0.13]	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z=1.80 (P	= 0.07)							
Total (95% CI)			112			113	100.0%	-1.75 [-2.55, -0.96]	◆
Heterogeneity: Chi ² =	3.27. df = 2	(P = 0.2)	0); I ² = 3!	9%				• • •	<u> </u>
Test for overall effect:	•	•							-4 -2 0 2 4
Test for subaroup diff			·	P = 0.59), $ \mathbf{r} = 0$	%			Favours (PAI) Favours (Non-PAI)
ig. 10 Haematocrit	change, PAI	vs. IV oi	r IA subo	group ar	nalysis				

has been reported to be 5–15 min [44–46]. IA administration has an insufficient, limited duration of contact to immerse the anterior tissues of the knee joint where the use of post-operative drains is required [29, 30, 35]. During TKA, soft tissue needs to be released to balance knee tension, which may cause the TXA solution

to leak or drain out of the joint [30, 31]. Thus, a higher volume or dose of TXA and cost may be needed with IA. PAI is an alternative route for TXA that injects the solution into the soft tissue around the knee joint cavity [29, 30]. Unlike with IA and IV, the surgeon can inject directly into vulnerable bleeding sites for a longer duration [29, 30]. In addition, PAI does not principally limit the use of drainage [31]. Another common concept in arthroplasty is the use of combined IV and IA tranexamic acid. Some studies have reported that combined administration of IV and IA TXA is associated with lower total blood loss, drainage volume, and maximum haemoglobin drop [19, 47–49]. Considering that PAI has similar effects as IV and IA, IV combined with IA may also perform better than PAI in blood management. However, little is known about the safety of intravenous administration in patients with a history of venous thromboembolism, myocardial infarction, cerebrovascular accident, transient ischaemic attack, and stent implantation [50]. PAI is a new method that can reduce the risk to some extent, and in our analysis, it is better when combined with IV or IA than when given alone. Therefore, it can be used as an alternative to IA combined with IV to produce a similar effect.

One issue that needs to be considered is TXA toxicity in human peri-articular tissues. Unlike the previous routes of TKA, PAI directly exposes cartilage, tendons, infrapatellar fat pads, and ligaments to TXA. In the current orthopaedic practice, the interaction between these critical tissues and TXA remains largely unclear [51].

In an experimental study of male rats, 1 ml of locally administered TXA had an adverse effect on tendon healing after six weeks [52]. By contrast, a rat model study investigating the effects of TXA by histopathology and immunohistochemistry showed that TXA did not impair tendon healing [53]. In addition, TXA stimulated TNF- α and MMP-3 expression, as a positive effect in the early period of tendon healing [54]. Similarly, in an experimental rat model, TXA accelerated early bone formation and fracture healing of closed femoral fractures [55]. Ambra LF et al. found that current TXA topical protocols (1, 2, and 4 mg/ml in saline solution) did not present any cytotoxic effects on cartilage explants in a pig model [56]. Similar results of IA TXA administration were supported by Birisik et al. [57]. Their in vitro results suggested that surgeons need to pay attention to the dose of TXA when using PAI. Parker JD et al. found that TXA offered cellular protection for concentrations below 20 mg/ml. Concentrations over 20 mg/ml resulted in atypical morphology, reduced cellular adhesion, and metabolic activity associated with increased chondrocyte death [58]. The dose of 20 mg/mL TXA is a safe limit for topical use [59]. Another study found that toxic effects of TXA occur as early as 2.5 min after exposure, and the threshold dose seems to be 25 mg/ml [60]. Wang et al. found that in 10 min, exposure to 100 mg/ml TXA did not have much of a negative effect on cells. However, chronic exposure to TXA over 25 mg/ml can inhibit viability, proliferation, collagen synthesis, adhesion, and migration and induce apoptosis in fibroblasts [61]. In our study, PAI TXA showed no significant difference in haemoglobin changes

