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The marine geological imprint of Antarctic
ice shelves
James A. Smith 1*, Alastair G.C. Graham 2,6, Alix L. Post 3,

Claus-Dieter Hillenbrand 1, Philip J. Bart4 & Ross D. Powell5

Reductions in the thickness and extent of Antarctic ice shelves are triggering increased

discharge of marine-terminating glaciers. While the impacts of recent changes are well

documented, their role in modulating past ice-sheet dynamics remains poorly constrained.

This reflects two persistent issues; first, the effective discrimination of sediments and land-

forms solely attributable to sub-ice-shelf deposition, and second, challenges in dating these

records. Recent progress in deciphering the geological imprint of Antarctic ice shelves is

summarised, including advances in dating methods and proxies to reconstruct drivers of

change. Finally, we identify several challenges to overcome to fully exploit the paleo record.

The majority of grounded ice in Antarctica drains through the ice sheet’s peripheral ice
shelves making them a critical component of its mass balance1,2. The rapid collapse of the
Larsen B Ice Shelf in 2002 not only demonstrated the sensitivity of the Antarctic cryosphere

to recent warming3, but also confirmed earlier theoretical work that ice shelves act to buttress
inland ice4. The near-instantaneous acceleration of outlet glaciers following collapse resulted in
greater land-ice discharge and contribution to sea-level rise5,6. Breakup of ice shelves along the
Antarctic Peninsula has been linked to atmospheric warming since the late 1800s together with
specific mechanisms, e.g., hydrofracture in water-filled crevasses7–9. Some Peninsula ice shelves,
together with those along the West Antarctic Ice Sheet (WAIS) Pacific margin (Fig. 1), have also
thinned in response to enhanced submarine melting from intrusion of warm circumpolar deep
water (CDW)1,10 onto the continental shelf which weakens buttressing, resulting in accelerated ice
flow1. In the Amundsen Sea sector of WAIS, where mass loss due to ice shelf thinning has
increased substantially over the past four decades11, numerical models suggest that runaway
deglaciation of the ice sheet is possible and might already be underway12. Ocean-driven thinning is
also detected for key ice shelves fringing the East Antarctic Ice Sheet (EAIS)13, suggesting that this
region is also susceptible to rapid and large-scale ice loss14, and together with contributions from
the Antarctic Peninsula and WAIS could drive significant future sea-level rise11,15.

In addition to an improved understanding of the sensitivity of Antarctic ice shelves to ocean
and atmospheric forcing, there is a growing awareness that some currently observed changes
were instigated in the recent past16 and in some cases, ice shelves might have been pre-
conditioned to collapse through many thousands of years of thinning17. This has highlighted the
need for detailed reconstruction of ice-shelf history at a range of time scales so that the relative
roles of contemporaneous ocean–atmosphere forced-change and/or a continuing response to an
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earlier perturbation in driving ice shelf loss can be fully assessed.
Furthermore, the geological record can serve as an important
analogue for recent and future changes and particularly dynamic
thinning, where the impacts of ice-shelf removal on grounded ice
further upstream can be fully explored and used to constrain
model simulations. Such records will not only help decipher the
drivers of change but are also important for initialising models
which aim to predict future change15. The more important the
long-term behaviour, the more likely the model will be required
to run over longer time scales18.

In this review, we examine sediments, landforms and available
proxy indicators associated with ice-shelf presence, absence and
collapse, by utilising new information obtained from direct
access10,16,19–22 and the considerable theoretical and observa-
tional advances that have been made by studying recently
exposed and former sub-ice-shelf environments17,23. We consider
how this information can constrain key boundary conditions
relevant for modelling studies, such as ice shelf extent, thickness
and cavity geometry, and review the methods currently available
to assess the rates and drivers of past retreat. Finally, key gaps in
our understanding of these systems are identified as areas for
future research. Past or ‘paleo’ largely refers to changes since the
Last Glacial Maximum (LGM; 19–23 kyr) because, unlike pre-
vious glaciations, the sediments and landforms are comparatively

well-preserved and consequently easier to interpret and date
accurately. The concepts and applications are also relevant to
more ancient glaciations, which is particularly important as future
climate conditions might differ from the LGM/Holocene.

Observations beneath contemporary ice shelves
The processes operating beneath modern ice shelves (Fig. 2) are
critical to understanding the signatures left by past ice shelves yet
they remain poorly characterised due to the logistical challenges
associated with direct access to sub-ice shelf cavities. Observa-
tions made by a remotely operated vehicle (ROV) in the 1990s24

beneath Mackay Glacier Tongue, fed by an outlet glacier of the
EAIS flowing into the Ross Sea (Fig. 1), remain the most com-
prehensive. At the grounding line (GL; Fig. 2), glacigenic debris
up to 20-m-thick was observed in vertical faces of basal crevasses,
consisting of discontinuous layers of diamicton or clast-rich mud
interlayered with cleaner ice. Morainal banks were observed
against the vertical face of such crevasses, formed as sediment was
squeezed and pushed as the GL oscillated due to tidal flexure.
Englacial debris was observed to be spatially patchy, with only a
few layers cms to 1-m-thick present in calved icebergs and at the
sides of the glacier tongue. Although basal melting was detected,
no glacifluvial deposits or conduits indicative of extensive releases
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Fig. 1 Rate of change of Antarctic ice-shelf and ice-sheet thickness1. Estimated average seafloor potential temperatures (in °C) from the World Ocean
Circulation Experiment Southern Ocean Atlas145 (pink to blue) are overlaid on continental shelf bathymetry (in metres)146 (greyscale, landward of the
continental-shelf break). APIS Antarctic Peninsula Ice Sheet, WAIS and EAIS West and East Antarctic Ice Sheets, PGC Prince Gustav Channel, LISA Larsen
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Mackay Glacier Tongue, WDB Whales Deep Basin,T Totten, A Amery.
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of meltwater were observed, suggesting a leaky drainage system
through the till or between the till-glacier sole interface (cf.
refs. 25,26). This contrasts with Arctic systems where meltwater-
related processes are much more common27. Concentrations of
suspended particulate matter increased near the GL, originating
from either meltwater at the ice-bed interface or by re-suspension
of seafloor sediments caused by increasing current velocities
within a confined cavity. Up to 300 m away from the GL, a soft
glacimarine drape consisting of clast-rich sandy-mud (shelfstone
mud28) and diamicton with a poorly sorted texture similar to that
of its basal debris source was imaged. The poor sorting indicated
little subsequent sorting during rain-out from the ice shelf base. A
key observation was that the drape is also locally patchy reflecting
variations in rainout process and modification by ocean currents
and/or by meltwater discharge.

