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It is widely accepted that there is a close relationship between the endocrine
system and the central nervous system (CNS). Among hormones closely related to
the nervous system, thyroid hormones (THs) are critical for the development and
function of the CNS; not only for neuronal cells but also for glial development
and differentiation. Any impairment of TH supply to the developing CNS causes
severe and irreversible changes in the overall architecture and function of the human
brain, leading to various neurological dysfunctions. In the adult brain, impairment of
THs, such as hypothyroidism and hyperthyroidism, can cause psychiatric disorders
such as schizophrenia, bipolar disorder, anxiety and depression. Although impact of
hypothyroidism on synaptic transmission and plasticity is known, its effect on glial cells
and related cellular mechanisms remain enigmatic. This mini-review article summarizes
how THs are transported into the brain, metabolized in astrocytes and affect microglia
and oligodendrocytes, demonstrating an example of glioendocrine system. Neuroglial
effects may help to understand physiological and/or pathophysiological functions of THs
in the CNS and how hypo- and hyper-thyroidism may cause mental disorders.
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Introduction

Thyroid hormones (THs; Rothsschild et al., 2006) are critical for the development and function
of the central nervous system (CNS; Zoeller and Rovet, 2004; Stenzel and Huttner, 2013). THs
regulate development and differentiation of neurons and neuroglia (Gomes et al., 1999; Billon
et al., 2001; Lima et al., 2001; Jones et al., 2003; Baxi et al., 2014; Dezonne et al., 2015). There are 2
major types of THs in the CNS represented by L-tri-iodothyronine (T3) and L-thyroxine (T4). The
T4 is the major TH secreted by the follicular cells of thyroid gland; whereas T3, the most powerful
TH, is mainly produced locally within the brain tissue by 5’-deiodination of T4. The T3 is an active
form of the thyroid hormone (TH) essential for the development and function of the CNS.

Hyperthyroidism and hypothyroidism result from overactivation or suppression of thyroid
grand leading to either excessive or insufficient production of THs. The prevalence of subclinical
hyperthyroidism ranges from 1–15%, and of subclinical hypothyroidism from 3–16% in individuals
aged 60 years and older was reported, which also suggested that there are differences in age, gender,
and dietary iodine intake in the populations studied (Biondi and Cooper, 2008).

Any impairment of THs supply to the developing CNS causes severe and irreversible
changes to the overall architecture and function of human brain, leading to various neurological
dysfunctions (Di Liegro, 2008; Henrichs et al., 2010; Duntas and Maillis, 2013). Although in
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many respects the hypothyroid brain appears morphologically
normal, clinical observations reported that hypothyroidism
may be associated with both neurological and behavioral
abnormalities as well as with functional impairments including
mental retardation, ataxia and spasticity (Thompson and
Potter, 2000). Psychiatric symptoms of hypothyroidism can
include psychosis, mood instability, mania, hypersomnia, apathy,
anergia, impaired memory mimicking dementia (Osterweil et al.,
1992; Goh et al., 2014), psychomotor slowing, and attentional
problems (Awad, 2000). The incidence of hypothyroidism
increases with age, and adult-onset hypothyroidism is one of the
most common causes of cognitive impairment (Mallett et al.,
1995; Dugbartey, 1998).

On the other hand, hyperthyroidism may induce emotional
lability, impatience and irritability, distractible overactivity,
exaggerated sensitivity to noise, problems with sleep and the
appetite (Awad, 2000) or depression and anxiety (Demet et al.,
2002). Even at subclinical level, hyperthyroidism in the elderly
is suggested to remarkably increase the risk of cognitive decline,
dementia and Alzheimer’s disease (AD; Kalmijn et al., 2000; van
Osch et al., 2004; Wijsman et al., 2013).