		cular inje			eriarticu			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.1.1 Intravenous inje									
<im 2021<="" ki="" td=""><td>397.66</td><td>104.1</td><td></td><td>367.93</td><td>87.26</td><td>80</td><td>21.5%</td><td>29.73 [-0.04, 59.50]</td><td></td></im>	397.66	104.1		367.93	87.26	80	21.5%	29.73 [-0.04, 59.50]	
Peng HM 2021	343.59		46	388.62		47	20.5%	-45.03 [-93.69, 3.63]	
Pinsornsak P 2016	445	158	30	520	175	30	17.6%	-75.00 [-159.37, 9.37]	
Subtotal (95% CI)		<u></u>	156			157	59.6%	-22.83 [-88.32, 42.65]	
Heterogeneity: Tau² = Fest for overall effect:			12, af = 1	2 (P = 0.0	106); 1~= 5	30%			
1.1.2 Intra -articular ir	njection								
_in YK 2021	460.1	36.79	50	576	34.01	50	22.1%	-115.90 [-129.79, -102.01]	+
vlao Z 2016	324.9	189.4	49	305	169.1	36	18.3%	19.90 [-56.67, 96.47]	
Subtotal (95% CI)			99			86	40.4%	-53.44 [-186.09, 79.22]	
Heterogeneity: Tau² = Fest for overall effect:			70, df = 1	1 (P = 0.0	1006); I²=	91%			
「otal (95% CI)			255			243	100.0%	-37.98 [-115.68, 39.71]	
-leterogeneity: Tau ² =	7064 25	Chi ² = 85		1 (P < 0 f	100011· IZ:				
Fest for overall effect:			00, ui - 1	- Qi - O.C		- 00 /0			-200 -100 Ó 100 200
Fest for subaroup diff			i.df=1.í	$P = 0.69^{\circ}$. I² = 0%				Favours (PAI) Favours (Non-PAI)
(b)	Periarti	cular inje	ction	Non-p	eriarticu	lar		Mean Difference	Mean Difference
	Periarti Mean	cular inje SD	ction <u>Total</u>	Non-p Mean	eriarticu SD		Weight	Mean Difference IV, Random, 95% Cl	Mean Difference IV, Random, 95% Cl
(b)	Mean	SD		•			Weight		
(b) Study or Subgroup	Mean	SD	Total	•			<u>Weight</u> 21.5%		
(b) <u>Study or Subgroup</u> 1.2.1 Randomized co	<u>Mean</u> ntrolled s 397.66	<u>SD</u> tudy	Total	Mean	<u>SD</u> 87.26	Total		IV, Random, 95% Cl	
(b) Study or Subgroup I.2.1 Randomized co Kim KI 2021 Peng HM 2021	<u>Mean</u> ntrolled s 397.66	<u>SD</u> tudy 104.1	<u>Total</u> 80	Mean 367.93	<u>SD</u> 87.26	Total 80	21.5%	IV, Random, 95% Cl 29.73 [-0.04, 59.50] -45.03 [-93.69, 3.63] -75.00 [-159.37, 9.37]	
(b) Study or Subgroup I.2.1 Randomized co Kim KI 2021 Peng HM 2021 Pinsornsak P 2016 Subtotal (95% CI)	<u>Mean</u> ntrolled s 397.66 343.59 445	SD tudy 104.1 118.06 158	<u>Total</u> 80 46 30 156	Mean 367.93 388.62 520	87.26 121.36 175	Total 80 47 30 157	21.5% 20.5% 17.6%	IV, Random, 95% Cl 29.73 [-0.04, 59.50] -45.03 [-93.69, 3.63]	
(b) Study or Subgroup I.2.1 Randomized co Kim KI 2021	Mean ntrolled s 397.66 343.59 445 2574.25;	<u>SD</u> tudy 104.1 118.06 158 Chi ² = 10.	<u>Total</u> 80 46 30 156	Mean 367.93 388.62 520	87.26 121.36 175	Total 80 47 30 157	21.5% 20.5% 17.6%	IV, Random, 95% Cl 29.73 [-0.04, 59.50] -45.03 [-93.69, 3.63] -75.00 [-159.37, 9.37]	
(b) <u>Study or Subgroup</u> L.2.1 Randomized co (im K1 2021 Peng HM 2021 Pinsornsak P 2016 Subtotal (95% Cl) Heterogeneity: Tau ² =	Mean ntrolled s 397.66 343.59 445 2574.25;	<u>SD</u> tudy 104.1 118.06 158 Chi ² = 10.	<u>Total</u> 80 46 30 156	Mean 367.93 388.62 520	87.26 121.36 175	Total 80 47 30 157	21.5% 20.5% 17.6%	IV, Random, 95% Cl 29.73 [-0.04, 59.50] -45.03 [-93.69, 3.63] -75.00 [-159.37, 9.37]	
(b) Study or Subgroup 1.2.1 Randomized co (im Kl 2021 Peng HM 2021 Pinsomsak P 2016 Subtotal (95% Cl) Heterogeneity: Tau ² = Fest for overall effect:	Mean ntrolled s 397.66 343.59 445 2574.25;	<u>SD</u> tudy 104.1 118.06 158 Chi ² = 10.	<u>Total</u> 80 46 30 156	Mean 367.93 388.62 520	87.26 121.36 175	Total 80 47 30 157	21.5% 20.5% 17.6% 59.6 %	IV, Random, 95% Cl 29.73 [-0.04, 59.50] -45.03 [-93.69, 3.63] -75.00 [-159.37, 9.37]	
(b) Study or Subgroup I.2.1 Randomized co (im Kl 2021 Peng HM 2021 Pinsomsak P 2016 Subtotal (95% Cl) Heterogeneity: Tau ² = Fest for overall effect: I.2.2 Cohort study	Mean ntrolled s 397.66 343.59 445 2574.25; Z = 0.68 (<u>SD</u> 104.1 118.06 158 Chi ² = 10. P = 0.49)	Total 80 46 30 156 12, df = 1	<u>Mean</u> 367.93 388.62 520 2 (P = 0.0	<u>SD</u> 87.26 121.36 175 006); I ² = 8	Total 80 47 30 157 80%	21.5% 20.5% 17.6% 59.6 %	V, Random, 95% Cl 29.73 [-0.04, 59.50] -45.03 [-93.69, 3.63] -75.00 [-159.37, 9.37] -22.83 [-88.32, 42.65]	
