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ABSTRACT
Introduction Chronic obstructive pulmonary disease 
(COPD) can progress across several domains, complicating 
the identification of the determinants of disease 
progression. In our previous work, we applied k- means 
clustering to spirometric and chest radiological measures 
to identify four COPD- related subtypes: ‘relatively resistant 
smokers (RRS)’, ‘mild upper lobe- predominant emphysema 
(ULE)’, ‘airway- predominant disease (AD)’ and ‘severe 
emphysema (SE)’. In the current study, we examined the 
associations of these subtypes to longitudinal COPD- 
related health measures as well as blood transcriptomic 
and plasma proteomic biomarkers.
Methods We included 8266 non- Hispanic white and 
African- American smokers from the COPDGene study. We 
used linear regression to investigate cluster associations to 
5- year prospective changes in spirometric and radiological 
measures and to gene expression and protein levels. 
We used Cox- proportional hazard test to test for cluster 
associations to prospective exacerbations, comorbidities 
and mortality.
Results The RRS, ULE, AD and SE clusters represented 
39%, 15%, 26% and 20% of the studied cohort at baseline, 
respectively. The SE cluster had the greatest 5- year 
FEV1 (forced expiratory volume in 1 s) and emphysema 
progression, and the highest risks of exacerbations, 
cardiovascular disease and mortality. The AD cluster had 
the highest diabetes risk. After adjustments, only the SE 
cluster had an elevated respiratory mortality risk, while the 
ULE, AD and SE clusters had elevated all- cause mortality 
risks. These clusters also demonstrated differential protein 
and gene expression biomarker associations, mostly 
related to inflammatory and immune processes.
Conclusion COPD k- means subtypes demonstrate varying 
rates of disease progression, prospective comorbidities, 
mortality and associations to transcriptomic and proteomic 
biomarkers. These findings emphasise the clinical and 
biological relevance of these subtypes, which call for more 
study for translation into clinical practice.
Trail registration number NCT00608764.

INTRODUCTION
Chronic obstructive pulmonary disease 
(COPD) is a heterogeneous disorder, with a 
wide variety of clinical manifestations.1 Addi-
tionally, disease progression in COPD occurs 

across multiple domains, such as lung func-
tion decline, worsening of emphysema and 
development of comorbidities.2–4 These chal-
lenges complicate COPD subtyping and the 
identification of the determinants of COPD 
progression.

Subtyping beyond the Global Initiative for 
Chronic Obstructive Lung Disease (GOLD) 
criteria is essential. Numerous investigations 
have revealed that many smokers without 
spirometry- defined obstruction experience 
respiratory symptoms, emphysema and 
airway thickening that are similar to those 
with traditionally defined COPD based on 
the GOLD criteria.5–8 COPD subtyping pres-
ents an opportunity to advance toward more 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Previous reports have grouped patients with chron-
ic obstructive pulmonary disease (COPD) based on 
their cross- sectional spirometric, imaging and clin-
ical features. However, few studies have explored 
the longitudinal outcomes and transcriptomic and 
protein biomarker characteristics of COPD subtypes.

WHAT THIS STUDY ADDS
 ⇒ COPD k- means subtypes show notable differences 
in regard to 5- year changes in FEV1 (forced expira-
tory volume in 1 s) and CT- quantified emphysema, 
as well as prospective risks of respiratory exacer-
bations, cardiovascular disease, diabetes and mor-
tality. These subtypes also exhibit differences in 
their associations to whole blood transcriptomic and 
plasma proteomic biomarkers.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ The heterogeneity of COPD progression presents 
major clinical challenges in risk- stratifying patients. 
The differences in cross- sectional and longitudinal 
associations of COPD subtypes may shed light on 
the biology of the disease and help with individu-
alised care.

http://bmjopenrespres.bmj.com/
https://www.brit-thoracic.org.uk/
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individualised treatment for this complex and heteroge-
neous disease.

Several reports have shown that factors, such as COPD 
exacerbation history, reduced pulmonary function, and a 
low body mass index (BMI), are associated with an elevated 
risk of respiratory exacerbations, accelerated spirometric 
decline and emphysema changes.2 9 10 Additionally, 
studies which have subtyped subjects with COPD based on 
spirometry, respiratory symptoms and other characteris-
tics have revealed that these subgroups differ in their risks 
for exacerbations, hospital admissions and forced expira-
tory volume in 1 s (FEV1) and emphysema changes.11–15 
However, many of these studies have modest sample size 
and limited longitudinal follow- up. Furthermore, while 
comorbid conditions such as cardiovascular disease (CVD) 
and type 2 diabetes mellitus are common in subjects with 
COPD, the specific COPD- related characteristics associ-
ated with the risk of developing these comorbidities have 
not been fully described.16 17 According to earlier studies, 
more severe airflow obstruction and COPD exacerbation 
history are associated with higher risks of COPD exacerba-
tions and CVD.11 18–20 In addition, Hersh et al have previ-
ously demonstrated in cross- sectional data that COPD 
with limited emphysema and high airflow obstruction is 
associated with diabetes.21 However, the particular COPD- 
related traits linked to the likelihood of acquiring these 
comorbidities have not yet been thoroughly defined.16 17 
Similarly, while transcriptomic signatures have been iden-
tified in COPD, the differences in such patterns between 
COPD subtypes have not been rigorously investigated.22–24 
Moreover, different protein biomarkers have been identi-
fied in subjects with COPD, but few studies have assessed 
subtype- specific proteomic signatures.25