More recent autonomous underwater vehicle (AUV) missions
have prioritised the measurement and characterisation of ocean-
water properties10,29. An exception to this are the AUV missions
beneath Pine Island Glacier (PIG) ice shelf using Autosub, which
not only revealed detailed information about the properties of the
ocean and cavity geometry10 but also the morphology of the
seafloor and ice base21,30. Inflowing CDW is warm and salty and
contrasts with the melt-laden outflow that has been cooled and
diluted by the addition of fresh water (Fig. 2). Under PIG, this
outflow carries a signature of increased light attenuation arising
from sediment-laden meltwater discharge or the melting of
debris-rich basal ice immediately downstream of the GL. Sub-ice
shelf sediment cores recovered at three locations along a promi-
nent seafloor ridge beneath PIG—which is thought to have been
the last stable pinning point as the PIG GL retreated landward—
revealed the upper 4–6 cm consisted of finely laminated muds,
consistent with a sediment-plume source16.

Access to ice shelf cavities via hot-water drilled boreholes are
more numerous and allow direct measurements of critical
boundary processes operating at the ice shelf base31 and seafloor.
Measurements include sediment sampling16,19,20 and analyses of
the biological communities living under the ice32–34, in the water
column35, and on and within the seabed36,37. Early work on sub-
ice shelf environments considered these regions unlikely to sup-
port living biota due to the absence of primary producers in
settings devoid of light. Photographs from beneath the Ross Ice
Shelf provided the first evidence for living biota beneath an

Antarctic ice shelf hundreds of kilometres landward of ocean
water, but also confirmed the low productivity of this environ-
ment with a relatively depauperate benthic assemblage comprised
solely of mobile scavengers32,38. Fossilised benthic organisms in
debris bands on the surface of the McMurdo Ice Shelf were used
to infer the existence of a living benthic community beneath this
ice shelf39,40, with a relatively impoverished community more
recently imaged from the seaward part of this ice shelf41. In
contrast, video footage collected 100 km from the calving front of
the Amery Ice Shelf revealed a more diverse epifauna assemblage,
including 29 distinct benthic taxa, mostly sedentary filter feeders,
within an area of only 1–2 m2 (ref. 36) (Fig. 3a–d). Lower diversity
communities, dominated by mobile scavengers, occurred 160 and
200 km upstream from the calving front of the Amery Ice Shelf42

(Fig. 3e, f). This work fundamentally changed our perception of
sub-ice-shelf environments and specifically of the marine geolo-
gical signature of ice shelf presence. Here the diverse benthic
community could be mistaken for other low-light environments,
such as coastal regions with perennial sea-ice cover43 and deep-
water shelf regions below the photic zone44–46 if the context was
not already known42.

The marine geological signature of ice shelf presence
A fundamental requirement for paleo-ice shelf studies is to
reconstruct their geometry, including extent and thickness,
together with temporal changes in these properties. In this sec-
tion, we summarise the key sediment types, proxies and land-
forms used to determine ice shelf presence, absence and collapse
(Fig. 2). Epishelf lakes as recorders of ice shelf history47,48 are not
covered here (see instead ref. 49).

Sediment facies and proxies. Sub-ice-shelf sediments and proxies
within them provide the most direct evidence of changing ice
cover. With the exception of the area proximal to the GL (<10 km),
sediments in sub-ice-shelf environments are characterised by low
depositional rates (relative to other glacimarine environments) and
low amounts of biogenic matter. Sedimentation is controlled by
proximity to the sediment sources—the GL and calving line
(Fig. 2)—but is also heavily influenced by marine currents, the
spatial variability of debris entrainment in the ice as well as basal
melting and freezing processes that can either enhance or retard
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debris release and rainout onto the sea floor23. Idealised models for
sedimentation beneath Antarctic ice shelves25,50–57 tend to con-
sider a retreating GL and calving line, and typically comprise a
basal diamicton (subglacial facies representing ice-advance; Fig. 4)
overlain by a sequence of sub-ice shelf sediments consisting of
stratified diamicton and/or pellet-rich diamicton (‘granulated
facies’), massive to stratified, well-sorted glacimarine sands and
muds which first fine upwards into a ‘null zone’ before coarsening
upwards again. The latter coarsening indicates the approaching
calving line and is usually characterised by higher concentrations
of both biogenic matter and silty to sandy detritus advected under
the ice shelf from the open ocean (Figs. 4 and 5). This is capped by
an iceberg-rafted diamicton deposited at the ice-shelf front, which
in turn is overlain by a dropstone-bearing biogenic mud deposited
in a seasonally open marine setting.

While subsequent work has demonstrated the general applic-
ability of these stratigraphic models, especially as a robust
framework to infer GL proximal to distal sedimentation, it has
also highlighted the variable and heterogeneous nature of sub-ice-
shelf sediments25,58,59. Ultimately, any of the aforementioned
sedimentary units may be muted, amplified or entirely absent,
and the formation/preservation of a particular unit depends on
the time scales over which the various depositional processes
operate as well as the size of the ice shelf. Sediments associated
with short-lived phases of ice shelf cover will differ from those
deposited beneath a large ice shelf system that exists for many
thousands of years. It is also worth noting the potential
differences between glacier tongues vs. ice shelves. Although
many of the processes, facies and landforms are likely to be
similar, their lateral extent and overall footprint will differ, as will
the biogenic signature within the sediments. For example, because
ocean currents are more likely to circulate freely under a glacier
tongue, sediments deposited away from the GL will be similar to
outer parts of a larger ice shelf system.

Despite this heterogeneity, a consistent feature in most sub-ice-
shelf sediments is the dominance of a coarse-grained GL-
proximal facies (diamicton, gravel-rich and sand-rich sediments)
and a lack or paucity of subaqueous outwash60. The latter reflects
limited subglacial meltwater discharge (relative to Arctic ice
shelves51) potentially allowing effective discrimination between

polar ice-shelf and more temperate or sub-polar tidewater
glacimarine regimes. However, coarse-grained facies occur
directly above subglacial tills across much of the Antarctic shelf
and do not necessarily reflect ice shelf cover. In this context,
several authors ascribe ‘granulated facies’, consisting of muddy-
gravel, rich in granules or ‘till pellets’ (pelletized-mud53) (Fig. 4),
solely to sub-ice-shelf deposition54. Deposition of the granulated
facies has been explained by a combination of regelation freezing
near to the GL and re-melting of this basal debris in a sub-ice
shelf setting53. Sub-ice shelf ocean currents and/or tidal pumping
(Fig. 5) sort the finer-grained detritus released by melting from
the ice shelf base, which can result in coarse lag deposits with a
‘granulated texture’. Micropaleontological studies indicate that
diatoms or diatom fragments within the granulated facies tend to
be enriched in heavily silicified taxa, with fewer larger or pennate
taxa61, but this applies more generally to GL-proximal sediments.
The genesis of till pellets is thought to reflect mechanical shearing
of till into pellets or alternating thermal conditions which
promote rotation of fine-grained till aggregates62. While both
formation mechanisms can plausibly result in the rainout of the
pellets in a sub-ice-shelf cavity, such pellets are also common in
the upper part of the deforming subglacial layer meaning their
presence in glacial sequences is not always diagnostic of a sub-ice-
shelf cover.