(b) Study or Subgroup I.2.1 Randomized co (im Kl 2021 Peng HM 2021 Pinsomsak P 2016 Subtotal (95% Cl) Heterogeneily: Tau ² = Fest for overall effect: I.2.2 Cohort study Lin YK 2021	Mean ntrolled s 397.66 343.59 445 2574.25; Z = 0.68 (460.1	<u>SD</u> 104.1 118.06 158 Chi ² = 10. P = 0.49) 36.79	<u>Total</u> 80 46 30 156 12, df = 1 50	<u>Mean</u> 367.93 388.62 520 2 (P = 0.0 576	<u>SD</u> 87.26 121.36 175 006); I² = 8 34.01	Total 80 47 30 157 80%	21.5% 20.5% 17.6% 59.6 % 22.1%	W, Random, 95% Cl 29.73 [-0.04, 59.50] -45.03 [-93.69, 3.63] -75.00 [-159.37, 9.37] -22.83 [-88.32, 42.65]	
(b) Study or Subgroup I.2.1 Randomized co Kim KI 2021 Peng HM 2021 Pinsornsak P 2016 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: I.2.2 Cohort study in YK 2021 Mao Z 2016	<u>Mean</u> ntrolled s 397.66 343.59 445 2574.25; Z = 0.68 (460.1 324.9 8432.52;	<u>sp</u> tudy 104.1 118.06 158 Chi ² = 10. P = 0.49) 36.79 189.4 Chi ² = 11.	<u>Total</u> 80 46 30 156 12, df = 1 50 49 99	<u>Mean</u> 367.93 388.62 520 2 (P = 0.0 576 305	SD 87.26 121.36 175 006); I² = 8 34.01 169.1	Total 80 47 30 157 80% 50 36 86	21.5% 20.5% 17.6% 59.6% 22.1% 18.3%	V, Random, 95% Cl 29.73 [-0.04, 59.50] -45.03 [-93.69, 3.63] -75.00 [-159.37, 9.37] -22.83 [-88.32, 42.65] -115.90 [-129.79, -102.01] 19.90 [-56.67, 96.47]	
(b) Study or Subgroup I.2.1 Randomized co (im Kl 2021 Pang HM 2021 Pinsomsak P 2016 Subtotal (95% Cl) Heterogeneity: Tau ² = Fest for overall effect: I.2.2 Cohort study Lin YK 2021 Mao Z 2016 Subtotal (95% Cl) Heterogeneity: Tau ² =	<u>Mean</u> ntrolled s 397.66 343.59 445 2574.25; Z = 0.68 (460.1 324.9 8432.52;	<u>sp</u> tudy 104.1 118.06 158 Chi ² = 10. P = 0.49) 36.79 189.4 Chi ² = 11.	<u>Total</u> 80 46 30 156 12, df = 1 50 49 99	<u>Mean</u> 367.93 388.62 520 2 (P = 0.0 576 305	SD 87.26 121.36 175 006); I² = 8 34.01 169.1	Total 80 47 30 157 30% 50 36 86 91%	21.5% 20.5% 17.6% 59.6% 22.1% 18.3%	V, Random, 95% Cl 29.73 [-0.04, 59.50] -45.03 [-93.69, 3.63] -75.00 [-159.37, 9.37] -22.83 [-88.32, 42.65] -115.90 [-129.79, -102.01] 19.90 [-56.67, 96.47]	
(b) Study or Subgroup I.2.1 Randomized co (im Kl 2021 Peng HM 2021 Pinsomsak P 2016 Subtotal (95% Cl) Heterogeneity: Tau ² = Fest for overall effect: I.2.2 Cohort study Lin YK 2021 Mao Z 2016 Subtotal (95% Cl) Heterogeneity: Tau ² = Fest for overall effect:	Mean ntrolled s 397.66 343.59 445 2574.25; Z = 0.68 (460.1 324.9 8432.52; Z = 0.79 (<u>sp</u> 104.1 118.06 158 Chi ² = 10. P = 0.49) 36.79 189.4 Chi ² = 11. P = 0.43)	Total 80 46 30 156 12, df = 1 50 49 99 70, df = 1 255	<u>Mean</u> 367.93 388.62 520 2 (P = 0.0 2 (P = 0.0 576 305 1 (P = 0.0	SD 87.26 121.36 175 006); ² = 8 34.01 169.1	Total 80 47 30 157 80% 50 50 36 91% 243	21.5% 20.5% 17.6% 59.6% 22.1% 18.3% 40.4 %	W, Random, 95% Cl 29.73 [-0.04, 59.50] -45.03 [-93.69, 3.63] -75.00 [-159.37, 9.37] -22.83 [-88.32, 42.65] -115.90 [-129.79, -102.01] 19.90 [-56.67, 96.47] -53.44 [-186.09, 79.22]	N, Random, 95% Cl
(b) Study or Subgroup I.2.1 Randomized co Kim Kl 2021 Peng HM 2021 Pinsornsak P 2016 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: I.2.2 Cohort study Lin YK 2021 Mao Z 2016 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: Fotal (95% CI)	<u>Mean</u> ntrolled s 397.66 343.59 445 2574.25; Z = 0.68 (460.1 324.9 8432.52; Z = 0.79 (7064.25;	SD tudy 104.1 118.06 158 Chi² = 10. P = 0.49) 36.79 189.4 Chi² = 11. P = 0.43) Chi² = 85.	Total 80 46 30 156 12, df = 1 50 49 99 70, df = 1 255	<u>Mean</u> 367.93 388.62 520 2 (P = 0.0 2 (P = 0.0 576 305 1 (P = 0.0	SD 87.26 121.36 175 006); ² = 8 34.01 169.1	Total 80 47 30 157 80% 50 50 36 91% 243	21.5% 20.5% 17.6% 59.6% 22.1% 18.3% 40.4 %	W, Random, 95% Cl 29.73 [-0.04, 59.50] -45.03 [-93.69, 3.63] -75.00 [-159.37, 9.37] -22.83 [-88.32, 42.65] -115.90 [-129.79, -102.01] 19.90 [-56.67, 96.47] -53.44 [-186.09, 79.22]	