Multiple studies have reported that both hypo- and
hyperthyroidism may potentially increase the risk of
cognitive impairment and neurodegeneration. It has been
also reported that both hyper- and hypothyroidism can
affect the immune system (Klecha et al., 2008; De Vito
et al., 2012). Hyperthyroidism decreases the proinflammatory
activities of monocytes and macrophages. On the other hand,
during hypothyroidism enhancement of phagocytosis and
increased levels of ROS may occur so that the expression of
proinflammatory molecules such as macrophage inflammatory
protein-1α and interleukin-1β increases (De Vito et al., 2011). In

FIGURE 1 | Transport of THs to the brains and their
metabolism. D: iodothyronine deiodinases, LAT: L-type amino
acid transporter, MCT: monocarboxylate transporter,

OATP: organic anion-transporting polypeptide, T2: diiodothyronines,
T3: triiodothyronine, T4: thyroxine, TR: thyroid hormone
receptor.

contrast, hypothyroidism is reported to produce opposite
effects on the immune function, such as decrease in
immune response, antibody production, cell migration, and
lymphocyte proliferation markers (Klecha et al., 2000, 2006),
antioxidant enzymes and their activity (De Vito et al., 2011).
The role of microglia, an immune cell population in the
CNS, in this relationship between thyroid dysfunctions and
neuropsychological disorders remains to be elucidated. In
addition, knowledge of how other glial cells are involved in
neuropsychological disorders, especially in the TH-sensitive
regions of the brain (Fonseca et al., 2013), needs to be
considered.

Transportation of THs to The Brain and
Metabolism in Astrocytes

Circulating T4 is transported across the blood-brain barrier
via specific transporters such as organic anion-transporting
polypeptides (OATPs) containing OATP14/SLCO1C1
(OATP1c1) (Sugiyama et al., 2003; Tohyama et al., 2004) and
OATP1a2 (Gao et al., 2000; Lee et al., 2005; Hagenbuch, 2007),
L-type amino acid transporters (LAT1 and LAT2), mainly LAT1
(Taylor and Ritchie, 2007), and monocarboxylate transporters 8
(MCT8) (SLC16A2) (for both T3 and T4) (Roberts et al., 2008).
T4 also enters into astroytes through OATP1c1 (Dezonne et al.,
2015), where it is de-iodinated by type 2-deiodinase (D2) to
produce T3 (Guadaño-Ferraz et al., 1997; Fliers et al., 2006; Di
Liegro, 2008). Subsequently T3 is released by LAT (Francon
et al., 1989; Blondeau et al., 1993), presumably LAT2, and taken
by other cells via distinct transporters; For example neurons
express MCT8, while microglia express OATP4a1, LAT2 and
MCT10 (Braun et al., 2011; Figure 1).
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Thyroid Hormone Receptors

The majority of TH effects are mediated through TH receptors
(TRs), which belong to the members of the nuclear receptor
superfamily and which function as T3-inducible transcription
factors that are expressed in a tissue-specific and developmentally
regulated manner (Cheng et al., 2010). In mammals, there are
several TR isoforms: TRα1, TRα2, TRβ1, TRβ2a and TRβ3
(Koenig et al., 1989; Macchia et al., 2001). Among TRs, TRα1
is predominantly and widely expressed in the developing brain.
The genomic actions of THs are exerted by the binding of T3 to
nuclear TRs, which can either repress or activate gene expression.

Expression of TRα1 and TRβ1 have been identified in primary
cultured rat microglia (Lima et al., 2001). Mutation of TRα1 in
humans is associated with abnormal levels of TH but normal
levels of thyrotropin as well as with growth retardation, and
mildly delayed motor and cognitive development (van Mullem
et al., 2012). A child with classic features of hypothyroidism with
a de novo heterozygous nonsense mutation in a gene encoding
TRα was also identified (Bochukova et al., 2012).

