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A B S T R A C T   

Transcription factors are protein molecules that act as regulators of gene expression. Aberrant 
protein activity of transcription factors can have a significant impact on tumor progression and 
metastasis in tumor patients. In this study, 868 immune-related transcription factors were iden-
tified from the transcription factor activity profile of 1823 ovarian cancer patients. The prognosis- 
related transcription factors were identified through univariate Cox analysis and random survival 
tree analysis, and two distinct clustering subtypes were subsequently derived based on these 
transcription factors. We assessed the clinical significance and genomics landscape of the two 
clustering subtypes and found statistically significant differences in prognosis, response to 
immunotherapy, and chemotherapy among ovarian cancer patients with different subtypes. 
Multi-scale Embedded Gene Co-expression Network Analysis was used to identify differential 
gene modules between the two clustering subtypes, which allowed us to conduct further analysis 
of biological pathways that exhibited significant differences between them. Finally, a ceRNA 
network was constructed to analyze lncRNA-miRNA-mRNA regulatory pairs with differential 
expression levels between two clustering subtypes. We expected that our study may provide some 
useful references for stratifying and treating patients with ovarian cancer.   

1. Introduction 

Ovarian cancer is a prevalent gynecological malignancy with the highest mortality rate among all types of genital cancers, causing 
almost 150,000 female deaths annually [1–4]. The early stages of ovarian cancer do not show any specific symptoms or signs, leading 
to a vast majority of patients being diagnosed at an advanced stage with metastasis, which, in turn, results in a low 5-year overall 
survival rate [5–8]. With advancements in next-generation sequencing and molecular biological techniques, ovarian cancer treatment 
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has entered an era of targeted therapy. Targeted drugs that aim at specific molecular alterations in ovarian cancer have become crucial 
in maintenance therapy. The conventional therapeutic scheme for ovarian cancer has gradually evolved towards comprehensive 
chemotherapy, typically involving cytoreductive surgery plus platinum-based drugs and supplemented by molecularly targeted in-
hibitors [9–12]. Although the current complete remission rate of ovarian cancer is as high as 60–80%, nearly 50% of patients develop 
chemoresistance or experience recurrence at a later stage [13]. Thus, studies are needed to explore new prognostic markers for ovarian 
cancer, stratify patients based on biomarkers, and develop new treatment strategies. 

Transcription factors are DNA-binding proteins on specific nucleotide sequences upstream of genes [14–18]. They not only bind to 
non-coding DNA elements to activate or inhibit gene expression but also promote the transcription of mRNAs and functional 
non-coding RNAs [19,20]. Recent studies have demonstrated that transcription factors are implicated in a broad spectrum of human 
diseases and can act as oncogenes, exerting critical functions in the pathogenesis of various types of cancer [21]. Furthermore, 
transcription factors can promote tumor growth and metastasis by participating in diverse important signaling pathways [22–26]. 
Clinical studies have demonstrated that molecular inhibitors that directly or indirectly inhibit transcription factors can effectively treat 
various types of cancer. Thus, transcription factors are valuable biomarkers and therapeutic targets. To develop new therapeutic 
options for patients with cancer, it is crucial to identify aberrantly regulated transcription factors that promote tumorigenesis. 

Transcription factor activity is a critical determinant of gene transcriptional regulation. Abnormal activity levels of transcription 
factors can alter the transcription rate and affect the expression of their target genes [27]. Therefore, the activities of transcription 
factors have been widely evaluated in recent years. Based on changes in the target gene expression levels of transcription factors, 
algorithms and analysis tools have been developed for evaluating transcription factor activity [28–31]. However, the activity levels of 
transcription factors in ovarian cancer are not well-understood, and neither are their prognostic nor therapeutic effects on ovarian 
cancer [7,8,32,33]. In this study, we constructed transcription factor activity profiles of ovarian cancer using the VIPER algorithm. 
Following this, distinct subtypes of transcription factor activity were identified to investigate variations in overall survival, genomic 
characteristics, and therapeutic responses across these subtypes. Encouraging outcomes were observed across different ovarian cancer 
subtypes, and these findings have the potential to inform clinical treatment guidelines and facilitate personalized approaches for 
treating patients with ovarian cancer. The workflow of our study was illustrated in Fig. S1. 