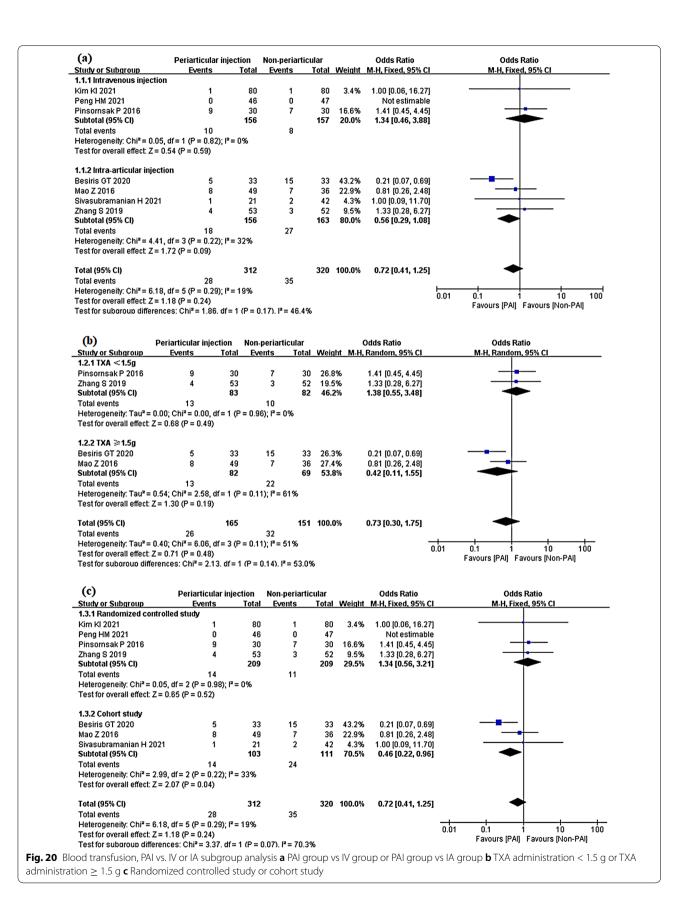
cohort study

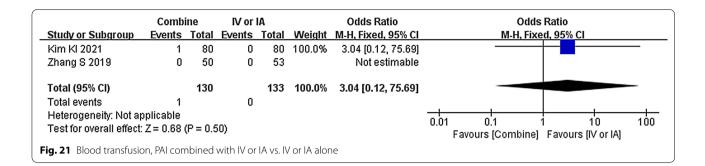
	Periarticular in	Non-periart	icular		Odds Ratio		Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixe	d, 95% Cl	
Kim KI 2021	4	80	5	80	62.6%	0.79 [0.20, 3.05]			<u> </u>	
Mao Z 2016	0	49	0	36		Not estimable				
Peng HM 2021	2	46	3	47	37.4%	0.67 [0.11, 4.19]				
Pinsornsak P 2016	0	30	0	30		Not estimable				
Pinsornsak P 2021	0	36	0	36		Not estimable				
Sivasubramanian H 2021	0	21	0	42		Not estimable				
Zhang S 2019	0	53	0	52		Not estimable				
Total (95% CI)		315		323	100.0%	0.74 [0.25, 2.21]		-		
Total events	6		8							
Heterogeneity: Chi ² = 0.02,	df = 1 (P = 0.88); P	²= 0%								
Test for overall effect: $Z = 0$.	53 (P = 0.59)						0.005	U.1 Favours (PAI)		200 n-PAI)
Heterogeneity: Chi ² = 0.02, Test for overall effect: Z = 0. Fig. 14 Thromboembolic	53 (P = 0.59)						0.005	0.1 Favours (PAI)	l 10 Favours (No	n-PAI

when injected at <1.5 g vs. \geq 1.5 g. Therefore, for the safety of patients, it is more recommended to use TXA less than 1.5 g. To further reduce blood loss, PAI can be combined with IV and IA.

TXA allergy is another problem that deserves our attention. In 2004, the first case of anaphylactic shock to tranexamic acid was reported during coronary artery bypass graft surgery [62]. TXA allergy has also been

(a)	Periarticular inj		Non-periart			Odds Ratio		Odds Rat	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixed, 9	5% Cl
1.1.1 Intravenous injection			_						
Kim KI 2021	4	80	5	80	62.6%	0.79 [0.20, 3.05]			-
Peng HM 2021	2	46	3	47	37.4%	0.67 [0.11, 4.19]			
Pinsornsak P 2016	0	30	0	30		Not estimable			
Subtotal (95% CI)		156		157	100.0%	0.74 [0.25, 2.21]			
Total events	6		8						
Heterogeneity: Chi² = 0.02, c Test for overall effect: Z = 0.5		= 0%							
1.1.2 Intra-articular injection	n								
Mao Z 2016	0	49	0	36		Not estimable			
Pinsornsak P 2021	0	36	0	36		Not estimable			
Sivasubramanian H 2021	0	21	0	42		Not estimable			
Zhang S 2019	0	53	0	52		Not estimable			
Subtotal (95% CI)		159		166		Not estimable			
Total events	0		0						
Heterogeneity: Not applicabl	-		2						
Test for overall effect: Not ap									
Total (95% CI)		315		323	100.0%	0.74 [0.25, 2.21]			
Total events	6		8			- · ·			
Heterogeneity: Chi ² = 0.02, d	$f = 1 (P = 0.88); I^2$	= 0%					—		
Test for overall effect: $Z = 0.5$	• • •						0.01	0.1 1	10 1
Test for subaroup difference								Favours (PAI) Fav	ours (Non-PAI)
(b)									
• •	Periarticular in		Non-periar			Odds Ratio		Odds Rat	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixed, 9	<u>5% CI</u>
1.2.1 Randomized controlle	ed study							_	
Kim KI 2021	4	80	5	80	62.6%	0.79 [0.20, 3.05]			_
Peng HM 2021	2	46	3	47	37.4%	0.67 [0.11, 4.19]			
Pinsornsak P 2016	0	30	0	30		Not estimable			
Pinsornsak P 2021	0	36	0	36		Not estimable			
Zhang S 2019	0	53	0	52		Not estimable			
Subtotal (95% CI)		245		245	100.0%	0.74 [0.25, 2.21]			
Total events	6		8						
Heterogeneity: $Chi^2 = 0.02$, Test for overall effect: $Z = 0.6$		²= 0%							
1.2.2 Cohort study									
Mao Z 2016	0	49	0	36		Not estimable			
Sivasubramanian H 2021	0	21	0	42		Not estimable			
Subtotal (95% CI)		70		78		Not estimable			
Total events	0		0						
Heterogeneity: Not applicab									
Test for overall effect: Not ap	oplicable								
Total (95% CI)		315		323	100.0%	0.74 [0.25, 2.21]			
Total events	6		8					.	
Heterogeneity: $Chi^2 = 0.02$, or Test for overall effect: $Z = 0.6$ Test for subgroup difference	53 (P = 0.59)						0.01	0.1 1 Favours (PAI) Fa	10 1 vours [Non-PAI]
restion suburous unicience									
g. 15 Thromboembolic e			aroun analy	cic a DAL	aroup v	W aroup or PAL ar		A group b Pandomi	rad controllad stu