In our previous work, we applied k- means clustering 
to spirometric and chest radiological measures and iden-
tified four COPD- related subtypes: ‘Relatively resistant 
smokers (ie, no/mild airflow obstruction and minimal 
emphysema despite heavy smoking) (RRS)’, ‘mild 
upper lobe- predominant emphysema (ULE)’, ‘airway- 
predominant disease (AD)’ and ‘severe emphysema 
(SE)’, which had differing cross- sectional profiles and 
genetic associations.26 In the current study, we included 
up to 12.7 years of prospective data to investigate subtype- 
specific rates of progression in spirometric measures 
and radiological emphysema and to quantify the risks of 
prospective COPD exacerbations, CVD events, diabetes 
and mortality. We also performed transcriptome and 
proteome- wide discovery analyses between the subtypes 
using high- throughput platforms. We hypothesised that 
these subtypes would have different disease progression 
profiles and associations to biomarkers. Some of these 
results have been previously reported as an abstract27 and 
in the form of a preprint.28

METHODS
Study description
The COPDGene study is a prospective, multicentre, 
longitudinal study investigating the genetic and 

epidemiological characteristics of COPD across 21 
centres in the USA (NCT00608764, www.copdgene. 
org).29 Institutional review board approval was 
obtained at each study centre. Patients or the public 
were not involved in the design, conduct, reporting 
or dissemination plans of our research. This study 
enrolled non- Hispanic whites and African- Americans, 
who were 45–80 years old and had at least 10 pack- 
years of lifetime smoking history. Subjects were 
recruited across the full spectrum of disease severity 
as defined by the GOLD spirometric grading system.29 
Normal spirometry (GOLD grade 0) was defined as 
a postbronchodilator FEV1/forced vital capacity 
(FVC) ≥0.7 and FEV1 ≥80% predicted. GOLD 1–4 
were defined as FEV1/FVC <0.70 and postbroncho-
dilator FEV1 ≥80% predicted (GOLD 1), FEV1/
FVC <0.70 and postbronchodilator FEV1 50%–79% 
predicted (GOLD 2), FEV1/FVC <0.70 and postbron-
chodilator FEV1 30%–49% predicted (GOLD 3), and 
FEV1/FVC <0.70 and postbronchodilator FEV1<30% 
predicted (GOLD 4).30 COPDGene conducted two 
study visits (Visit 1 and Visit 2) approximately 5 years 
apart. Subjects were also contacted every 3–6 months 
through the COPDGene Longitudinal Follow- up 
programme via phone or online surveys to collect data 
on incident COPD- related events, comorbidities and 
mortality. COPD- related events and comorbidities 
included self- reported COPD exacerbations (defined 
as the acute worsening of respiratory symptoms that 
required systemic steroids and/or antibiotics),30 CVD 
events (defined as a composite endpoint of stroke, 
heart attack, coronary artery disease, coronary artery 
bypass graft surgery, peripheral artery disease and/
or cardiac angina) and type 2 diabetes mellitus. All- 
cause mortality was determined through a combina-
tion of longitudinal follow- up and a search of the 
social security death index. Cause- specific mortality 
was categorised as respiratory related, CVD related, 
cancer related (any type) or due to other causes and 
determined through systematic adjudication process 
based on the methods used in the Towards a Revolu-
tion in COPD Health (TORCH) trial.31 More infor-
mation about the COPDGene is available elsewhere.29

Demographics, spirometry, imaging, smoking 
burden, respiratory symptoms and comorbidities 
were collected at Visits 1 and 2. In addition to GOLD 
grades 0–4, we included subjects with Preserved Ratio 
Impaired Spirometry (PRISm), defined as FEV1/
FVC ≥0.70 but with FEV1 <80% predicted.30 Thirona 
software (www.thirona.eu) was used to quantify 
emphysema as the percentage of lung voxels with 
an attenuation of < −950 HU (Hounsfield unit) at 
maximal inspiration (%LAA- 950).32 The Hounsfield 
units at the 15th percentile of the CT density histo-
gram at end inspiration corrected for the depth of 
inspiratory variation (adjusted Perc15 density) were 
used for longitudinal changes in emphysema.33 34 
Per convention, adjusted Perc15 density values are 

www.copdgene.org
www.copdgene.org
www.thirona.eu


Gregory A, et al. BMJ Open Resp Res 2022;9:e001182. doi:10.1136/bmjresp-2021-001182 3

Open access

reported as HU+1000. Total blood RNA was collected 
at Visit 2. The levels of 1305 protein biomarkers 
(SOMAscan Human Plasma 1.3K assay) were obtained 
from plasma samples collected at Visit 1.35

Cluster generation
We used the k- means clusters that were generated in our 
previously published work.26 FEV1 percent predicted, 
CT- quantified emphysema, percent airway wall thickness 
and apicobasal emphysema distribution (log of the lung 
upper third to lower third ratio of emphysema) were 
the input features that were used for clustering at Visit 
1. Using the same approach, we also performed k- means 
clustering at Visit 2 to assess cluster assignment stability 
between the two visits and to conduct differential gene 
expression analyses using RNA- Seq data available at Visit 
2. The percentage of subjects in a cluster at Visit 1 who 
are still in the same cluster at Visit 2 was used to assess 
cluster assignment stability.