2. Material and method 

2.1. Publicly available datasets 

In this study, the gene expression profiles and clinical information of ovarian cancer samples were obtained from multiple sources, 
including Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), ArrayExpress database, curatedOvarianData, and 
published literature in PubMed. After excluding ovarian cancer cohorts with less than 40 samples and those without available overall 
survival information, a total of 2308 ovarian cancer samples from 15 cohorts were included in our study. Detailed information 
regarding the processing of these ovarian cancer cohorts was provided in our previous work [34]. Each cohort utilized in this study was 
processed and analyzed independently. The TCGA, GSE13876, GSE17260, GSE26193, GSE26712, GSE49997, GSE9891, GSE51088, 
GSE32062, and EMTAB386 [35] cohorts were used as the training cohort. Five ovarian cancer cohorts, including GSE14764, 
GSE18520, GSE30161, GSE32063, and OVAU [9] cohorts were obtained from distinct platforms to establish the testing cohort for 
verifying the transcription factor subtypes. The read count data of TCGA ovarian cancer samples were also obtained from the cBio-
Portal database [36] for the purpose of conducting the differential expression analysis. 

2.2. The transcription factor activity profile 

The 1332 human transcription factors and their corresponding targets were obtained from the R package dorothea (version 1.6.0) 
[37]. The human transcription factors and their transcriptional targets of this package were curated and collected from different types 
of evidence. The VIPER algorithm from the dorothea R package (version 1.6.0) was utilized to calculate the transcription factor ac-
tivities using the dorothea regulons [38]. The normalized enrichment scores (NESs) were used to represent the levels of human 
transcription factor activities in the ovarian cancer samples. The positive NES indicated a higher relative protein activity in the ovarian 
cancer samples, whereas the negative NES indicated a lower relative protein activity in the ovarian cancer samples. Each ovarian 
cancer cohort was analyzed independently. The NESs of different ovarian cancer cohorts within the training and testing cohorts were 
merged separately. To ensure the accuracy of the analysis, the ComBat function of the R package sva (version 3.46.0) was utilized to 
eliminate any possible batch effects that might exist among the NESs of different cohorts within the training and testing cohorts. 

2.3. Differentially expressed gene analysis and gene set enrichment analysis 

The R package edgeR (version 3.34.1) was utilized to identify the differentially expressed genes between two clustering subtypes in 
the TCGA cohort [39–41]. The Gene Ontology (GO) and KEGG pathway enrichment analysis were performed on these differentially 
expressed genes by R package clusterProfile (version 4.4.4) [42]. After setting the criteria of P-value<0.05 and |log2FC|>1.0, the GO 
biological process enriched terms and KEGG enriched pathways were visualized by R package ggplot2 (version 3.3.5). 

Using the expression profiles, the relative infiltration of 17 ImmPort immune cell signatures was calculated by the single sample 
gene set enrichment analysis (ssGSEA) [43] in the ovarian cancer training cohort. Gene set enrichment analysis (GSEA) [44] was 
conducted to evaluate the enrichment of gene signatures using the GSEA function in R package clusterProfile (version 4.4.4) [42]. 50 
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Hallmark gene signatures (version 7.5.1) [45] and 17 ImmPort immune cell signatures [46] were chosen as the reference gene sets of 
GSEA. 

2.4. Bioinformatics analysis 

Co-expression networks of the ovarian cancer training cohort were constructed using the R package WGCNA (version 1.71) [47]. 
An appropriate soft threshold power beta value was selected to meet the criteria for the scale-free network. Furthermore, the adjacency 
matrix was transformed into a topological overlap matrix (TOM). Then, according to the dissimilarity measure derived from TOM, 
transcription factors were classified into distinct modules. 

In order to identify distinct modules in WGCNA, the minimal module size was defined as 30 and the cut height was defined as 0.25. 