	Combined inj	IV or IA inje	ection		Odds Ratio	Odds	Ratio		
tudy or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixe	d, 95% Cl	
(im KI 2021	1	80	0	80	100.0%	3.04 [0.12, 75.69]			
hang S 2019	0	50	0	53		Not estimable			
otal (95% CI)		130		133	100.0%	3.04 [0.12, 75.69]			
otal events	1		0						
leterogeneity: Not ap 'est for overall effect:	 Contraction of Contraction (Contraction) 	50)					0.001 0.1 1	10	1000
	Z = 0.68 (P = 0.	.50)					Favours [Combined]	Favours (IV or IA)	


	Periarticular injection		Non-T	XA		Odds Ratio	Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl			
Mao Z 2016	8	49	7	42	32.1%	0.98 [0.32, 2.96]	#			
Yozawa S 2017	0	44	2	44	12.6%	0.19 [0.01, 4.10]				
Zhang S 2019	4	53	12	55	55.4%	0.29 [0.09, 0.97]				
Total (95% Cl)		146		141	100.0%	0.50 [0.23, 1.06]	-			
Total events	12		21							
Heterogeneity: Chi ² =	2.53, df = 2 (P = 0	.28); I² =	21%							
Test for overall effect:	Z=1.81 (P=0.07)					0.005 0.1 1 10 200 Favours (PAI) Favours (Non-TXA)			
ig. 17 Blood transfus	ion, PAI vs. non-TX	A								

	Periarticular inj	ection	Non-periart	icular		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixed, 95% Cl	
1.1.1 Randomized co	ntrolled study								
Zhang S 2019	4	53	12	55	55.4%	0.29 [0.09, 0.97]			
Subtotal (95% CI)		53		55	55.4%	0.29 [0.09, 0.97]			
Total events	4		12						
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 2.00 (P = 0.05)							
1.1.2 Cohort study									
Mao Z 2016	8	49	7	42	32.1%	0.98 [0.32, 2.96]		+	
Yozawa S 2017	0	44	2	44	12.6%	0.19 [0.01, 4.10]			
Subtotal (95% CI)		93		86	44.6%	0.75 [0.28, 2.06]			
Total events	8		9						
Heterogeneity: Chi ² =	0.98, df = 1 (P = 0	.32); I ² = ()%						
Test for overall effect:	Z = 0.55 (P = 0.58)							
Fotal (95% CI)		146		141	100.0%	0.50 [0.23, 1.06]		•	
Total events	12		21						
Heterogeneity: Chi ² =	2.53, df = 2 (P = 0	.28); I ² = 2	21%				0.005		+
Test for overall effect:	Z = 1.81 (P = 0.07)					0.005		200
Test for subaroup diff	erences: Chi ² = 1.	40. df = 1	(P = 0.24), I ²	= 28.8%	6			Favours (PAI) Favours (Non-PAI)	
g. 18 Blood transfus	ion PAlve non T	VA cubar	oup apalysis						

	Periarticular inje	articular injection Non-periarticular			Odds Ratio		Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixe	d, 95% Cl	
Besiris GT 2020	5	33	15	33	43.2%	0.21 [0.07, 0.69]		_		
Kim KI 2021	1	80	1	80	3.4%	1.00 [0.06, 16.27]				
Mao Z 2016	8	49	7	36	22.9%	0.81 [0.26, 2.48]				
Peng HM 2021	0	46	0	47		Not estimable				
Pinsornsak P 2016	9	30	7	30	16.6%	1.41 [0.45, 4.45]			•	
Sivasubramanian H 2021	1	21	2	42	4.3%	1.00 [0.09, 11.70]				
Zhang S 2019	4	53	3	52	9.5%	1.33 [0.28, 6.27]			•	
Total (95% CI)		312		320	100.0%	0.72 [0.41, 1.25]		-		
Total events	28		35							
Heterogeneity: Chi ² = 6.18, d	df = 5 (P = 0.29); I ² =	19%					L	0.1 1		100
Test for overall effect: Z = 1.1	18 (P = 0.24)						0.01	Favours (PAI)	10 Favours (Non-	100 PAI]
Fig. 19 Blood transfusion, I	PAI vs. IV or IA									

reported during orthopaedic surgery. An 80-year-old woman who underwent elective knee replacement developed hypotension, tachycardia, and facial erythema accompanied by increased serum tryptase after intravenous TXA [63]. A 15-year-old male presented a delayed anaphylactic reaction with hypotensive, tachycardic, and erythema during posterior spinal fusion [64]. In 2020, another anaphylactic reaction to TXA during posterior spinal fusion was reported [65]. Although tranexamic acid allergy is rare, prevention measured are still

necessary. Li et al. proposed a standardized protocol for TXA anaphylactic reactions. Serial serum tryptase levels (30 to 120 min and 24 h) need to be measured after the reaction. Then, 100 mg/mL, 0.01 mg/mL, and 0.1 mg/mL TXA skin prick tests are used to confirm the diagnosis [66].

Implications for practice

TXA has gained widespread use as an effective means of promoting haemostasis and reducing intraoperative blood loss in orthopaedic surgery. However, the best practices for TXA are still unclear. Our study reveals peri-articular injection as an alternative route for TXA injection. In addition, we recommended using TXA less than 1.5 g, and to further reduce blood loss, PAI can be combined with IV and IA.

Implications for clinical research

As PAI is a new injection route, we suggest the following investigation guidelines to help further discussions. First, include patients who are undergoing joint arthroplasty, such as hip and shoulder arthroplasty. Arthroscopic surgery and trauma surgery should also be considered. Second, interventions need to consider PAI combined with oral, IV, or IA TXA. Comparisons need to consider IV combined with IA or oral TXA, or different doses of PAI TXA. Outcomes should include ecchymosis, haematoma formation, VAS (visual analogue scale) score, and subjective joint function scores. In addition, the application of tourniquet in perioperative injection of TXA in knee surgery is also worth considering. Finally, more RCTs are needed.