In addition to genomic effects of TRs, nongenomic signaling
of THs through a plasma membrane–localized receptor has been
recently described (Kalyanaraman et al., 2014; Mori et al., 2015).
Potential mechanism for integrating regulation of development
and metabolism by thyroid hormone and receptor tyrosine
kinases through association of TRβ with PI3K was also suggested
(Martin et al., 2014). These nongenomic effects of T3 may
be important for glial function, which will be discussed later.
In addition, it was suggested that the heterogeneity of TR
expression throughout brain regions and between different cell
types might lead to diverse effects on neuronal morphogenesis.
The complexity may also result from not only the direct action of
the hormone on neurons but also from indirect actions triggered
by astrocytes (Dezonne et al., 2015) or other glial cell type.

Effects of T3 on Microglia

Microglia, the resident macrophages of the CNS are generally
considered the primary immune cells of the brain (Kim
and de Vellis, 2005). In healthy CNS, ramified microglia
are widely distributed to detect any environmental changes
by their motile processes (Streit et al., 1988; Kettenmann
et al., 2011). Pathological insults of multiple etiologies trigger
microglial activation, represented by multi-stage and complex
remodeling involving rapid migration towards the lesion site and
phagocytosis of damaged cells (Becher et al., 2000; Hanisch and
Kettenmann, 2007; Tanaka et al., 2009). It is generally recognized
that the microglial phenotype may change depending on the
microenvironment, which can be modified by various factors
associated with specific types and stages of pathology (Perry et al.,
1993; Scheffel et al., 2012; Solito and Sastre, 2012).

Microglial activation contribute to various pathologies
(including, for example, Alzheimers disease) (El Khoury and
Luster, 2008; Solito and Sastre, 2012). Recently, activated
microglia have been indicated to cause also psychiatric disorders.
Positron emission tomography imaging and postmortem studies
have revealed microglial activation and abnormalities in

schizophrenia, depression and autism (Kato et al., 2013;
Mizoguchi et al., 2014; Monji et al., 2014).

T3 is important for microglial development (Lima et al.,
2001), and could directly or indirectly stimulate morphological
maturation of amoeboid microglial cells and limit their
degeneration (Mallat et al., 2002). Recently, it has been
demonstrated that T3 stimulates microglial migration and
phagocytosis in vitro and in vivo (Mori et al., 2015). Microglial
migration is mediated through T3 uptake by TH transporters
and binding to the TRs. Then TH signaling in microglia
involved several signaling pathways including Gi/o-protein,
PI3K, and MAPK/ERK, as reported in ATP-induced microglial
migration (Honda et al., 2001). T3-induced nitric oxide signaling
(Kalyanaraman et al., 2014) is also present in microglia (Mori
et al., 2015). In addition, Na+/K+-ATPase, Na+/Ca2+ exchanger
operating in the reverse mode, and GABA receptors contribute
to T3-induced microglial migration (Figure 2; Mori et al.,
2015), although the precise mechanism is still unknown. Since
dysfunction of T3 in the aged brain significantly affected
microglial morphology (Mori, 2014), microglial dysfunctionmay
be closely related to psychological impairment in hypo- or hyper-
thyroidism in elderly patients which will be investigated in the
future.

Astrocytes and Oligodendrocytes
Differentiation by T3

In developing CNS T3 exerts numerous effects regulating
axonal myelination and dendritic growth (Walravens and
Chase, 1969; Legrand, 1982; Porterfield and Hendrich, 1993;
Bernal and Nunez, 1995; Vose et al., 2013) and astrocyte and
oligodendrocyte differentiation (Martinez-Galan et al., 1997,
2004; Jones et al., 2003; Schoonover et al., 2004; Manzano
et al., 2007; Dezonne et al., 2009; Baxi et al., 2014). Effects
of TH on astrocytes have been recently reviewed (Dezonne
et al., 2015). Also, differentiation of human cultured CD34+
stem cells into oligodendrocyte precursors under THs action was
also reported (Venkatesh et al., 2014). Expression alterations of
genes using hypothyroidism model rats showed that immature
astrocytes immunoreactive for vimentin and glial fibrillary acidic
protein (GFAP) were increased, while oligodendrocyte lineage
transcription factor 2 were decreased in the corpus callosum
(Shiraki et al., 2014). Effects and molecular mechanisms of T3
action on astrocytes and oligodendrocytes in matured or aged
brain remain to be investigated.