Fig. 1. Identification of immune-related transcription factors in the training cohort. (A) The average silhouette width of K-means clustering 
was calculated for each value of k. The optimal number of clusters was identified as k = 2. (B) The infiltration levels of 17 immune cells for the two 
identified clusters. (C) The clustering dendrogram and module division of transcription factors in WGCNA. (D) The module-trait relationships 
between transcription factor modules and two immune clustering subtypes in WGCNA. The correlations between gene significance and module 
membership in the (E) turquoise, (F) yellow, and (G) blue modules. 
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Fig. 2. Construction of two transcription factor activity subtypes in the training cohort. (A) The variable relative importance for 15 top-rank 
transcription factors in random survival tree analysis. (B) Forestplot illustrated the 95% confidence intervals, hazard ratio (HR), and P-value of 15 
transcription factors in the univariate Cox regression analysis. (C) The average silhouette width of K-means clustering for each k. The optimal 
number of the cluster was identified when k = 2. (D) Kaplan-Meier curves for two clustering subtypes in the training cohort. (E) Heatmap illustrated 
the protein activity of 15 transcription factors for two clustering subtypes in the training cohort. In this figure, TF indicated transcription factor, OV 
indicated ovarian cancer, and *** indicated P-value<0.001 (Wilcoxon rank-sum test). 

D. Su et al.                                                                                                                                                                                                              



Heliyon 9 (2023) e16147

5

The transcription factor modules with the highest correlation with two immune-related clusters were identified as the key modules and 
were subsequently chosen for further investigation. Then, univariate Cox regression analysis was used in screening variables from the 
transcription factor activity profile to select prognostic-related transcription factors in the ovarian cancer training cohort. The random 
survival tree analysis with 1000 trees was trained through the R package randomForestSRC (version 3.1.1) to rank the important 
variables by the function rfsrc. The K-means clustering was utilized to discover distinct clusters within the ovarian cancer training 
cohort. The cluster numbers was ranged from 2 to 10, and the silhouette width was adopted as an evaluation metric to determine the 
optimal number of clusters during the clustering process. The chemotherapeutic sensitivity of eight commonly used anticancer drugs in 
the Genomics of Drug Sensitivity in Cancer (GDSC) database [48] for the TCGA ovarian cancer samples was obtained from the study of 
Jia et al. [49]. The Tumor Immune Dysfunction and Exclusion (TIDE) website (http://tide.dfci.harvard.edu/) was utilized to predict 
the clinical response of immune checkpoint blockade therapy in ovarian cancer samples [50]. 

2.5. Statistical analysis and software 

In this study, the Log-rank test was utilized to evaluate statistical differences in overall survival between two subtypes of ovarian 
cancer. Furthermore, the R package survminer (version 0.4.9) was utilized to generate visually appealing Kaplan-Meier survival 
curves. The Wilcoxon rank-sum test was conducted for comparison of variables between the two ovarian cancer subtypes. All statistical 
analyses were conducted using R software (version 4.0.2) or Python package (version 3.9). All tests were two-tailed, and P-values less 
than 0.05 were considered statistically significant. 

3. Results 

3.1. Identification of transcription factor modules derived from immunophenotypes 

In the ovarian cancer training cohort, the K-means clustering was performed on the infiltration levels of 17 immune cells to identify 
robust classifications. To determine the optimal number of clusters, the silhouette width curve plot was evaluated for different values 
of k, ranging from 2 to 10 (Fig. 1A). Fig. 1A illustrated that the optimal number of clusters was achieved when k = 2. So, two ovarian 

Fig. 3. Validation of the clustering subtypes in the TCGA cohort and testing cohort. (A) Kaplan-Meier curves for two clustering subtypes in the 
TCGA cohort. (B) Heatmap illustrated the protein activity of 15 transcription factors for two clustering subtypes in the TCGA cohort. (C) Kaplan- 
Meier curves for two clustering subtypes in the testing cohort. (D) Heatmap illustrated the protein activity of 15 transcription factors for two 
clustering subtypes in the testing cohort. In this figure, TF indicated transcription factor, OV indicated ovarian cancer, and *** indicated P-val-
ue<0.001 (Wilcoxon rank-sum test). 
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cancer clusters with distinct immunophenotypes were identified. As illustrated in Fig. 1B, patients with ovarian cancer in cluster 1 
exhibited an immune-hot phenotype, characterized by higher levels of immune infiltrates. Conversely, patients with ovarian cancer in 
cluster 2 demonstrated an immune-cold phenotype, as evidenced by low levels of immune infiltrates (Fig. 1B). 