Limitations

There are several limitations to this study. First, as a newly mentioned TXA administration, PAI has been studied by few RCTs, and the inclusion of non-RCT studies made our data less valid than ideal. Second, in the comparison between PAI and IA or IV, the TXA dose in the two groups in some studies was inconsistent, which may have affected the results. In addition, TXA was mixed with other drugs during injection, which may mask some effects. Third, in the process of data synthesis, different units were used for the same outcome index, resulting in some data not being included. Finally, we could not evaluate the specific optimal dose of TXA for PAI, only deducing that TXA less than 1.5 g may be more suitable. More importantly, PAI in combination with IV or IA could not be further compared to the combination of IV and IA.

Conclusion

PAI has comparable effects to those of IV and IA injections. PAI is an alternative injection route of TXA administration for patients who have undergone TKA.

Abbreviations

TXA: Tranexamic acid; IV: Intravenous; IA: Intra-articular; TKA: Total knee arthroplasty; PAI: Peri-articular injection; PAMC: Peri-articular multimodal cocktail; PT: Prothrombin time; APTT: Activated partial thromboplastin time; NOS: Newcastle–Ottawa Scale; MCMS: Modified Coleman Methodology Score; RCTs: Randomized controlled trials; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; CI: Confidence interval; MD: Mean difference; OR: Odds ratios.

Acknowledgements

None.

Authors' contributions

FDY conceived the design of the study. FDY, LXH and JM collected the data and contributed to the design of the study. FDY analysed the data. FDY and LZ prepared and revised the manuscript. All authors read and approved the final manuscript.

Funding

None.

Availability of data and materials

The present study was a review of the previously published literature.

Declarations

Ethics approval and consent to participate

Not applicable. This paper does not involve research on humans.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

¹Department of Joint Surgery and Sports Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, South Zhonghuan Road, Chaoyang district, Beijing 100102, People's Republic of China. ²Beijing University of Chinese Medicine (BUCM), Beijing, People's Republic of China.

Received: 10 January 2022 Accepted: 23 March 2022 Published online: 07 April 2022

References

- Ye W, Liu Y, Liu WF, Li XL, Shao J. The optimal regimen of oral tranexamic acid administration for primary total knee/hip replacement: a metaanalysis and narrative review of a randomized controlled trial. J Orthop Surg Res. 2020;15(1):457.
- Franceschini R, Franceschini M, Romano P, Bussi P, Caruso EM, De Amici S. Joint replacement in osteoarthritis: state of the art. Semin Arthritis Rheum. 2005;34(6 Suppl 2):73–7.
- Yan D, Yang J, Pei F, Yan D, Yang J, Pei F. Total knee arthroplasty treatment of rheumatoid arthritis with severe versus moderate flexion contracture. J Orthop Surg Res. 2013;8:41.
- Levine BR, Springer BD, Golladay GJ. Highlights of the 2019 American Joint Replacement Registry Annual Report. Arthroplast Today. 2020;6(4):998–1000.
- Rasouli MR, Maltenfort MG, Erkocak OF, Austin MS, Waters JH, Parvizi J. Blood management after total joint arthroplasty in the United States: 19-year trend analysis. Transfusion. 2016;56(5):1112–20.
- Sun Q, Li J, Chen J, Zheng C, Liu C, Jia Y. Comparison of intravenous, topical or combined routes of tranexamic acid administration in patients undergoing total knee and hip arthroplasty: a meta-analysis of randomised controlled trials. BMJ Open. 2019;9(1): e024350.
- Sculco TP, Baldini A, Keating EM. Blood management in total joint arthroplasty. Instr Course Lect. 2005;54:51–66.
- Papalia R, Zampogna B, Franceschi F, Torre G, Maffulli N, Denaro V. Tourniquet in knee surgery. Br Med Bull. 2014;111:63–76.
- Arthur JR, Spangehl MJ. Tourniquet use in total knee arthroplasty. J Knee Surg. 2019;32(8):719–29.
- Migliorini F, Maffulli N, Eschweiler J, Knobe M, Tingart M, Betsch M. Tourniquet use during knee arthroplasty: a Bayesian network meta-analysis on pain, function, and thromboembolism. Surgeon. 2021;S1479-666X(21)00069-X.
- Tirumala V, Klemt C, Oganseyan R, Walker P, Padmanabha A, Kwon YM. Outcomes of tourniquet-less revision total knee arthroplasty: a matched cohort analysis. J Am Acad Orthop Surg. 2021;29(24):e1343–52.
- 12. Migliorini F, Maffulli N, Aretini P, et al. Impact of tourniquet during knee arthroplasty: a Bayesian network meta-analysis of peri-operative outcomes. Arch Orthop Trauma Surg. 2021;141(6):1007–23.
- Ahmed I, Chawla A, Underwood M, et al. Time to reconsider the routine use of tourniquets in total knee arthroplasty surgery. Bone Joint J. 2021;103-B(5):830–9.
- Palanne RA, Rantasalo MT, Vakkuri AP, et al. Anesthesia method, tourniquet use, and persistent postsurgical pain after total knee arthroplasty: a prespecified secondary analysis of a randomized trial. Anesthesiology. 2021;135(4):699–710.
- Xie J, Yu H, Wang F, Jing J, Li J. A comparison of thrombosis in total knee arthroplasty with and without a tourniquet: a meta-analysis of randomized controlled trials. J Orthop Surg Res. 2021;16(1):408.
- Ahmed I, Chawla A, Underwood M, et al. Tourniquet use for knee replacement surgery. Cochrane Database Syst Rev. 2020;12(12): CD012874.
- Lin PC, Hsu CH, Chen WS, Wang JW. Does tranexamic acid save blood in minimally invasive total knee arthroplasty? Clin Orthop Relat Res. 2011;469(7):1995–2002.
- Fillingham YA, Ramkumar DB, Jevsevar DS, Yates AJ, Bini SA, Clarke HD, et al. Tranexamic acid use in total joint arthroplasty: the clinical practice

Page 20 of 21

guidelines endorsed by the American Association of Hip and Knee Surgeons, American Society of Regional Anesthesia and Pain Medicine, American Academy of Orthopaedic Surgeons, Hip Society, and Knee Society. J Arthroplasty. 2018;33(10):3065–9.