Statistical analyses
Data distributions were reported as medians with IQRs 
or counts with percentages, where appropriate. We calcu-
lated FEV1 and emphysema changes as either absolute or 
relative annualised changes. We computed absolute annu-
alised changes by subtracting Visit 1 from Visit 2 values 
and dividing the difference by the time in years between 
visits for each subject. Relative annualised changes were 
obtained by dividing the absolute annualised changes 
by Visit 1 values and multiplying by 100. Negative values 
indicate worsening of the disease between visits. Lower 
adjusted Perc15 density (emphysema) values indicate 
worse emphysema. Emphysema change resembles FEV1 
change in that negative change values indicate a lower 
value of the outcome at Visit 2 (ie, lower adjusted Perc15 
density/worsening emphysema at Visit 2). We used the 
Kruskal- Wallis and χ2 tests for continuous and categorical 
variables, respectively. We subsequently performed post 
hoc pairwise comparisons between the clusters using the 
Nemenyi and χ2 tests for continuous and categorical vari-
ables, respectively. Additionally, we constructed univari-
able and multivariable linear regression models to relate 
changes in FEV1 and emphysema as well as plasma proteins 
to cluster assignment. We assessed risks of incident COPD 
exacerbations, CVD events, diabetes and mortality using 
Cox proportional hazards models and obtained survival 
curves using the Kaplan- Meier method. For the anal-
yses of incident CVD events and diabetes, we excluded 
subjects who had a history of CVD or diabetes at Visit 1. 
We used the RRS cluster as the reference group. Linear 
regression and Cox models were adjusted for relevant 
baseline physiological, clinical and demographic char-
acteristics. For analyses investigating the risk of diabetes, 
we adjusted for age, sex, race, smoking pack- years and 
systemic steroid use. We additionally adjusted for meta-
bolic syndrome in the CVD multivariable Cox models 
and for BMI, airflow obstruction and exercise capacity 

(BODE index) and GOLD in the mortality models. To 
ensure that cluster associations to emphysema changes 
are not confounded by CT scanner type, a sensitivity anal-
ysis was performed by adding scanner type as a covariate 
in a subgroup analysis limited to subjects who underwent 
scans with the same scanner type between visits.

To test for differential gene expression between clus-
ters, we used the linear modelling approach imple-
mented in the limma R package (V.3.38.3)36 adjusting for 
age, sex, current smoking, white cell count proportions 
and library preparation batch. Gene ontology (GO) func-
tional enrichment of the gene sets was calculated using 
the weighted Fisher test in the topGO Bioconductor 
package that accounts for the dependency between terms 
in the GO topology.37 We reported only the GO pathways 
with at least three significant genes. For the protein anal-
yses, we adjusted for age, sex, race and current smoking 
status. We conducted an additional analysis where we 
limited the study population to subjects who were in the 
SE cluster at Visit 1 and remained in the SE cluster at 
Visit 2. We then built multivariable regression models 
relating SOMAscan plasma proteins to absolute and rela-
tive emphysema changes. We also tested for differential 
gene expression and protein associations by comparing 
subjects who transitioned from RRS to those who stayed 
within RRS at Visit 2 using multivariable linear regression.

All tests for the clinical outcomes were two- tailed with 
a significance threshold of p- value <0.05. For the protein 
and RNA- Seq analyses, we corrected for multiple compar-
isons using the Benjamini- Hochberg method and applied 
a threshold of significance of false discovery rate (FDR) 
of 10%.38 Significantly enriched GO pathways were iden-
tified using the weighted Fisher p- value <0.005.

Additional methods are available in the Online supple-
mental file.

Figure 1 Study design. The goal of the study was to 
analyse chronic obstructive pulmonary disease (COPD) 
progression, differential blood gene expression, differential 
plasma protein associations and gene ontology enrichment 
characteristics of the four clusters that we identified in our 
previous k- means clustering analysis in the COPDGene 
study (Castaldi et al, Thorax 2014).

https://dx.doi.org/10.1136/bmjresp-2021-001182
https://dx.doi.org/10.1136/bmjresp-2021-001182
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RESULTS
The overview of the study is shown in figure 1, and the 
study flow diagram is outlined in online supplemental 
figure 1. Subjects who were not included in the analyses 
of longitudinal changes in FEV1 and emphysema, 935 of 
whom died between the first and second study visit, had a 
higher proportion of GOLD spirometric grade 4 disease 
(online supplemental table S1).

Cluster characteristics at baseline and stability of cluster 
assignments between visits
The RRS cluster represented 39% of the studied popula-
tion at the baseline visit and was characterised by a history 
of heavy smoking without significant airflow obstruction, 
emphysema or airway wall thickness compared with the 
other clusters (p<0.05) (online supplemental table S2). 
Additionally, the majority of the subjects in the RRS 
cluster were GOLD 0–1. At Visit 2, RRS cluster member-
ship was stable as 76.3% of subjects were still assigned 
to this cluster (online supplemental figure 2). The ULE 
cluster consisted of 15% of all subjects and had moderate 
airflow obstruction and mild emphysema predominantly 
in the upper lung lobes. The ULE cluster was relatively 
unstable, with only 38% of subjects remaining within this 
cluster at their follow- up visits. The AD cluster, 26% of 
all participants, was characterised by high BMI and had 
the highest proportion of subjects with PRISm (p<0.05). 
The AD cluster was more stable than the ULE cluster 
with 53% of subjects staying within this cluster at their 
follow- up visits. The SE cluster, 20% of the studied cohort, 
exhibited high emphysema and gas trapping and had the 
highest proportion of GOLD 3–4 smokers (p<0.05). The 
SE cluster was very stable as 92.2% of subjects remained 
within the SE cluster at Visit 2. 7.8% of the subjects in the 
SE cluster at Visit 1 did transition to a different cluster 
at Visit 2. Of those, 2.4% transitioned to the RRS cluster, 
4.3% transitioned to the ULE cluster and 1.1% transi-
tioned to the AD cluster (online supplemental figure 2). 
For subsequent analyses of longitudinal outcomes and 
protein data by k- means clusters, subjects were analysed 
according to their cluster assignment at Visit 1.