In order to identify the key transcription factor modules that correlated with immunophenotypes, the WGCNA was performed on 
the transcription factor profile of the ovarian cancer training cohort. After setting the soft threshold beta as 5 and cut height as 0.25, 10 
transcription factor modules with different colors were identified (Fig. S2 and Fig. 1C). According to the correlations between modules 
and immunophenotypes, the turquoise, yellow and blue modules demonstrated stronger correlations with immunophenotypes than 
the remaining modules (Fig. 1D). Module significance analysis further demonstrated that the correlation coefficients between gene 
significance and module membership in turquoise, yellow and blue models reached 0.57, 0.89 and 0.40, respectively (Fig. 1E–G). So, 
these three modules were considered to be prominently associated with immunophenotypes and were selected for further analysis. A 

Fig. 4. Differentially expressed gene analyses of two different clustering subtypes in the TCGA cohort. (A) Volcano plot on differentially 
expressed genes between two ovarian cancer clustering subtypes. Enrichment analysis results for differentially expressed genes in (B) GO biological 
processes and (C) KEGG pathways. (D) Volcano plot illustrated the GSEA enrichment result for 50 Hallmark signatures. (E) GSEA enrichment results 
of 8 Hallmark signatures. (F) Volcano plot illustrated the GSEA enrichment result for 17 ImmPort immune signatures. (G) GSEA enrichment results 
of 8 ImmPort immune signatures. 
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total of 868 transcription factors in these three modules were regarded as immune-related transcription factors. 

3.2. Construction of two transcription factor activity subtypes 

In the training cohort, 67 prognostic transcription factors (P-value<0.001 and Hazard ratio>1; Log-rank test) were identified by the 
univariate Cox analysis from the protein activity profiles of 868 immune-related transcription factors (Supplementary Table 1). Then, 
the random survival tree analysis [51–53] was performed on these 67 transcription factors to rank the variables by importance, 
utilizing 1000 trees. ZNF384 was ranked as the most important variable and 15 important variables were selected (Fig. 2A and B). 
Based on the protein activity profiles of 15 transcription factors, the K-means clustering method was utilized to identify heterogeneous 
subtypes of ovarian cancer. The average silhouette width was explored to determine stable and robust subtypes of ovarian cancer 
patients, and the results revealed that the optimal clustering number was obtained when k = 2 (Fig. 2C). Two robust subtypes of 
transcription factors, referred to as cluster 1 and cluster 2, were identified in the training cohort. 

To demonstrate the clinical relevance of the identified subtypes, a Kaplan-Meier analysis was conducted on the training cohort. As 
shown in Fig. 2D, patients in cluster 1 had significantly worse overall survival than those in cluster 2 (P-value = 1.21E-9; Log-rank test). 
Subsequently, the differences in the activity of 15 transcription factors between two ovarian cancer subtypes were investigated. Pa-
tients in cluster 1 exhibited significantly higher levels of transcription factor activity compared to those in cluster 2 (Fig. 2E; P-val-
ue<0.001; Wilcoxon rank-sum test). 

Next, we evaluated the prognosis value of subtypes in the TCGA cohort of 421 ovarian cancer patients by conducting the Kaplan- 
Meier analysis. Consistently, the results illustrated that patients with cluster 1 exhibited worse overall survival, and a Log-rank P-value 
of 1.56E-2 was achieved between the two subtypes (Fig. 3A). Additionally, significant differences were found between two TCGA 
subtypes according to the Wilcoxon rank-sum test (Fig. 3B). The deep learning network [17,18,30,32,33,54] was used to predict 
ovarian cancer clustering subtypes based on transcription factor activity profile. The best hyper-parameters of the deep neural network 
were optimized by the grid search algorithm, and this model was further evaluated via the ten-fold cross-validation [54,55]. The 
predictive results indicated that the overall accuracy was 93.39% and the area under the ROC curve was 0.9929 in the training cohort 
(Fig. S3), demonstrated the robustness of the model in predicting the subtypes of ovarian cancer. To further verify the performance of 
the deep learning model, the subtypes of the ovarian cancer testing cohort were further predicted. The prognosis value of predicted 
subtypes exhibited that cluster 2 displayed an inferior prognosis at the overall survival level (Fig. 3C; P-value = 1.48E-3; Log-rank test). 
According to the Wilcoxon rank-sum test, the difference between two testing subtypes in 15 transcription factors was significant 
(Fig. 3D). 