- Xiong H, Liu Y, Zeng Y, Wu Y, Shen B. The efficacy and safety of combined administration of intravenous and topical tranexamic acid in primary total knee arthroplasty: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord. 2018;19(1):321.
- Lu F, Sun X, Wang W, Zhang Q, Guo W. What is the ideal route of administration of tranexamic acid in total knee arthroplasty? A meta-analysis based on randomized controlled trials. Ann Palliat Med. 2021;10(2):1880–94.
- Wang S, Gao X, An Y. Topical versus intravenous tranexamic acid in total knee arthroplasty: a meta-analysis of randomized controlled trials. Int Orthop. 2017;41(4):739–48.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
- McGrath S, Zhao X, Steele R, Thombs BD, Benedetti A; DEPRESsion Screening Data (DEPRESSD) Collaboration. Estimating the sample mean and standard deviation from commonly reported quantiles in metaanalysis. Stat Methods Med Res. 2020;962280219889080.
- Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.
- Cook DA, Reed DA. Appraising the quality of medical education research methods: the Medical Education Research Study Quality Instrument and the Newcastle-Ottawa Scale-Education. Acad Med. 2015;90(8):1067–76.
- 26. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276–82.
- Coleman BD, Khan KM, Maffulli N, Cook JL, Wark JD. Studies of surgical outcome after patellar tendinopathy: clinical significance of methodological deficiencies and guidelines for future studies. Victorian Institute of Sport Tendon Study Group. Scand J Med Sci Sports. 2000;10(1):2–11.
- Hirose H, Ogawa H, Matsumoto K, Akiyama H. Periarticular injection of tranexamic acid promotes early recovery of the range of knee motion after total knee arthroplasty. J Orthop Surg (Hong Kong). 2019;27(3):2309499019864693.
- Pinsornsak P, Rojanavijitkul S, Chumchuen S. Peri-articular tranexamic acid injection in total knee arthroplasty: a randomized controlled trial. BMC Musculoskelet Disord. 2016;17:313.
- Mao Z, Yue B, Wang Y, Yan M, Dai K. A comparative, retrospective study of peri-articular and intra-articular injection of tranexamic acid for the management of postoperative blood loss after total knee arthroplasty. BMC Musculoskelet Disord. 2016;17(1):438.
- Yozawa S, Ogawa H, Matsumoto K, Akiyama H. Periarticular injection of tranexamic acid reduces blood loss and the necessity for allogeneic transfusion after total knee arthroplasty using autologous transfusion: a retrospective observational study. J Arthroplasty. 2018;33(1):86–9.
- Zhang S, Wang C, Shi L, Xue Q. Multi-route applications of tranexamic acid to reduce blood loss after total knee arthroplasty: a randomized controlled trial. Medicine (Baltimore). 2019;98(30): e16570.
- Besiris GT, Koutserimpas C, Karamitros A, Karaiskos I, Tsakalou D, Raptis K, et al. Topical use of tranexamic acid in primary total knee arthroplasty: a comparative study. G Chir. 2020;41(1):126–30.
- Lin YK, Tsai SW, Wu PK, Chen CM, Yang JC, Chen CF, Chen WM. Significantly reducing blood loss via a peri-articular injection of tranexamic acid during total knee arthroplasty: a retrospective study. BMC Musculoskelet Disord. 2021;22(1):703.
- 35. Sivasubramanian H, Tan CMP, Wang L. Local infiltration of analgesia and tranexamic acid is safe and efficacious in reducing blood loss and comparable to intra-articular tranexamic acid in total knee replacements. Singapore Med J. 2021. https://doi.org/10.11622/smedj.2021130.
- 36. Pinsornsak P, Phunphakchit J, Boontanapibul K. Efficacy and systemic absorption of peri-articular versus intra-articular administration of tranexamic acid in total knee arthroplasty: a prospective randomized controlled trial. Arthroplast Today. 2021;11:1–5.
- Peng HM, Wang W, Lin J, Weng XS, Qian WW, Wang WD. Multimodal peri-articular injection with tranexamic acid can reduce postoperative blood loss versus intravenous tranexamic acid in total knee arthroplasty: a randomized controlled trial. J Orthop Surg Res. 2021;16(1):546.