Cluster-specific rates of spirometric and emphysema 
progression
The 5- year change values for FEV1 (measured as absolute 
change in FEV1 and percent change relative to baseline) 
and emphysema are shown in figure 2, and the results 
from the univariable and multivariable models are shown 
in table 1. The RRS cluster, which has the least impaired 
spirometry and emphysema at baseline, had the greatest 
loss in absolute FEV1. The AD cluster had the lowest abso-
lute loss in FEV1, significantly less than the RRS cluster 
in both univariable and multivariable models. Both the 
ULE and SE clusters had similar absolute FEV1 changes 
relative to the RRS cluster. However, when adjusted 
for relevant covariates, the SE cluster had significantly 
less absolute FEV1 decline than the RRS cluster. While 

absolute FEV1 changes were notably higher in the RRS 
cluster, percent changes in FEV1 relative to baseline were 
most pronounced in the SE cluster. Pairwise comparisons 
between all clusters showed that both emphysema- related 
clusters (ULE and SE) had significantly larger relative 
changes in percent FEV1 relative to baseline than both 
the RRS and AD clusters (p<0.05; online supplemental 
table S3). Compared with FEV1 changes, the pattern of 
CT- quantified emphysema progression was less sensitive 
to the metric being used (absolute vs relative). The SE 
cluster had the most rapid while the RRS cluster had 
the least rapid relative progression in both univariable 
and multivariable models. The ULE and AD clusters had 
significantly greater absolute and relative emphysema 
changes than the RRS cluster. The ULE cluster had signif-
icantly greater relative emphysema progression than the 
AD cluster (pairwise p- value: 0.03; online supplemental 
table S4). We noted similar cluster associations to both 
absolute and relative emphysema changes when we 
added scanner type as a covariate in the subgroup anal-
ysis limited to subjects who underwent scans with the 
same scanner type between visits (online supplemental 
table S6).

Cluster-specific risk of incident comorbidities and COPD-
related events
Starting from Visit 1, the median follow- up time was 9.2 
years for prospective CVD and diabetes, 5.3 years for 
respiratory exacerbations, 9.5 years for all- cause mortality 
and 7.8 years for cause- specific mortality. When we 
analysed prospective risks of various health outcomes by 
subtype, we observed that the SE cluster had the highest 

Figure 2 Disease progression by k- means cluster. (A) 
Absolute change in FEV1 (mL/year). (B) Relative change in 
FEV1 (change as % of baseline value/year). (C) Absolute 
change in emphysema measured as adjusted Perc15 
density change/year. (D) Relative change in emphysema 
measured as adjusted Perc15 density change (% of 
baseline value/year). P- values <0.05 are indicated by an 
asterisk. AD, airway- predominant disease; FEV1, forced 
expiratory volume in 1 s; Perc15, 15th percentile; RRS, 
relatively resistant smokers; SE, severe emphysema; ULE, 
upper lobe- predominant emphysema.
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risk for prospective COPD exacerbations and incident 
CVD (figure 3). After multivariable adjustment, the SE 
cluster had a three times higher likelihood of having a 
COPD exacerbation when compared with the RRS cluster 
(HR 2.98 (SE: 0.05), p<0.001) (online supplemental 
table S5). The AD cluster had the highest risk of incident 
diabetes (HR 1.97 (SE: 0.09), p<0.001), and this associ-
ation remained significant after correcting for age, sex, 
race, BMI, smoking pack- years and systemic steroid treat-
ment. COPD exacerbation and CVD risks were higher in 
the ULE cluster compared with the RRS cluster (p<0.05).

Survival curves by subtype are shown for all- cause 
mortality (figure 3) and for cause- specific mortality 
(online supplemental figure 3). Results of the survival 
models are presented in online supplemental table S6. 
In the univariable models, subjects in the SE cluster had 
the highest risks of all- cause, respiratory- related, CVD- 
related, cancer- related and other cause- related mortality 
relative to the RRS cluster (6, 50, 3, 3 and 2 times higher, 
respectively; p<0.0001) (online supplemental table S6). 
The risks for all- cause, respiratory and CVD mortality 
were also elevated for the ULE and AD clusters relative to 
RRS (p<0.05). In multivariable models adjusting for age, 
sex, race, smoking pack- years and BODE, statistical signif-
icance was maintained for the associations of the ULE, AD 
and SE clusters with all- cause mortality, the association 
of the SE cluster with respiratory mortality, the associa-
tions of the ULE and AD clusters with CVD mortality and 
the association of the ULE cluster with cancer mortality 
(p<0.05). When adjusting for GOLD, age, sex race, BMI, 
smoking pack- years and the BODE index, the all- cause 

mortality risk of the ULE, AD and SE clusters remained 
significantly elevated (p<0.05). The respiratory mortality 
risk of the SE cluster also remained elevated (p<0.05). 
On the other hand, the addition of GOLD as a covariate 
led to non- significantly elevated CVD mortality risk of the 
ULE and AD clusters, and the ULE cluster was no longer 
significantly associated with an elevated cancer mortality 
risk.