The transition from coarse- to fine-grained sediments typically
reflects increasing distance from the GL, and on a retrograde
seabed, an enlarging sub-ice cavity16. The presence of cross-
bedded sands directly above the coarse-grained facies has been
interpreted to reflect strong traction currents in a widening, but
relatively narrow ocean cavity (Figs. 4 and 5)20,24,54,63. With
increasing distance from the GL, the gravel and sand rich
sediments are eventually replaced by sometimes thick sequences
of laminated to massive muds and sandy muds deposited by
sediment-laden meltwater plumes16,25,26,64, observed to extend
250 km from the GL25. The overall thickness of this unit is
primarily a function of time, but also the competing influence of
sediment delivery, and strength and longevity of ocean currents
(which can be tidally generated)16,23,64. On large ice shelves,
where the GL and calving line can be separated by >100 km, the
laminated muds grade into massive muds with progressive

a b c

d e f

Fig. 3 Seafloor biota imaged beneath the Amery Ice Shelf illustrating variations in ocean current circulation beneath the ice shelf. a–d Diverse community
dominated by sessile filter feeders at sites of inflowing bottom currents, 100 km from the calving front. e Deposit-feeders 200 km from the calving front
associated with inflowing bottom currents. f Mobile scavengers imaged 160 km from the calving front in an area of weak bottom current circulation. For
details of biota, see ref. 42. Images © Martin Riddle/Australian Antarctic Division.
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distance from the GL before eventually reaching a theoretical
zone where sedimentation is almost zero (‘null zone’ in Figs. 2, 4
and 5). The calving line, and thus the seaward limit of the ice
shelf, can be identifiable by a distinct maximum in ice-rafted
debris (IRD)53,59,63 and elevated diatom/organic contents65

(Fig. 4). Trapping of sea-ice and icebergs at the calving line
increases their residence time at the ice-shelf front, leading to
accumulation of IRD on the seafloor over time. Debris can
include aeolian components (Fig. 5), while biogenic material is
delivered by landward advection beneath the ice shelf through
inflowing currents53. The calving line, however, is not constant
through time due to periodic iceberg calving, and this might be
recognised by sandier or dropstone-rich layers with higher
contents of biogenic detritus. Thicker sequences of dropstone-
rich mud is expected if the calving line is stable over a longer
period of time (102–103 years).

The absence of IRD within the largely terrigenous laminated
to massive muds has traditionally been used as an important
indicator for ice shelf cover based on the assumption that larger
ice-stream fed ice shelves are devoid of coarse particle sizes

beyond the GL50. However, several studies have described
poorly sorted debris at the surface of and within large ice
shelves66–68 which either remains on the ice shelf surface and is
later deposited as IRD at the calving line67 or is entrained into
the ice shelf by inflowing glaciers69 before melting out at its
base. Coarse-grained debris can also freeze to the base of an ice
shelf as it grounds on pinning points during phases of advance,
ice shelf thickening or locally lowering sea-level56. This debris is
subsequently redistributed as the ice shelf unpins and is
exposed to basal melting24,56 or, in some unique cases, can
migrate to the surface as a result of high rates of surface
ablation40. An expected corollary of this is that the sediment
flux and grain size will vary over time, depending on which ice
layer is being melted at the base24. However, debris incorpo-
rated into the ice shelf englacially or from freeze-on is likely to
be locally sourced, making it distinguishable from calving-line
diamictons, where IRD can be sourced from icebergs originat-
ing from a wide area53.

Within this facies succession—excluding sediment deposited
near the calving line (see63)—productivity indicators, e.g., total
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organic carbon (TOC), ratios of carbon and nitrogen (C/N),
absolute diatom abundances (ADA) and biogenic silica, are
assumed to be low, and widely employed to differentiate between
ice shelf, tidewater and open-marine depositional settings (Fig. 4).
Diatoms cannot survive beneath ice shelves, except under special
circumstances (see refs. 19,70). In contrast, a tidewater calving
front would allow both GL proximal and diatom sedimentation to
occur contemporaneously, giving rise to higher ADA/biogenic
content, if the related siliciclastic sedimentation rates are low.
Consistently low TOC content and ADA throughout sediment
cores recovered from the seafloor below the former Larsen B Ice
Shelf were used to demonstrate its persistence during the
Holocene17 (Fig. 4), while increases in ADA has been associated
with past ice-shelf retreats71. An exception to this general pattern
occurs where diatoms and foraminfera are advected beneath the
ice shelf from the open ocean72–74. High ADA in seafloor surface

sediments beneath the Amery Ice Shelf42 (Fig. 4) are consistent
with its modelled cavity oceanographic circulation75, providing a
proxy for inflowing and outflowing water masses42.

In contrast to siliceous microfossils, variations in foraminiferal
assemblages have been directly associated with ice shelf cover.
Additionally, because ice shelves restrict air–sea gas exchange,
stable carbon isotope (δ13C) values in benthic and planktic
foraminifera tend to be lower in shells calcifying in sub-ice shelf
waters72 relative to open-marine settings. Recent work in the
Amundsen Sea suggests that a switch from a benthic foraminifera
assemblage dominated by Nonionella bradii and Globocassidulina
species (Globocassidulina subglobosa, Globocassidulina biora) to
one composed of various Angulogerina species, and specifically
Angulogerina angulosa, reflects a change from sub-ice-shelf to
open-marine deposition (Fig. 4)72. Assemblages dominated by G.
subglobosa, G. biora, Trifarina earlandi, Astrononion echolsi and
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Nonionella sp. have also been associated with sub-ice-shelf
environments in the Ross Sea and Marguerite Bay59,76,77 while
Trifarina angulosa (as Angulogerina earlandi) is associated with
an ice-shelf edge environment in the Larsen Ice Shelf area78. Sub-
ice-shelf sediments in the Whales Deep Basin, eastern Ross Sea
(Fig. 1) have revealed two different morphotypes of G. biora
(pustulose and smooth) as well as spinose and costate
morphotype of T. earlandi77. The pustulose morphotype of G.
biora appears to be most prominent in GL-proximal sediments
and particularly those associated with GZW foresets (Fig. 4). One
suggestion is that the smooth morphotype is more characteristic
of distal sub-ice-shelf conditions while the pustolose is indicative
of GL-proximal sedimentation, perhaps associated with an ice
cliff77. The two morphotypes of T. earlandi strongly dominate the
ice-shelf breakup facies, which might record benthic foraminiferal
colonisation after significant habitat disturbance. Within the sub-
ice shelf foraminifera assemblage in Pine Island Bay, there was
also a high proportion of the non-encrusted shell morphotype of
Neogloboquadrina pachyderma sinistral (adolescent stage), which
the authors related to advection beneath the ice shelf and
subsequent mortality before reaching the terminal life stage72.
Minzoni et al.74 also propose advection to explain increases in N.
pachyderma sin. in glacier proximal sediments deposited beneath
an expanded Cosgrove Ice Shelf. Arenaceous benthic foraminifera
are also common in ice shelf covered areas although their
taxonomy and ecology is poorly known compared to other
groups79, and their relative abundance in some settings might
relate to preservation potential77,80. Nevertheless, Miliammina
arenacea and Portatrochammina sp. have been documented in
sub-ice-shelf sediments in Marguerite Bay59, Whales Deep
Basin77 and Lallemand Fjord81, while Portatrochammina pseudo-
triceramata and Cyclammina pusilla have specifically been linked
to grounding line-proximal sub-ice-shelf sediments59 (Fig. 4).