Dysfunction of Glial Cells and Psychiatric
Symptoms

As mentioned above, THs are not only important for neuronal
development (Rami et al., 1986; Gould and Butcher, 1989)
but it also support development of microglia (Lima et al.,
2001), astrocytes (Gould et al., 1990; Manzano et al., 2007)
including radial glial cells (Martinez-Galan et al., 2004), and
oligodendrocytes (Walravens and Chase, 1969; Jones et al., 2003).
Hypothyroid animals and TR mutant mice exhibit severe deficits
in glial development (Morte et al., 2004). Therefore, indirect
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FIGURE 2 | T3-induced signal transduction in microglia. NOS: Nitric oxide synthase, NCX: Na+/Ca2+ exchanger. (Modified from Mori et al., 2015).

action of THs that occurs through astrocytes at different stages
of brain development may contribute to neuronal progenitor
proliferation, neuronal migration and differentiation, axonal
growth and synapse function (Lima et al., 1998; Gomes et al.,
1999; Martinez and Gomes, 2002; Martinez et al., 2011; Dezonne
et al., 2013). Therapeutic use of THs in psychiatric disorders,
mainly in depression, came to the light thus contributing to
better understanding the action of THs in the brain (Weissel,
1999). Perhaps the major role of thyroxine therapy on depression
might be due to hypothalamus-pituitary-thyroid axis activity and
serotonin function in depressive episodes (Gomes et al., 2001).
Neuroglial cells, as well as neurons contribute to psychiatric
symptoms. For example, activated microglia and astrocytes in
immunologically induced fatigue (Ifuku et al., 2014), microglial
oxidative reactions in schizophrenia (Kato et al., 2011; Monji
et al., 2013), and alteration of astrocytes or oligodendrocyte
function in bipolar disorder (Dong and Zhen, 2015) have
been reported. On the other hand, decreased glial density in
association with glial hypotrophy in bipolar disorder or major
depression (Rajkowska et al., 2001; Bowley et al., 2002) was
also reported. Considering these reports, it is likely that indirect
actions of THs through glial cells are important for neuronal
activity and their impairment may at least in part, induce
psychiatric symptoms.

These psychiatric symptoms can be seen in both
hyperthyroidism and hypothyroidism. When it comes to
the metabolism and balance of TH levels, it must be noted that
propylthiouracyl (PTU) is a thiouracil-derived drug that inhibits
thyroid peroxidase and type 1 deiodinase (D1), which is used to

treat hyperthyroidism by decreasing TH level by suppression of
T4 and T3 production. However, unlike D1 which is expressed
mainly in the liver, kidney and testis, the major deiodinase D2
in the brain is known to be insensitive to PTU. Both mRNA
concentration and activity of D2 are increased in hypothyroidism
(van Doorn et al., 1982, 1983) and decreased in hyperthyroidism
(Leonard et al., 1981; van Doorn et al., 1984; Croteau et al., 1996;
Burmeister et al., 1997). D2 was also reported to be up-regulated
in reactive astrocytes following traumatic brain injury (Zou et al.,
1998). Thus, D2 is believed to serve a protective role to preserve
the concentration of intracerebral T3 during states of thyroid
hormone deficiency. This may explain, in part, why both hypo-
and hyperthyroidism cause similar neurological symptoms.

Conclusion

T3 is important not only for neuronal development but also
for differentiation of astrocytes and oligodendrocytes, and
for microglial development. In addition, T3 is an important
signaling factor that affects microglial functions via complex
mechanisms. Therefore, dysfunction of THs may impair glial
function and thus disturb of the brain, which may cause mental
disorders.
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