Clusters’ associations to gene expression and protein 
biomarkers
Using blood RNA sequencing data from 2072 subjects at 
Visit 2, we identified significant associations to 3, 2,105 
and 148 genes for the ULE, AD and SE clusters, respec-
tively, with the RRS group as the reference. The Bland- 
Altman plots are shown in figure 4, and the complete set 
of association results is reported in online supplemental 
table 7. Compared with the RRS cluster, the ULE cluster 
was associated with the upregulation of the GPR15, AHRR 
and GPR55 genes, and GO pathway enrichment analysis 
results did not identify any significantly enriched path-
ways (table 2). The AD cluster had particularly strong 
differences in gene expression with 22 and 34 enriched 
pathways relative to the RRS and SE clusters, respec-
tively. Compared with the RRS cluster, the AD cluster 
showed significant associations to pathways involved in 
innate immunity, cellular defence response, and NF-κB 
(nuclear factor kappa B) signalling. Relative to the SE 
cluster, the AD cluster demonstrated associations to 
processes involved in both innate and adaptive immunity 

Table 1 Associations of k- means clusters with absolute and relative annualised FEV1 and emphysema changes

K- means cluster

Univariable models Multivariable models

Beta (SE) P value Beta (SE) Beta (SE)

Absolute annualised FEV1 (mL/year) 
changes

ULE 3.07 (2.21) 0.2 3.63 (2.23) 0.1

AD 11.64 (1.86) <0.0001 8.84 (1.90) <0.0001

SE 2.84 (2.17) 0.2 4.98 (2.25) 0.03

Relative annualised FEV1 changes 
(percent changes from baseline)

ULE −0.27 (0.11) 0.01 −0.18 (0.11) 0.1

AD 0.09 (0.09) 0.3 0.004 (0.09) 1.0

SE −1.35 (0.10) <0.0001 −1.24 (0.11) <0.0001

Absolute annualised emphysema 
(adjusted Perc15 density) changes

ULE −0.99 (0.11) <0.0001 −0.89 (0.11) <0.0001

AD −0.69 (0.09) <0.0001 −0.82 (0.09) <0.0001

SE −0.89 (0.11) <0.0001 −0.77 (0.11) <0.0001

Relative annualised emphysema 
(adjusted Perc15 density) changes 
(percent changes from baseline)

ULE −1.15 (0.16) <0.0001 −1.01 (0.16) <0.0001

AD −0.82 (0.13) <0.0001 −0.99 (0.14) <0.0001

SE −1.19 (0.16) <0.0001 −1.07 (0.16) <0.0001

Absolute annualised changes were computed by subtracting Visit 1 values from Visit 2 values and dividing by the time in years between 
both visits for each subject. Relative annualised changes were calculated by dividing absolute annualised changes by Visit 1 values and 
multiplying by 100. Negative values indicate worsening of the disease between visits. Univariable linear regression models included only 
Visit 1 k- means cluster assignment. Multivariable models also included adjustments for age, sex, race, BMI and smoking pack- years. The 
reference group was the RSS cluster. P<0.05 are italicised.
AD, airway- predominant disease; BMI, body mass index; FEV1, forced expiratory volume in 1 s; Perc15, 15th percentile; RSS, relatively 
resistant smoker; SE, severe emphysema; ULE, upper lobe- predominant emphysema.
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(adjusted p- values <0.005). The SE cluster also had many 
differentially expressed genes, with significant pathway 
enrichment for positive regulation of synapse assembly 
and cell adhesion. The complete set of pathway enrich-
ment results is reported in online supplemental table 8.

Using SOMAscan plasma protein measurements at 
baseline from 1047 subjects, we tested for differential 
protein associations between clusters. Using the RRS 
group as the reference, we identified significant asso-
ciations in adjusted models to 16, 65 and 219 proteins 
for the ULE, AD and SE clusters, respectively (FDR 
10%) (online supplemental table 9). The most strongly 
associated proteins for the ULE cluster were related to 
mitochondrial function (ATP synthase peripheral stalk 
subunit OSCP and glucokinase regulatory protein) and 
cytoskeleton rearrangement (serine/threonine protein 
kinases MRCK- beta and PAK 6) (table 3). Top proteins 
associations for the AD cluster were primarily involved in 
fatty acid metabolism, such as elevated fatty acid- binding 
protein, leptin and retinoic acid receptor responder 

protein 2 and decreased apolipoprotein M. For the SE 
cluster, top associated proteins were related to innate 
immunity, such as bactericidal permeability- increasing 
protein, complement component C9 and protein S100- 
A12. The overlap of the protein associations between 
subtypes is shown in online supplemental figure 4.