Landforms. Supporting the sedimentary imprint of ice shelves,
landforms, through an understanding of their geometry and
geomorphic formation, provide additional records of ice shelf
presence and absence. However, the landforms diagnostic of ice
shelves are poorly characterised, reflecting both an under-
appreciation of their potential but also technological limitations
associated with sonar imaging systems that traditionally have
been unable to resolve key features beneath the resolution of
shipborne instruments (>20–30m in Antarctic shelf depths).
Landforms associated with ice shelf presence include grounding
zone wedges (GZWs), various scours, corrugation ridges and
moraines (Figs. 5 and 6; Table 1).

Ice shelf moraines—formed where debris is deposited or
redistributed around the ice-shelf margins—provide constraints
on ice shelf presence and thinning history82–85 yet are only
preserved in a handful of ice free terrestrial settings. Push
moraines with similar dimensions to those observed beneath
Mackay Glacier (~2 m) have also been imaged on deglaciated
parts of the western Ross Sea shelf (e.g., JOIDES Trough). Their
formation has been associated with push and squeeze in basal
crevasses as well as delivery and deposition from sub- or englacial
material26,86 although no clear association between these features
and the presence of an ice canopy was found86. As such it
remains unclear, if such moraines are diagnostic of ice shelf
presence or simply indicate a specific GL configuration and/or
retreat pattern.

GZWs form when the GL remains near-stationary allowing the
accumulation and forward progradation of sediment to build a
wedge geometry (Figs. 5 and 6a)86–88. Their vertical restriction and
asymmetry implies limited accommodation for sediments above
the grounding zone, due to the low seaward slope of an extending,

floating ice tongue88. In the absence of a restricting ice shelf, flux of
subglacial sediments will more likely construct morainal banks or
proglacial grounding-line fans, both of which are distinct in their
morphology and internal facies from GZWs28.

Geophysical data indicate that the under-sides of modern ice
shelves display an irregular topography characterised by crevas-
sing, longitudinal channels, terracing and discrete keels of varying
depth89,90. It is likely that ice shelf keels regularly interacted with
the tops of GZWs, where GL migrations occurred. Such ‘keel’
expressions are perhaps the most prominent landform signature
discerning past ice shelf extents and create both indirect and
direct evidence for ice shelves in the form of melange scours and
sub-ice shelf keel scours. Melange scours (Fig. 6a) are highly
linear keel-forms created as part of a free-floating mass of
icebergs held within an ice melange (Fig. 5)91. On the seafloor in
the Filchner Trough, a glacially-incised trough extending below
and seaward of the Filchner Ice Shelf91 (Fig. 1), the forward
motion of the melange was interpreted to have been aided by an
ice shelf that formed the seaward extension of a large paleo-ice
stream. Ice shelf advance pushed the floating ice melange that in
turn scoured the sea floor beyond the calving line (Fig. 6b).

Sub-ice shelf keel scours (Fig. 5) are similar to, but genetically
distinct from, melange scours and consist of splayed and
occasionally cross-cutting lineations with high linearity but low
parallel conformity. They have been imaged on the surfaces of
relict GZWs30 and interpreted as erosional keel-imprints formed
by the lift off of marine terminating glaciers92 (Fig. 6c). They
record the transition from a grounded to a sub-ice shelf
environment and form an intermediary landform between
curvilinear iceberg ploughmarks, characterised by restricted
lengths without a preferred direction, and long elongate subglacial
bedforms which are unidirectional and highly parallel (Table 1).
Indeed, linear furrows on the backslopes of many GZW that have
previously been classified as subglacial may be re-interpreted as
sub-ice shelf keel scours formed during decoupling of the ice bed
with the grounding zone feature (e.g. Fig. 6a). We hypothesise
that such sub-ice shelf keel-scours form in newly opened ice shelf
cavities where ice reaches flotation.

The only high-resolution (2-m grid cell size) bathymetry from
beneath an extant ice shelf, where such a lift-off is known to have
occurred, were obtained with Autosub from the top of Jenkins
Ridge beneath PIG ice shelf. Graham et al.30 interpreted seafloor
scours to result from keel ploughing beneath the ice shelf as it
passed over the ridge. The scours also contain populations of
‘corrugation ridges’; the expression of tidal lifting and settling of
the ice shelf during scour formation. Identical corrugation ridges
were also mapped in the outer part of Pine Island Trough. By
contrast, these were interpreted to have formed as the expression
of tidal motion in free-floating icebergs entrained in an iceberg
melange (a collapse scenario)93. Multiple lines of evidence indicate
that, at least beneath PIG, corrugations record sub-ice shelf keel
interaction with the seabed and not past iceberg grounding in open
water (Table 1)30. Indeed, it is likely that all the cavity geomorphic
features on Jenkins Ridge relate to sub-ice shelf processes during
the last century—perhaps even the last decade21. Thus in this
setting, ice-shelf keel scours and associated corrugations provide
direct evidence for ice shelf presence (Fig. 5a) although it remains
to be seen whether they can be used as landform indicators for past
ice-shelf presence more widely.