3.3. Differential genes enriched for two clustering subtypes in the TCGA cohort 

Differential gene analysis was conducted between cluster 1 and cluster 2 subtypes, which identified 453 up-regulated and 483 
down-regulated genes in the TCGA cohort (Fig. 4A; P-value<0.05 and |log2FC|<1). In order to gain a comprehensive understanding of 
the underlying biological mechanisms affected by our subtypes, a systematic biological analysis was conducted to evaluate the 
function of differentially expressed genes (DEGs) between the two clustering subtypes in the TCGA cohort. The results of the GO 
biological processes enrichment analysis indicated that the DEGs were predominantly enriched in the extracellular matrix organi-
zation, cell-substrate adhesion, and negative regulation of peptidase activity (Fig. 4B). The results of the KEGG pathway enrichment 
analysis indicated that the DEGs were predominantly enriched in several pathways, including neuroactive ligand-receptor interaction, 
protein digestion and absorption, calcium signaling pathway and focal adhesion (Fig. 4C). The GSEA was performed to further 
investigate which Hallmark signatures and ImmPort immune signatures were correlated with the clustering subtypes in the TCGA 
cohort. 

Analysis of the 50 gene sets of Hallmark signatures revealed that 18 signatures were positively correlated and 14 signatures were 
negatively correlated with the clustering subtype. (Fig. 4D). Among the signatures analyzed, the one exhibiting the highest NES value 
was EPITHELIAL MESENCHYMAL TRANSITION (EMT), which was a collection of genes associated with organ fibrosis and the 
initiation of metastasis in cancer progression (Fig. 4E). Additionally, the results from the ImmPort immune signature GSEA revealed 
that seven signatures were positively correlated, whereas three signatures were negatively correlated with the clustering subtype 
(Fig. 4F and G). 

3.4. Construction of the ceRNA network in the TCGA cohort 

In this study, the lncRNA and miRNA differential expression analysis was also performed between two clustering subtypes. Using 
the regulatory relationships between miRNA-mRNA and miRNA-lncRNA, a ceRNA network of lncRNA-miRNA-mRNA was constructed. 
This ceRNA network enabled the identification of significant regulatory pairs between two clustering subtypes. A total of 465 
differentially expressed lncRNAs (dif-lncRNAs) were identified between two clustering subtypes in the TCGA cohort, of which 401 
were up-regulated and 64 were down-regulated lncRNAs (|log2FC|>1.0 and P-value<0.05). In the TCGA cohort, 82 up-regulated 
miRNAs and 54 down-regulated miRNAs were identified (|log2FC|>1.0 and P-value<0.05). A total of 972 up-regulated mRNAs and 
531 down-regulated mRNAs were also identified (|log2FC|>1.0 and P-value<0.05). The 465 dif-lncRNAs were analyzed using the 
Bioconductor package multiMiR (version 1.18.0) [56] to identify potential miRNAs targeting lncRNAs. Three validated miRNA-mRNA 
databases [57], (miRecords [58], miRTarbase [59], and Tarbase [60]), were utilized to identify the downstream target mRNAs in 
reference to differentially expressed miRNAs (dif-miRNAs). Finally, a total of 9 lncRNAs (7 up-regulated and 2 down-regulated), 21 

D. Su et al.                                                                                                                                                                                                              



Heliyon 9 (2023) e16147

8

miRNAs (10 up-regulated and 11 down-regulated), and 231 up-regulated mRNAs were included to construct the 
lncRNA-miRNA-mRNA triple regulatory network (Fig. 5A). The detailed information of the ceRNA network was displayed in Sup-
plementary Table 2 and Supplementary Table 3. 