In subjects in the SE cluster at Visit 1 that remained in 
the SE cluster at Visit 2, there were 80 and 64 significant 
protein biomarker associations to absolute and relative 
emphysema changes (online supplemental table 10). 
Of the 80 associations, the top five included decreased 
metalloproteinase inhibitor 3 (TIMP- 3), PKC- G, secreted 
protein acidic and cysteine rich (ON), amyloid precursor 
protein and nidogen (online supplemental table S11). 
Of the 64 associations, the top five included decreased 
TIMP- 3, IGFBP- 3 (IGF Binding Protein- 3), plasminogen 
activator inhibitor 1, nidogen and increased serine/thre-
onine protein kinase Chk2 (Chk2) (online supplemental 
table S11). There was a total of 41 shared significant 
associations that were mostly related to inflammatory 

Figure 3 Kaplan- Meier plots of COPD- related events by k- means cluster. (A) COPD exacerbation, defined as the acute 
worsening of respiratory symptoms that required antibiotics and/or systemic steroids. (B) Cardiovascular disease (CVD) 
event, defined as a composite endpoint of stroke, heart attack, coronary artery disease, coronary artery bypass graft 
surgery, peripheral artery disease and/or cardiac angina. (C) Diabetes. (D) All- cause mortality. For CVD events and diabetes, 
subjects who had a history of CVD or diabetes at Visit 1 were excluded from the analysis. AD, airway- predominant disease; 
COPD, chronic obstructive pulmonary disease; RRS, relatively resistant smokers; SE, severe emphysema; ULE, upper lobe- 
predominant emphysema.
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processes (toll- like receptor 4, mast/stem cell growth 
factor receptor kit, interleukin 10, interleukin 17- soluble 
receptor and toll- like receptor 4 (TLR4)/myeloid differ-
entiation factor 2 (MD- 2) complex).

The sample sizes of subjects who stayed within RRS 
at Visit 2 were 646 for the gene expression analysis and 
248 for the protein association analysis. The sample sizes 
of subjects who transitioned from RRS at Visit 1 to any 
other cluster at Visit 2 were 275 for the gene expression 
analysis and 81 for the protein association analysis. When 
comparing subjects who transitioned from RRS to those 
who stayed within RRS at Visit 2, no significant associa-
tions to genes or GO pathways were observed. In terms 
of significant protein associations for this same compar-
ison, the protein spectrin alpha chain, non- erythrocytic 
1 (UniProt ID=Q13813) was the only one to produce 
a significant result (beta coefficient 0.14, SE 0.03, 
FDR=0.05) (online supplemental table S12).

DISCUSSION
In this study, we demonstrated that k- means subgroups 
of smokers enriched for COPD have varying disease 
progression patterns, development of prospective comor-
bidities and distinct associations to plasma protein and 
blood transcriptomic biomarkers. The two clusters at 
the extremes of the lung health spectrum (the RRS and 
SE clusters) showed high cluster assignment stability 

between the two visits. Spirometric progression was sensi-
tive to the progression metric being used (absolute vs rela-
tive) with the SE subtype showing the most rapid rate of 
FEV1 decline relative to baseline FEV1 level. Emphysema 
progression however was less sensitive to the use of abso-
lute versus relative metrics of progression. In general, the 
SE cluster had the highest risk for prospective adverse 
health events, though the AD cluster had the highest risk 
of incident diabetes and the most distinct gene expres-
sion patterns.

A wide array of risk factors have been associated with 
spirometric decline, such as low BMI, higher base-
line FEV1 and FVC, smoking exposure, bronchodilator 
reversibility, African- American race, female sex, previous 
history of exacerbations, CT- quantified emphysema, 
upper lobe- predominant emphysema and small airway 
abnormalities.1 2 39–43 Whereas previous studies have 
shown that mild- to- moderate COPD (GOLD 1–2) is 
associated with an increased loss in absolute FEV1,

2 39 
our study also investigated changes in FEV1 relative to 
baseline values and found that the SE cluster, which 
represents a subset of subjects with advanced disease, 
is associated with more rapid relative FEV1 decline. 
To our knowledge, such differences in the metrics of 
progression used to assess COPD progression have not 
been previously reported. This finding emphasises the 
fact that disease activity and disease severity are distinct 

Figure 4 Bland- Altman (MA) plots of the log ratio versus mean gene expression for the differential expression analysis 
results between k- means clusters. The cluster following the ‘versus’ is the reference group. (A) ULE versus RRS. (B) AD 
versus RRS. (C) SE versus RRS. (D) AD versus ULE. (E) SE versus ULE. (F) SE versus AD. AD, airway- predominant disease; 
RRS, relatively resistant smokers; SE, severe emphysema; ULE, upper lobe- predominant emphysema.

https://dx.doi.org/10.1136/bmjresp-2021-001182
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concepts that should be considered when assessing 
patients with COPD.1 44

In contrast to FEV1 changes, less is known about the 
factors that are associated with emphysema progres-
sion.45–47 In our study, we evaluated emphysema changes 
by COPD subtype, investigated both absolute and relative 
changes and adjusted the analysis for age, sex, race, BMI, 
smoking pack- years and CT scanner types. We showed 
that relative changes were the highest in the SE cluster, 
which has more advanced baseline emphysema, low BMI 
and more COPD exacerbations.