- Kim KI, Bae JK, Kim JH, Gwak HG, Lee SH. Tranexamic acid in a periarticular multimodal cocktail injection for blood management in total knee arthroplasty: a prospective randomized study. BMC Musculoskelet Disord. 2021;22(1):675.
- 39. Hunt BJ. The current place of tranexamic acid in the management of bleeding. Anaesthesia. 2015;70(Suppl 1):50-e18.
- 40. Clavé A, Gérard R, Lacroix J, Baynat C, Danguy des Déserts M, Gatineau F, Mottier D. A randomized, double-blind, placebo-controlled trial on the efficacy of tranexamic acid combined with rivaroxaban thromboprophylaxis in reducing blood loss after primary cementless total hip arthroplasty. Bone Joint J. 2019;101-B(2):207–12.
- Klebanoff JS, Marfori CQ, Ingraham CF, Wu CZ, Moawad GN. Applications of Tranexamic acid in benign gynecology. Curr Opin Obstet Gynecol. 2019;31(4):235–9.
- Kagoma YK, Crowther MA, Douketis J, Bhandari M, Eikelboom J, Lim W. Use of antifibrinolytic therapy to reduce transfusion in patients undergoing orthopedic surgery: a systematic review of randomized trials. Thromb Res. 2009;123(5):687–96.
- Gandhi R, Evans HM, Mahomed SR, Mahomed NN. Tranexamic acid and the reduction of blood loss in total knee and hip arthroplasty: a metaanalysis. BMC Res Notes. 2013;6:184.
- 44. Ronday HK, Te Koppele JM, Greenwald RA, Moak SA, De Roos JA, Dijkmans BA, et al. Tranexamic acid, an inhibitor of plasminogen activation, reduces urinary collagen cross-link excretion in both experimental and rheumatoid arthritis. Br J Rheumatol. 1998;37(1):34–8.
- Svahn CM, Merenyi F, Karlson L, Widlund L, Grälls M. Tranexamic acid derivatives with enhanced absorption. J Med Chem. 1986;29(4):448–53.
- 46. Pilbrant A, Schannong M, Vessman J. Pharmacokinetics and bioavailability of tranexamic acid. Eur J Clin Pharmacol. 1981;20(1):65–72.
- 47. Mi B, Liu G, Lv H, et al. Is combined use of intravenous and intraarticular tranexamic acid superior to intravenous or intraarticular tranexamic acid alone in total knee arthroplasty? A meta-analysis of randomized controlled trials. J Orthop Surg Res. 2017;12(1):61.
- Nielsen CS, Jans Ø, Ørsnes T, Foss NB, Troelsen A, Husted H. Combined intra-articular and intravenous tranexamic acid reduces blood loss in total knee arthroplasty: a randomized, double-blind, placebo-controlled trial. J Bone Joint Surg Am. 2016;98(10):835–41.
- 49. Gomez-Barrena E, Ortega-Andreu M, Padilla-Eguiluz NG, Pérez-Chrzanowska H, Figueredo-Zalve R. Topical intra-articular compared with intravenous tranexamic acid to reduce blood loss in primary total knee replacement: a double-blind, randomized, controlled, noninferiority clinical trial. J Bone Joint Surg Am. 2014;96(23):1937–44.
- Dai L, Bevan D, Rangarajan S, Sørensen B, Mitchell M. Stabilization of fibrin clots by activated prothrombin complex concentrate and tranexamic acid in FVIII inhibitor plasma. Haemophilia. 2011;17(5):e944–8. https://doi. org/10.1111/j.1365-2516.2011.02491.x.
- McLean M, McCall K, Smith IDM, Blyth M, Kitson SM, Crowe LAN, et al. Tranexamic acid toxicity in human periarticular tissues. Bone Joint Res. 2019;8(1):11–8.
- Çıraklı A, Gürgör PN, Uzun E, Erdem H, Çankaya S, Baş O. Local application of tranexamic acid affects tendon healing negatively in the late period. Eklem Hastalik Cerrahisi. 2018;29(1):20–6.
- 53. Sarı A, Dinçel YM, Karabağ S, Çetin MÜ. Histopathological and immunohistochemical investigation of the local and systemic effects of tranexamic acid on the healing of the Achilles tendon in rats. Jt Dis Relat Surg. 2021;32(1):152–61.
- 54. Çıraklı A, Gürgör PN, Uzun E, Erdem H, Şahin AA, Baş O. Tranexamic acid has positive effect in early period of tendon healing by stimulating the tumor necrosis factor-alpha and matrix metalloproteinase-3 expression levels. Jt Dis Relat Surg. 2020;31(3):463–9.
- Karaduman ZO, Arıcan M, Turhan Y, Turhal O, Orhan Z, Gamsızkan M. Systemic tranexamic acid promotes bone healing in a rat model of femur fracture. Jt Dis Relat Surg. 2020;31(3):432–9.
- Ambra LF, de Girolamo L, Niu W, Phan A, Spector M, Gomoll AH. No effect of topical application of tranexamic acid on articular cartilage. Knee Surg Sports Traumatol Arthrosc. 2019;27(3):931–5.
- 57. Birisik Sr F, Bayram S, Çakmak M, Apaydın E, Erşen A. Investigation of the effects of intra-articular tranexamic acid on intact cartilage tissue and cartilage formation in osteochondral defects of the rabbit knee: an experimental study. Cureus. 2021;13(5): e14873.

- Parker JD, Lim KS, Kieser DC, Woodfield TBF, Hooper GJ. Is tranexamic acid toxic to articular cartilage when administered topically? What is the safe dose? Bone Joint J. 2018;100-B(3):404–12.
- Wagenbrenner M, Heinz T, Horas K, Jakuscheit A, Arnholdt J, Mayer-Wagner S, et al. Impact of tranexamic acid on chondrocytes and osteogenically differentiated human mesenchymal stromal cells (hMSCs) in vitro. J Clin Med. 2020;9(12):3880.
- 60. Jacob B, Kloss N, Böhle S, Kirschberg J, Zippelius T, Heinecke M, et al. Tranexamic acid is toxic on human chondrocytes, in vitro. J Orthop. 2019;20:1–5.
- Wang F, Wang SG, Yang Q, et al. Cytotoxicity and effect of topical application of tranexamic acid on human fibroblast in spine surgery. World Neurosurg. 2021;153:e380–91.
- Lucas-Polomeni MM, Delaval Y, Menestret P, Delaval P, Ecoffey C. Un cas de choc anaphylactique à l'acide tranexamique (Exacyl) [A case of anaphylactic shock with tranexamique acid (Exacyl)]. Ann Fr Anesth Reanim. 2004;23(6):607–9.
- Bansal RA, Nicholas A, Bansal AS. Tranexamic acid: an exceedingly rare cause of anaphylaxis during anaesthesia. Case Reports Immunol. 2016;2016:7828351.
- Chiem J, Ivanova I, Parker A, Krengel W 3rd, Jimenez N. Anaphylactic reaction to tranexamic acid in an adolescent undergoing posterior spinal fusion. Paediatr Anaesth. 2017;27(7):774–5.
- Plaster S, Holy F, Antony AK. Anaphylactic reaction to tranexamic acid during posterior spinal fusion: a case report. JBJS Case Connect. 2020;10(3): e2000130.
- Li PH, Trigg C, Rutkowski R, Rutkowski K. Anaphylaxis to tranexamic acid-a rare reaction to a common drug. J Allergy Clin Immunol Pract. 2017;5(3):839–41.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