To further explore the potential functions associated with the lncRNA-miRNA-mRNA triple regulatory network, the functional 
enrichment analysis of GO biological processes and KEGG pathways was performed by the Bioconductor package clusterProfile. 
Among the 231 dif-mRNAs that were up-regulated, the GO biological process enrichment analysis revealed significant enrichment in 
processes related to translational initiation, protein targeting to membrane, viral gene expression, and other functions (Fig. 5B). The 
KEGG pathway enrichment analysis revealed a significant enrichment of up-regulated dif-mRNAs in various KEGG pathways, 
including the Ribosome pathway, Coronavirus disease-COVID-19 pathway, and Huntington disease pathway, among others (Fig. 5C). 

3.5. Differential gene co-expression network analysis in the TCGA cohort 

In this study, the Multi-scale Embedded Gene Co-expression Network Analysis (MEGENA) [61] was utilized to identify the dif-
ferential gene co-expression networks between two clustering subtypes in the TCGA cohort. Compared with patients in cluster 1, 79, 
604 differential gene network modules that enriched in cluster 2 were identified by the MEGENA algorithm [62]. Since the enriched 
modules in cluster 1 were identified in the TCGA cohort, the WGCNA was applied to further examine their correlation with the 
clustering subtype. A total of 38 enriched gene co-expression network modules, which showed an absolute correlation >0.5 with the 
clustering subtype, were identified (Fig. 6A). The 38 enriched gene co-expression network modules that were associated with cluster 1 
were further examined using network analysis to identify hub genes and their associated degree values. Of the identified hub genes, 
GRHL2 exhibited the highest degree, with 245 interactions with other nodes in the network module (Fig. 6B). Meanwhile, KEGG 
enrichment analysis was also conducted on these modular genes (Supplementary Table 4). Among them, the c1 180 gene module 
showed the strongest correlation with the clustering subtypes (correlation coefficient = 0.64). 12 genes in the c1 180 gene module 
were found to be significantly enriched in multiple KEGG cancer pathways, such as the VEGF signaling pathway, T cell receptor 
signaling pathway, and ErbB signaling pathway. 

Next, the normalized ssGSEA scores were calculated for 38 enriched gene co-expression network modules, using all genes within 

Fig. 5. The ceRNA network in the TCGA cohort. (A) The lncRNA-miRNA-mRNA network for the TCGA cohort. The top 10 enriched (B) GO 
biological processes and (C) KEGG pathways for the differentially expressed mRNAs in the ceRNA network. 
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each respective network module as the gene set. Upon comparing the ssGSEA scores for 38 enriched gene co-expression network 
modules in cluster 1 versus cluster 2 in the training cohort, we observed that most gene modules showed significantly higher 
enrichment in cluster 1 across various datasets within the training cohort. Specifically, approximately 95% (36 out of 38) of the gene 
modules in the TCGA cohort displayed significantly higher enrichment in cluster 1 with a P-value<0.05, as determined by the Wil-
coxon rank-sum test. (Fig. 6C). Furthermore, these gene network modules were assessed in the testing cohorts. Similar results were also 
observed in the OVAU and GSE30161 cohorts (Fig. 6D). 

3.6. Associations of clustering subtypes for predicting chemotherapy and immunotherapy response in the TCGA cohort 

In this section, a study was conducted to investigate the impact of clustering subtypes on chemotherapy response within the TCGA 

Fig. 6. Differential gene co-expression network analyses in the TCGA cohort. (A) The correlation between 38 enriched gene co-expression 
network modules and two clustering subtypes. (B) The degree values of hub genes for differential gene co-expression network modules between 
two clustering subtypes. Tile plot of 38 significantly enriched gene co-expression network modules for each ovarian cancer dataset in (C) the 
training cohort and (D) the testing cohort. The color in the tile plot corresponded to the P-values that calculated from the different ssGSEA scores 
between two clustering subtypes (Wilcoxon rank-sum test). 
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cohort. The chemotherapeutic drug sensitivity analysis was focused on 8 commonly used anticancer drugs in the GDSC database for the 
TCGA ovarian cancer samples. Upon conducting the Wilcoxon rank-sum test, we discovered 8 anticancer drugs exhibited greater 
sensitivity in cluster 2, with significantly lower IC50 values for patients in cluster 2 (Fig. 7A). Furthermore, the cumulative frequency 
distribution of IC50 values for patients in cluster 2 was distinguishable from that of patients in cluster 1. This observation provided 
further validation for the drug sensitivity results presented earlier (Fig. 7B). 