In regard to prospective COPD events, prior reports 
have indicated that more severe airflow obstruction and 
COPD exacerbation history are associated with higher 
risks of COPD exacerbations and CVD.11 18–20 We demon-
strated that when adjusted for covariates including 
airflow limitation and COPD exacerbation history, the SE 
cluster had three times higher risk of a COPD exacerba-
tion, while the AD and ULE clusters had an HR of ~1.35 
relative to the RRS group. The SE cluster was also asso-
ciated with the highest risk of incident CVD, which may 
be explained by atherosclerosis or arterial stiffness medi-
ated by inflammatory markers.48 Another novel finding 
from our study was that the AD cluster had the highest 
risk for the prospective development of diabetes, even 
after adjusting for BMI. This adds to the finding from 

the study by Hersh et al, which revealed that COPD with 
limited emphysema and high airflow obstruction is asso-
ciated with diabetes in cross- sectional data.21 Our study 
provides further evidence linking airway- predominant 
COPD to diabetes and metabolic syndrome.

The age, dyspnoea and airflow obstruction (ADO) 
and BODE indices have been classically used to 
predict mortality in COPD, but less is known about the 
COPD characteristics that contribute to cause- specific 
mortality.49 50 CVD, airflow obstruction, low BMI, emphy-
sema and poor exercise capacity were found to be associ-
ated with a high risk of all- cause mortality in COPD.18 51–53 
We similarly observed that the SE cluster, which had these 
risk factors at baseline, had the highest risk of all- cause 
mortality. With regards to the CVD mortality, high Modi-
fied Medical Research Council Dyspnea Scale dyspnoea 
score, exacerbation history, low FEV1 and accelerated 
lung function decline have been shown to be contribu-
tors.54 55 In our paper, we showed that the SE, AD and 
ULE clusters had elevated risks of CVD- related mortality 
in unadjusted models, but when correcting for age, sex, 
race, BODE and smoking pack- years, only the AD and 
ULE clusters had significant risks, which indicates that 
airway disease and lobular emphysema distribution 
may be additional contributors to this risk. While most 
previously published COPD studies have examined the 

Table 2 Top 10 significantly differentially expressed genes and enriched GO terms between k- means clusters

Top 10 significant genes Top 10 significant GO terms

ULE versus RRS ↑ GPR15
↑ AHRR
↑ GPR55

NS

AD versus RRS ↑ GPR15
↓ SNRK
↑ PTPN13
↓ ALG1L13P
↑ CD36
↓ MYLIP
↓ EXTL3
↓ IL18R1
↓ ADPRHL2
↑ PTPRA

Innate immune response
Mitotic chromosome movement towards spindle pole
Negative regulation of NIK/nuclear factor- kappaB signalling
Cellular defence response
Cell proliferation
Regulation of mitochondrial depolarisation
Negative regulation of defence response to virus
Mitotic cytokinesis
Fc- epsilon receptor signalling pathway
Vascular endothelial growth factor receptor signalling pathway

SE versus RRS ↑ GPR15
↑ MS4A2
↑ TTLL7
↑ GCSAML
↑ AKAP12
↑ LINC02458
↓ COG2
↑ HDC
↓ DLEU1
↑ ENSG00000261055 (LncRNA)

Positive regulation of synapse assembly
Cell adhesion

For the gene expression analysis, covariates used were age, sex, race, current smoking status, white cell count proportions and library batch 
effects. A false discovery rate of 10% was used for multiple testing corrections. For the GO analysis, we only reported the pathways with 
at least three significant genes. Enriched GO terms between clusters were identified using the weighted Fisher’s test p- values <0.005. The 
cluster following the ‘versus’ is the reference group. ↑ = positive log fold change; ↓ = negative log fold change.
AD, airway- predominant disease; GO, gene ontology; NIK, NF- KappaB- inducing kinase; NS, non- significant; RRS, relatively resistant 
smokers; SE, severe emphysema; ULE, upper lobe- predominant emphysema.
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association with prospective cancer rather than prospec-
tive mortality due to cancer, some reports have indicated 
that COPD is associated with an elevated risk of both 
lung and extrapulmonary cancer mortalities.56 57 In our 
study, similar to CVD mortality, the ULE, AD and SE clus-
ters had elevated cancer mortality risks, but after adjust-
ments, only the ULE cluster had a significantly increased 
cancer mortality risk. Differential genetic susceptibility, 
delayed clearance of inhaled carcinogens and chronic 
inflammation may be potential mechanisms underlying 
these associations.57

COPD subtype- specific associations to transcriptomic 
and protein biomarkers have only been studied in a few 
studies of relatively small size.25 Furthermore, although 
COPD inflammation has a clear histology description,58 
the primary biological factors that are distinct to each 
COPD subtype are still not fully understood. At the tran-
scriptomic level, COPD has been associated with inflam-
mation and sphingolipid metabolism,22–24 and our study 
demonstrates that it is the AD subtype that has the most 
distinct gene expression signature that is enriched for 
these pathways. Airway inflammation is a major factor 
in the pathogenesis of COPD, according to a number of 
studies.59–61 The inflammatory response in COPD involves 
amplification of both the innate and adaptive immune 
systems.58 However, although COPD inflammation has 
a clear histology description,58 the primary biological 
factors that are distinct to each COPD subtype are still 
not fully understood. Our work builds on previously 
published studies by demonstrating that, specifically, the 
airway disease cluster has the largest enrichment for genes 

and pathways related to inflammation, and the severe 
emphysema cluster has the most significant enrichment 
for innate immunity- related pathways. Dysregulation of 
adipokine metabolism has also been widely implicated 
in COPD and emphysema pathophysiology.62–64 In our 
study, we add to the existing literature by showing that 
the AD cluster, in particular, has elevated leptin levels. 
While adiponectin possesses anti- inflammatory proper-
ties,65 leptin plays an important role in upregulating the 
inflammatory system.66

While misclassifying subjects into their respective 
cluster at baseline is a potential limitation of k- means 
subtyping, it is also important to consider the sensi-
tivity, specificity and reproducibility of spirometry and 
CT scans. From the existing literature, the coefficient 
of variation associated with repetitive measurements of 
FEV1 in patients with obstructive lung disease was shown 
to be ~0.04%–0.3% over a wide range of FEV1.