Signature of ice shelf collapse
Sediment facies and proxies. The collapse of ice shelves in the
Antarctic Peninsula during the 1990s and early 2000s not only
allowed a detailed examination of sediments deposited beneath ice
shelves but also the marine geological signature of ice-shelf collapse.
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A key finding was that sedimentation rates increased by two to four
times during disintegration (Fig. 4)94 due to deposition of sediment
from the ice shelf surface and increased rainout of englacial and
basal debris from the ice-shelf base (Figs. 4 and 5c, d). The geolo-
gical diversity of IRD also increased significantly during collapse95,
primarily due to icebergs floating freely and being sourced from a
larger catchment than pre-collapse. A distinctive feature of the
Larsen B Ice Shelf collapse was that aeolian sediment was con-
centrated in melt ponds on the ice shelf surface prior to its breakup
(Fig. 5c). These ponds are held responsible for weakening the ice
shelf via hydrofracturing7, leading to catastrophic drainage and
release of the aeolian sediment to the seabed (Fig. 5c). Repeated

recharge and drainage of the ponds over several years prior to
collapse was archived in the seafloor sediments as multiple layers of
aeolian sand. Above the aeolian sands, gravel-rich sediments are
attributed to iceberg-dumped material entrained from medial
moraines (Fig. 5d). Gilbert and Domack94 cautioned that both the
sand- and gravel-rich deposits are likely to occur in patches and
lenses rather than as an ubiquitous drape and that local source
geology was important in the observed signature, perhaps creating a
bias in the sand-sized fraction. Nunataks local to the Larsen ice
shelves comprise easily frost-weathered Cretaceous sandstones.
Accordingly, such ice shelves are more likely to preserve an ‘aeolian’
signal of disintegration relative to others.
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Table 1 Summary of geomorphological features associated with ice shelf presence and absence30,83,84,91,93,112,149–151.

Landform type Description Dimensions Formation/Interpretation Examples

Landforms associated with ice-shelf presence
Grounding zone wedges
(GZW) [22]

Sedimentary wedges formed of soft
diamicton (till), with an asymmetric
cross-sectional geometry; internal
‘prograding’ reflectors and truncated
topsets

Up to 15 km long, several
metres to 100m thick

Quasi-stable period when the ice
margin remains near-stationary
allowing the accumulation and forward
progradation of a sedimentary wedge.
Vertical restriction and elongated
‘wedge’ cross-profile indicate limited
accommodation space due to the
presence of a seaward floating
ice tongue

Pine Island Trough93,149

Melange scours [23] Straight and sub-parallel, down-wardly
incised linear landforms sometimes with
dog-legged kinks along their tracks
(Fig. 6a)

1–10 km long, ~100 m
wide, and 2–10 m deep

Keel-mark incisions from a free-
floating mass of icebergs held within an
ice melange. The forward motion of the
melange is aided by a floating ice shelf
forming the seaward extension of an
ice stream upstream

Filchner Ice Shelf, Weddell
Sea91

Sub-ice shelf keel
scours [24]

Arrays of splayed and cross-cutting
lineations with high linearity but low
parallel conformity, typically on the
surface of a GZW. In contemporary
settings, scour terminates abruptly at a
positive asymmetric mound

~100–400m spacing/
width, 1–10 km long,
1–10 m high

Scours formed as a marine ice stream
comes afloat in the grounding zone.
Terminal mounds created by sediment
piling ahead of the forward-moving ice-
shelf keel

Outer Pine Island Trough,
West Antarctica149;
Modern Pine Island Glacier
ice shelf cavity40

Corrugation ridges [25] Small-scale transverse ridges, within or
overprinting linear scours

0.5–2m high, 70–150m
crest spacing, possible
cyclicity in amplitudes

Expression of tidal lifting and settling of
the ice shelf.
At Pine Island Glacier, corrugations are
interpreted as formed under the intact
ice shelf based on: (1) observations
that the sub-ice shelf ridge is a regular
site of modern unpinning and
regrounding by deep-drafted ice keels
(2) Convincing sediment core evidence
for full ice sheet grounding on the top
of Jenkins ridge as recently as 1940s,
and subsequent cavity opening,
implying the surface morphology of the
Jenkins Ridge is a fresh imprint of
ungrounding. (3) A lack of direct
geological evidence that the Pine Island
ice shelf was absent during previous
warm times of the Holocene, required
to explain the corrugations as iceberg-
formed features (although see ref. 143)

Modern Pine Island Glacier
ice shelf cavity30

Ice-shelf moraines Gently inclined shore or ice-shelf edge
parallel ice- cored linear debris
accumulations formed around ice
shelf edges

— Originate from thrusted slabs of
glacimarine sediment, folded debris-
rich basal ice, and/or the accretion of
sea-water and basal marine sediments.
Sometimes contain marine organisms
that can be dated

George VI Ice Shelf83;
McMurdo (Minna Bluff),
Sorsdal Ice Shelf84

Landforms of retreating ice shelves
Iceberg
ploughmarks [26]

Cross-cutting, curvilinear to sinuous
scour marks. V- shaped in profile often
with flanking berms. Sometimes
terminate in rimmed pits. Single or
multi-keeled expressions

10–>200m wide, 100 s
of m to >30 km in length,
1–>30m deep

Ploughed grooves formed by scour
from iceberg keels. Occur in a number
of settings but expected to be
abundant on seafloor landscapes
shaped by ice shelf retreat. Cut-off in
population depths potentially indicative
of MICI processes

Pine Island Trough112.
Norwegian margin150

Ice-plough ridges [27] Crescentic mounds at the termini of
linear ice-keel furrows (Fig. 6b, inset)

<1 km long, 50–~200m
wide, up to ~20m high

Formed by sediment pushing due to
the multiple grounding of mega-
icebergs during an ice-shelf breakup.
Ridges or pits form prior to rotation
and ungrounding of the berg keel

Mid-Pine Island Trough93;
Northern Barents Sea151

Mega-berg furrows [28] Down-wardly incised deep, linear to
slightly curved scours, sub-parallel

2–10 km long, 5–>20m
deep, 150–> 500m
spacing

Produced by deep keels of large and
thick icebergs entrained in ice melange
formed by rapid ice-shelf breakup

Mid-Pine Island Trough93;
Northern Barents Sea151

Corrugation ridges [25] Small-scale, transverse ridges, forming
tracks within or which overprint
linear scours

0.2–2m high, 35–200m
crest spacing, reduce in
spacing down-flow.
Amplitudes vary
systematically along flow

Formed at the trailing edge of mega-
bergs entrained in a coherent
proglacial ice melange, retaining an
expression of tidal lifting and settling of
berg keels.
Cyclicity in amplitude consistent with
modulation by tides in open water, with
one corrugation ridge forming per day
by the gradual rising and settling of the
iceberg keel on seabed sediments.
The spacing of the ridges which
reduces down-flow suggests the
icebergs slowed as they drifted from
the retreating ice face and grounded on
the seaward-shallowing seabed