The sensitivity of 251 chemotherapeutic drugs in the GDSC database for TGCA patients was analyzed. To determine differences 
between the two subtypes, a Wilcoxon rank-sum test was conducted on the IC50 values of 251 GDSC chemotherapeutic drugs. Ac-
cording to the Wilcoxon rank-sum test, the IC50 values of 163 GDSC chemotherapeutic drugs between two clustering subtypes were 
significantly different. Specifically, 111 (68.1%) of the drugs were found to be more resistant in cluster 2 samples, while 52 (31.9%) 
were more sensitive (Supplementary Table 5). Given the current context, it is possible that GDSC chemotherapeutic drugs could 
demonstrate efficacy in the treatment of ovarian cancer patients classified under cluster 2 in the future. Next, we evaluated the 
response of the two clustering subtypes to immune checkpoint blockade treatment by measuring their T cell dysfunction and exclusion 
scores. The cluster 1 subtype exhibited higher T cell dysfunction scores and lower exclusion scores than the cluster 2 subtype, as 
illustrated in Fig. 7C. In contrast, the cumulative distribution of T cell dysfunction and exclusion scores presented opposite findings, as 
illustrated in Fig. 7D. These findings suggested that the cluster 1 subtype may have higher levels of T cell infiltration, indicating that 
immunotherapy could be more effective in restoring dysfunctional T cells in this subtype. 

4. Discussion 

After receiving external stimuli, cells activate certain transcription factors, which bind to specific sites on DNA molecules and 
attract RNA polymerase to the transcription factor initiation sites of the associated genes, thus initiating transcription [63]. Tran-
scription factors play important roles in living organisms by regulating multiple upstream and downstream genes and thus have 
become a hotspot in studies of functionally important genes. In living organisms, transcription factor activity is among the critical 
determinants of the regulation degree of associated target genes [64,65]. In recent years, transcription factor activity has been pre-
dicted based on gene expression profiles of regulons to characterize the functional status of transcriptional regulatory circuits [64, 
66–68]. Moreover, transcription factor activity has been widely examined in cancer-related studies. In this study, we inferred the 
protein activity of transcription factors by examining the mRNA levels of their direct transcriptional targets rather than focusing solely 
on the gene expression of the transcription factors themselves. This approach provided a more accurate reflection of gene interactions 
and was more consistent with the intricate and multifaceted nature of gene regulation within the human body. Compared with gene 
expression data, transcription factor activity can extract more functional insight from transcriptomic data, and reveal known and novel 
mechanisms involved in tumor development. In addition, transcription factor activity provides a more nuanced and dynamic view of 
gene regulation compared to gene expression analysis alone. By using this method, we were able to better understand the actual 
function of transcription factors in the context of human biology. 

Among 8 anticancer drugs, paclitaxel is a frequently utilized drug for the treatment of ovarian cancer [69]. In clinical trials, 
belinostat and crizotinib have demonstrated clinical benefits when combined with other drugs for the treatment of ovarian cancer [70, 
71]. Entinostat enhances olaparib-induced DNA damage, thereby strengthening antitumor efficacy [72]. Imatinib has been shown to 
impede ovarian cancer cell growth by arresting cells in the G0-G1 phase and preventing their progression to the S phase [73]. Nilotinib 
has been found to effectively reduce the activity of ovarian cancer cells through mitochondria-dependent apoptosis [74]. Palbociclib 
induces reactive cell cycle arrest and senescence, leading to antitumor effects [75]. Lastly, vorinostat inhibits the polarization of M2 
macrophages and reduces the size of ovarian tumors [76]. These findings highlight the potential of various drugs in the treatment of 
ovarian cancer. 