67 A meta- 
analysis by Li et al showed that the sensitivity and spec-
ificity of CT scan on lung density were 0.80 and 0.77.68 
Additionally, using data from Shaker et al, the coefficient 
of variation of emphysema measurements on CT scans 
can be estimated at 3.7%.69

This study has a number of strengths. Compared 
with previous publications, our study included a larger 
sample size and longer follow- up and investigated inci-
dent comorbidities in addition to lung health outcomes. 
Additionally, we included a well- phenotyped cohort 
of smokers across the full spectrum of disease severity, 
and we were able to test the association of subtypes to 
clinical, radiological and multi- omic molecular markers. 

Table 3 Top five unique significantly differentially associated proteins between k- means clusters

Protein Protein ID Beta coefficient (SE) FDR

ULE versus 
RRS

ATP synthase peripheral stalk subunit OSCP P48047 0.33 (0.07) 6.3*10−3

Glucokinase regulatory protein Q14397 0.14 (0.04) 4.2*10−2

Serine/threonine protein kinase MRCK beta Q9Y5S2 0.09 (0.02) 4.2*10−2

Serine/threonine protein kinase PAK 6 Q9NQU5 0.37 (0.10) 4.6*10−2

Membrane frizzled- related protein Q9BY79 0.14 (0.04) 5.5*10−2

AD versus RRS Fatty acid- binding protein, heart P05413 0.20 (0.03) 1.3*10−6

Leptin P41159 0.34 (0.06) 4.8*10−6

Renin P00797 0.25 (0.05) 1.6*10−4

Retinoic acid receptor responder protein 2 Q99969 0.08 (0.02) 2.6*10−4

Apolipoprotein M O95445 −0.15 (0.03) 3.9*10−4

SE versus RRS Bactericidal permeability- increasing protein P17213 0.40 (0.06) 1.8*10−11

Complement component C9 P02748 0.15 (0.02) 1.9*10−11

Troponin T, cardiac muscle P45379 0.20 (0.03) 2.1*10−10

Protein S100- A12 P80511 0.19 (0.03) 3.4*10−10

Oxidised low- density lipoprotein receptor 1 P78380 0.23 (0.04) 1.1*10−9

SOMAscan plasma proteins significantly associated to Visit 1 k- means cluster membership from multivariable linear regression modelling 
(FDR 10%). We used linear regression and adjusted for age, sex, race and current smoking status. The top five significantly differentially 
associated proteins unique to each of the three comparisons (ULE vs RRS, AD vs RRS and SE vs RRS) are reported in this table. The cluster 
following the ‘versus’ is the reference group. The units of all proteins are relative fluorescence units.
AD, airway- predominant disease; RRS, relatively resistant smokers; SE, severe emphysema; ULE, upper lobe- predominant emphysema.
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When studying progression, we considered both absolute 
and relative changes in lung function and CT- quantified 
emphysema. Furthermore, this is to our knowledge the 
first study demonstrating that airway- predominant COPD 
is independently associated with incident diabetes risk 
and has particularly strong associations to inflammatory 
biomarkers.

One of the limitations of our study is that because of its 
observational design, the statistical associations observed 
may not reflect causal relationships. Our study sample was 
limited to subjects who survived the 5- year observation 
period and as a result, our findings are not representa-
tive of subjects with very advanced COPD and limited life 
expectancy. Many of the participants in our study were 
already receiving treatment for their disease. The effect 
of pharmacotherapy on the proteome was described in 
the literature.70–74 Although it is not well- documented 
that specific pharmacotherapy impacts the course of the 
disease, these medications may have influenced our find-
ings. However, medication use data in COPDGene are 
limited to self- report and do not include important infor-
mation on adherence. As a result, we have not performed 
comprehensive adjustment for the various medications 
patients were using. The findings from our study are 
not yet ready for clinical applications. Nevertheless, they 
represent an important step towards identifying subtype- 
specific molecular signatures, which will open the door 
for later studies on treatments that target distinct patient 
subtypes and subtype- specific biological pathways. Anal-
yses that jointly model death and other aspects of disease 
progression would provide additional useful information. 
As further follow- up data from COPDGene are obtained, 
our hypotheses from this study can be validated over 
longer follow- up.

CONCLUSIONS
COPD- related subtypes defined by spirometric and radi-
ological measures at baseline have different rates of 
disease progression and are differentially associated with 
prospective health outcomes. They also exhibit distinct 
biomarker profiles indicative of underlying biological 
differences. In the future, these subtypes could be used as 
the basis for targeted drug development, studies of differ-
ential treatment response or the enrolment of specific 
subgroups in clinical trials.
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