Mid-Pine Island Trough93;
Northern Barents Sea151

Number in parenthesis (left column) equates to landform elements in Fig. 5.
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Collapse of Larsen B also resulted in significant increases in
ADAs in post-collapse sediments (Fig. 4)17,96,97. Other para-
meters, such as contents of biogenic silica did not increase
substantially following its retreat98 although this might simply
reflect the regional signature of opal, which tends to be low even
in the open ocean. Although overall contents did not increase, a
clear partition in the source of biogenic silica was documented98

with contributions from sponge spicules being higher within sub-
ice-shelf sediments compared to post-collapse sediments. This
reflects the capability of certain sponges (Hexactinellidae and
Demospongiae) to survive under the outer limits of an ice shelf34.
Biogenic detritus reaching the seabed after collapse was
dominated by diatoms, and concomittant increases of chlorophyll
pigments65. Sub-ice-shelf sediments, on the other hand, contain
older and more refractory organic matter thought to be related to
advection65. In this context, geochemical analyses that can
distinguish different organic carbon compounds may provide a
more powerful discriminator in reconstructing ice shelf cover and
absence in the geological record. There is also untapped potential
in using sponge spicules to help distinguish phases of ice shelf
presence/absence—and particularly collapse—as sponges rapidly
colonise the seabed following ice shelf disintegration99. In
addition, work from the eastern Ross Sea also noted an increased
abundance of freshwater diatoms (Chrysophytes) in sediments
associated with a post-LGM ice-shelf breakup73. This was
interrupted as a biotic signature of freshwater melt ponds which
existed on the ice-shelf surface prior to the ice-shelf disintegra-
tion. Fursenkoina fusiformis, which is an opportunistic (calcar-
eous) benthic foraminfera often associated with organic-rich
sediment and oxygen-depleted waters, has been documented in
ice shelf collapse facies recovered from Marguerite Bay59.
Majewski et al.77 also document a strong association between
the two morphotypes of T. earlandi and the ice shelf breakup
facies described from Whales Deep Basin (Fig. 4).

The insensitivity of certain biological proxies, e.g., biogenic
silica and TOC, to ice shelf collapse reflects both the influence of
strong advection from the open ocean under an ice shelf—which
tends to blur differences between ice shelf presence and absence—
as well as other environmental factors supressing productivity,
such as perennial sea-ice cover following collapse. Several studies
show that concentrations of beryllium isotopes (10Be) vary
between subglacial, sub-ice shelf and open marine sediments
(Fig. 4), leading to its use as a proxy for ice shelf cover100–102.
Cosmogenic 10Be is produced at an essentially constant rate in the
upper atmosphere by cosmic radiation, and is transferred to the
surface ocean by precipitation, where it is quickly adsorbed to
terrigenous clay and other particles, that rain out to the seafloor.
One complicating factor is that radiogenic beryllium is adsorbed
to diatom frustules103 and so its signature in sub-ice-shelf
sediment can also relate to lateral transport from areas of open
water directly in front of an ice shelf104. More recent work104

suggests that the HCl-extractable 10Be/9Be ratio might provide a
more robust discrimination of sediment deposited in open marine
and sub-ice shelf settings, as this can help distinguish between the
various pathways of Be.

The potential of offshore sedimentary successions (continental
slope, rise and deep-sea) for reconstructing ice shelf history is
comparatively understudied, due to the complexity in interpret-
ing ice-distal records. Accumulation rates105,106 and/or prove-
nance107 of coarse-grained IRD can be a useful proxy for
detecting ice mass loss in Late Cenozoic far-field records, with
microtextures of these grains even allowing distinction between
subglacial, englacial or supraglacial transport108. However,
periods of ice shelf loss cannot be easily disentangled from
normal calving and/or retreat of ice streams unless allied with
accurate near-field sea-level data; ice shelf collapse is likely to

have minimal impact on sea-level whilst ice sheet collapse will,
although this is also dependent upon the impact of ice shelf
removal on terrestrial ice. Ice shelf collapse might also leave an
imprint on the global δ18O signal in benthic foraminifera, and has
been used to explain rapid δ18O decreases following the LGM and
the penultimate glaciation109. This argument has been used to
support the idea of a pan-Arctic Ocean ice shelf during Marine
Isotope Stage (MIS) 6 ka110. Here, the amplitude of the
glacial–interglacial δ18O shift in the deep-sea benthic foramini-
fera record predicts more ice volume than available sea-level
records indicate, a discrepancy that can be explained if 16O is
stored in a large ice shelf that, once melted, has only a minor
effect on sea level111.

Landforms. A defining characteristic of landforms associated
with retreating ice shelves is the interaction of ice keels with the
seafloor (Fig. 5a, b). Some suites of iceberg ploughmarks almost
certainly relate to past ice-shelf retreat phases112. However, these
landforms are still being created in Antarctica today, making it
difficult to discern “fossil” from modern ploughmark populations,
particularly in shallower shelf regions, whose water depths
overlap with keel depths of icebergs calved from modern ice
shelves (<650 m113).

A more useful set of diagnostic landforms occurring in the
shallow shelf areas have been termed ‘ice plough ridges’
(Fig. 6d). Ice plough ridges are formed by seafloor sediment
pushing due to the multiple grounding of icebergs during an
ice-shelf breakup114. These bedforms are generally restricted to
sea beds that shoal gradually seaward from the ice front. Their
relationship to ice-shelf retreat is linked to the idea that a
distinct population of plough ridges form near synchronously
during a single event, but the ridges are usually distal to the
inferred calving front and only occur under circumstances in
which the retreating ice shelf front is thick enough to calve
icebergs with keels of suitable draft to ground at the sea
floor. Therefore, ice plough ridges may not always be created,
even during large ice-shelf collapse events.