In this study, we used the Human DoRothEA dataset compiled by Garcia-Alonso et al. [37], which described 454,504 interactions 
between 1332 human transcription factors and 20,295 associated target genes. The Human DoRothEA dataset is a comprehensive 
resource of human transcriptional regulatory network, which has been used in numerous studies to investigate the transcription factors 
and their associated target genes. Based on the gene expression profile data in the training cohorts and data in the Human DoRothEA 
dataset, we calculated the activity of 1332 transcription factors. Based on the WGCNA method, we identified 868 transcription factors 
associated with immunity and got 15 transcription factors associated with prognosis by further analysis. Among these 15 transcription 
factors, HOXC4 is a member of the homeobox family of transcription factors that promotes ovarian cancer cell proliferation, migration, 
invasion, and tumor formation through the regulation of various genes and pathways [77]. ZNF699 has been shown to promote tumor 
cell proliferation and invasion by regulating genes involved in the cell cycle and apoptosis. IRX6 has been shown to regulate genes that 
involve in the cell cycle and this transcription factor has been associated with poor ovarian cancer patient prognosis. Through a 
univariate Cox analysis, we found that the protein activity of all these 15 transcription factors was significantly associated with poor 
prognosis in the ovarian cancer patients. With the activity profile of these 15 transcription factors, the ovarian cancer patients were 
classified into different genomic subtypes, which illustrated significant differences in overall survival time. Meanwhile, the molecular 
subtypes identified in this study accurately reflected the differentiated sensitivity of chemotherapeutic drugs in the GDSC, suggesting 

Fig. 7. Comparison of chemotherapy and immunotherapy response between two different clustering subtypes in the TCGA cohort. (A) 
Violin plots illustrated the IC50 values of 8 anticancer drugs between two different clustering subtypes. (B) Cumulative probability of IC50 values of 8 
anticancer drugs in two different clustering subtypes. (C) Violin plots illustrated the exclusion and dysfunction between two different clustering 
subtypes. (D) Cumulative probability of the exclusion and dysfunction in two different clustering subtypes. 
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that such molecular subtypes can be used as biomarkers for evaluating the efficacy of ovarian cancer chemotherapy. Moreover, the 
transcriptional activity subtypes showed differences in immune signature scores, indicated that different subtypes varied in the level of 
T cell infiltration, and the cluster 1 subtype tended to be more sensitive to immunotherapy. 

MEGENA is a graph embedding-based tool for constructing gene co-expression networks that can be used to perform similarity 
analysis based on gene expression profiles and thus construct a planar-filtered network. Multiscale clustering analysis can be per-
formed on the modules in a planar-filtered network. MEGENA is a robust tool for analyzing gene expression data across various tissues 
or cell types. It can effectively identify critical gene models involved in specific biological processes or diseases, providing a 
comprehensive understanding of biological mechanisms and disease etiologies. In this study, to refine differences between two 
transcription factor activity clustering subtypes at the gene expression level, we identified 38 gene co-expression network modules of 
two subtypes in the TCGA cohort with MEGENA. These modules differed significantly not only between two clustering subtypes in the 
TCGA cohort, but also between the GSE9891, GSE51088, GSE49997, GSE32062, GSE13876, OVAU, and GSE30161 cohorts. In 
addition, in the c1 180 gene module, the PIK3CB gene encodes the catalytic subunit of the phosphoinositide 3-kinase (PI3K) gene 
family; PI3K signaling pathways are among those most prone to change in human cancers, and dysregulation of these pathways 
typically leads to tumorigenesis and progression. These results demonstrated that the gene modules we identified differed extensively 
across multiple datasets and these modular genes could account for a degree of heterogeneity in two transcriptional activity subtypes. 

The study has some limitations that should be acknowledged. First, we exclusively utilized public ovarian cancer cohorts due to the 
unavailability of sequencing ovarian cancer samples. Second, in the present investigation, drug sensitivities for distinct clustering 
subtypes were evaluated. Notably, the determination of drug IC50 values was not based on conventional experimentation, but rather on 
computational algorithms. So, more in vivo or in vitro experiments should be conducted to further validate the drug sensitivities of 
these drugs. 

In conclusion, the clustering subtypes associated with the prognosis of ovarian cancer patients can be identified based on the 
activity data of transcription factor proteins. Many genomic studies have been performed to evaluate the molecular subtypes of pa-
tients with cancer. Based on the good performance of the transcription factor clustering model in predicting the prognosis and 
chemotherapy effects of patients with ovarian cancer, further studies should be performed to increase the data and confirm the 
transcription factor activity profiles of patients with cancer. Our results show clinical potential for ovarian cancer subtyping and can 
assist in determining personalized therapies. 
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