Similar glacial features to linear melange scours described
previously have been associated with episodes of past ice-shelf
breakup on the middle continental shelf of Pine Island Trough93.
Unlike other streamlined subglacial bedforms, these ‘mega-berg
furrows’ have a pronounced relief (>20 m), and are characterised
by clear downward incisions at irregular spacings, indicating they
did not form subglacially. Jakobsson et al.93 interpreted these
scours as having formed by an armada of grounded icebergs
discharged during ice shelf breakup and retreat. Where found,
these landforms may represent the proglacial signature of ice shelf
collapse and may indicate ice-shelf extent and width, ice-shelf
thickness during retreat, keel spacing and configuration, and even
relative timing of the evolution of the collapse event in cases
where they crosscut pre-existing morphological features. Corru-
gation ridges have also been used as diagnostic landforms of ice-
shelf retreat and absence (Fig. 6d). In Pine Island Trough,
corrugations form tracks of 1–2 m high ridges at the seabed,
overprinting mega-berg furrows, with indicators for tidal
modulation in their amplitudes and patterns suggesting that
icebergs with deep drafts had been entrained in a large ice
melange seaward of the ice shelf front (Fig. 6d). The assemblage
of landforms in Pine Island Trough, including corrugations93,
thus record the complete collapse of an ice shelf back to the
grounding line. Therefore, corrugations can be useful diagnostic
indicators of widespread ice-shelf collapse. If dated, they can
reveal the pace at which icebergs are shed from the ice shelf, as
well as the speed at which the ice melange carried the bergs
forward (c. 50–150 m per day).
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Part of the model for the formation of corrugation ridges, and of
the signature of collapsing ice shelves, involves the scenario that
icebergs can calve to full-depth near the GL (Fig. 5)93. Subsequently,
this mechanism has been discussed and expanded upon in
theoretical studies: where ice-shelf retreat leads to the exposure of
thicker inland ice without a buttressing floating tongue, a positive
feedback of structural failure of the ice cliff has been proposed
(termed ‘marine ice cliff instability’; MICI). MICI has been
incorporated into ice sheet models and constitutes a key physical
process by which ice sheets rapidly disintegrate15. Wise et al.112

showed that this mechanism may have occurred during post-LGM
retreat of collapsing ice shelves in the Amundsen Sea, with its
signature preserved in the shapes of ploughmarks carved into the
sea floor. Structural physics of ice shelves suggests that the landform
signatures of MICI should only be present at discrete water
depths112. However, the mechanism remains poorly studied and
presents a challenge for geoscientists to discover, if MICI leaves
additional landform signals at the sea floor.

Establishing past ice shelf and cavity geometry
Establishing the thickness and extent of former ice shelves is
critical for ice sheet mass balance calculations because the flux
of ice across the GL increases strongly as a function of its
thickness. Ice shelf thickness at the GL is quantifiable (for a
single point in time) using past sea-level estimates that are
corrected for isostatic rebound115 coupled with depths of GZW
crests at the sea floor. Relative elevations of GZW (e.g., Pine
Island Trough) also indirectly indicate past ice-sheet surface
profiles, which in turn can be used to infer paleo-ice-shelf
surface profiles. At the Pine Island-Thwaites paleo-ice stream
bed, the GL was elevated by only ~80 m during a retreat of more
than 100 km, implying a very low-gradient ice stream. GZWs
do not give a clear indication of the calving-line location of an
ice shelf but this can be inferred by analysis of the sedimentary
record if the density of sediment cores is sufficient to map the
spatial distribution of ice shelf/calving line facies. However,
with the exception of a few targeted areas, such datasets are rare
on the Antarctic shelf. Establishing the extent of ice shelves
using the sedimentary record also requires good-dating control
to ensure that sediments were deposited contemporaneously,
and this often represents the biggest challenge.

Constraints on past cavity geometry come from both seabed
sediments and geomorphology, and by necessity require detailed
bathymetric data which are currently unavailable for large areas
of the Antarctic seabed, less so beneath extant ice shelves. Cavity
geometry strongly influences the transfer of heat to the ice
sheet10, and hence knowledge of its shape is important for
understanding the processes that determine melt and thus ice-
shelf sensitivity to external forcing. As an ice shelf base limits the
height of a GZW, cavity size can be estimated if the bathymetry
seaward of the GZW is known.

Indirect information about the evolution of the cavity can be
inferred from the distribution of sedimentary facies seaward of a
GZW. On a landward sloping bed, GL retreat results in a gradual
enlargement of a sub-ice-shelf cavity. Although governed by several
interacting variables, modern observations indicate that the majority
of debris melts out from the ice shelf base within 1.5–10 km of
the GL23,24, meaning that the transition from coarse-grained GL-
proximal sediments to more distal finer-grained muds can be used
as a crude yet meaningful estimate for former positions of the GL16,
and by inference cavity geometry. Cross-bedded and/or laminated
muds directly above the coarse-grained facies also indicates
deposition in a shallow cavity. Because tidal pumping creates trac-
tion currents that influence particle sorting, changes in current
strength(inferred from sortable silt) may be indirectly associated

with the change in cavity shape and associated weakening of tidal-
pumping processes20,63.

Finally, it is worth reiterating that there exists no single diag-
nostic tool for identifying ice shelf presence, rather a succession of
sedimentary facies and proxies that are linked to the proximity of
the GL and calving line and the interplay between inflowing and
outflowing currents. Likewise, the landform record is often patchy
and in some instances poly-genetic, whereby certain landforms (e.g.,
corrugation ridges) can form in more than one setting. This high-
lights the need to apply a multi-proxy approach and integrate the
geomorphological context in order to reconstruct ice shelf presence,
collapse or re-growth25,116. In instances where the sedimentary and/
or landform record is sparse or inconclusive, modelling might offer
additional support for former ice shelf cover117.

Constraining rates of change
Establishing the duration of past ice shelf cover, timing and rates
of ice-shelf retreat requires accurate chronologies. Unfortunately,
the variable but predominantly terrigenous nature of sediments
deposited in a sub-ice-shelf setting combined with low con-
centrations of biogenic material (organic carbon and calcareous
foraminifera) represent significant challenges for conventional
dating methods. On short times scales (<200 years), measure-
ments of the concentrations of short-lived radioisotopes, such as
210Pb, have helped constrain GL retreat, as well as recent sedi-
mentation rates16,17,96,118. While fallout of atmospheric lead is
typically preserved around Antarctica16,119, concentrations of
other radioisotopes, such as 137Cs and 241Am, which are required
to validate 210Pb decay profiles, are highly variable and often
below analytical detection limits. 137Cs—injected into the atmo-
sphere during nuclear bomb testing in the 1950s and 1960s—has
a half-life of only 30 years, and in many Antarctic settings has
already decayed below detectable levels. Furthermore, 137Cs is
especially problematic in the Southern Hemisphere because fall-
out levels were approximately four times lower than in the
Northern Hemisphere120. Smith et al.16 demonstrated the
potential of using Pu-isotopes to validate 210Pb age models in
sub-ice-shelf sediments. Plutonium isotopes, in contrast to other
bomb-test products, have a much longer half-life and are
expected to adsorb more readily than Cs to both coarse- and fine-
grained detrital particles, with little chance of chemical re-
mobilisation once the Pu is buried121.

On longer times scales (up to ~35,000 years) AMS 14C dating
of calcareous microfossils provides the most reliable chronologies
from marine sediments59,72,116 and can now be performed on
very small sample sizes122. Unfortunately, the scarcity of such
microfossils (even in low concentrations) in many sub-ice-shelf
sediments has forced researchers to rely on dating other
fractions123,124. Bulk organic matter or its acid-insoluble fraction
(AIOM) can yield reliable and reproducible chronologies (see
ref. 124), but it is often viewed as a last resort owing to the
potential for large error caused by “contamination” with
reworked fossil carbon125. Recent advances in Ramped Pyrolysis
(RP) 14C dating minimises the effect of contamination by com-
busting sediments at gradually increasing temperatures to ther-
mally break down the bulk organic matter64,126,127. The gradual
temperature increase allows for the separation of the more
thermochemically reactive younger constituents, which are pre-
ferably combusted under lower temperatures, from the reworked
more stable older constituents, so that separate components can
be dated independently127. Similarly, chemical compound-
specific radiocarbon dating enables specific organic compounds
(C14, C16 and C18 fatty acids) to be isolated, and thereby
avoiding fossil carbon. Fatty acids in the surface waters of the
Southern Ocean are primarily produced by diatoms and because
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their decomposition is relatively fast in both the sediment and
water column128,129 they rarely stem from relict organic matter.
Therefore, the majority of fatty acids extracted from sediments
are formed just before deposition, rather than being derived from
relict organic matter130.

Both RP and chemical compound-specific dating rely on a
minimum concentration of organic carbon which is not always
present in sub-ice-shelf sediments. In instances where sub-ice-
shelf sediments are devoid of biogenic material or contamination
with fossil organic carbon is high, relative paleomagnetic intensity
dating offers an alternative for establishing reliable age models for
Holocene sediments71,131. However, this method is susceptible to
changes in magnetic mineralogy and magnetic grain size, and
thus to sediment provenance and physical grain size, both of
which can vary considerably in sub-ice shelf sediments. Never-
theless, Brachfeld et al.71 used this technique successfully to
constrain the timing of Holocene retreat of the Larsen A Ice Shelf,
demonstrating its potential for dating mainly fine-grained terri-
genous sediments deposited beneath an ice shelf. Finally, in
regions where aeolian sand and silt accumulates at the calving line
and on the ice shelf surface until being released during collapse
(Fig. 5a, d), multiple-grain optically stimulated luminescence
(OSL) dating has shown some promise132, although this techni-
que is unlikely to provide the resolution needed to constrain
centennial to millennial-scale environmental changes.

Drivers of ice shelf retreat
Placing ice shelf histories in the context of climate drivers is
needed to constrain the interplay between internal ice sheet
dynamics and external forcing. Ice cores provide a valuable
archive of environmental change from which it is possible to infer
past atmospheric temperatures, precipitation and changes in
atmospheric circulation, and previous ice-shelf retreats have been
linked to periods of atmospheric warming. Similarly, clues to the
behaviour of ocean currents and specifically the role of upwelling
of warm CDW in driving ice shelf melting can be derived from a
number of proxies, each with its own uncertainty and challenges.
Benthic foraminiferal assemblages have been used to infer
incursions of CDW, although results have often been
contradictory133,134 and likely reflect an incomplete under-
standing of ecology and habitat preferences of key species. Tra-
ditionally Bulimina aculeata has been considered to be an index
species for CDW81,135,136 and has been well documented in
surface sediments in the Amundsen Sea that are currently bathed
in this water mass137. Despite this association, B. aculeata is
almost entirely absent in surface and Holocene down-core sedi-
ments recovered from Pine Island Bay, where CDW is present
today and assumed to have been present in the past72.

Other attempts to reconstruct CDW intrusions have focussed
on its geochemical fingerprint138, as well as stable carbon isotope
composition of benthic foraminifera72,134 or indirectly using a
multi-proxy approach139,140. Efforts to reconstruct ocean tem-
peratures directly offer huge potential, yet are still in their infancy
around Antarctica72,139,141, lacking both regional calibrations and
well-dated records on which to apply temperature proxies.
Without accurate paleocean temperatures the significance of
current sub-ice-shelf melt rates remain difficult to validate,
although information on past ice shelf melt rates can be derived
from δ18O studies. Pike et al142 demonstrated that it is possible to
infer glacier discharge (melt) using δ18O measurements in diatom
silica, although problems remain with disentangling ice shelf melt
from other sources of glacial/freshwater discharge or chemical
processes. δ18O data from planktic foraminifera have been used
to infer water column freshening due to the long-term thinning of
the Larsen B Ice Shelf17. Needless to say the usefulness of this

proxy—together with benthic foraminiferal assemblages and trace
metal and stable isotope data from calcareous shells—is depen-
dent on preservation of foraminifera, which is often poor in sub-
ice-shelf environments.

Outlook and future research
The past decade has witnessed significant progress in our under-
standing of sub-ice-shelf environments, resulting in a comprehen-
sive ‘toolbox’ with which to identify past ice shelf cover as well as
passive retreat and/or breakup events. This not only reflects tech-
nological advances in remote access but also detailed analyses of
sediments (Fig. 4) and landforms (Figs. 5 and 6) exposed following
contemporary ice shelf collapse(s)58,65,94–97. Together with recent
advances in dating64 and multi-proxy approaches72 this work holds
the potential to usher in a new era of deciphering former ice shelf
cover together with the rates and drivers of change. To enable this,
there needs to be a concerted effort to link the often disparate
strands of research, including constraints on ice shelf thickness and
extent from the geomorphological record together with detailed
sedimentology, proxy reconstructions and accurate dating. Fur-
thermore, because Antarctic continental shelf sediments are often
lacking biogenic material (diatoms, foraminifera), greater progress
can be made by re-visiting areas where the sediments are known to
be suitable for re-analysis using the latest proxies and dating
methods and where the geomorphological footprint of former ice
shelf cover is well-preserved (e.g., Pine Island Bay72, Marguerite
Trough59, Whales Deep116 e.g., Box 1).

Despite this progress, sub-ice-shelf settings remain one of the
least explored environments on Earth, and there is a clear need to
access and sample the seafloor and ocean cavity beneath con-
temporary ice shelves. This will not only help answer debates about
ice shelf and GL histories at a range of time scales16,20,143 but also
reveal fundamental information about the processes occurring
beneath ice shelves, particularly those close to the GL. In this
context, much of our knowledge of sub-ice-shelf sedimentary pro-
cesses, particularly those operating at or close to the GL, has been
obtained from a limited number of studies in the Ross Sea, which is
almost certainly not representative of all ice shelf systems. Future
work, while ambitious in scope, should aim to combine transects of
sub-ice-shelf sediment cores from the GL to calving line, with
down-hole oceanography and dedicated ROV/AUV missions (e.g.,
through-ice vehicles such as IceFin and SCNII or ship-launched
platforms such as Kongsberg’s Hugin AUV) that image the seafloor,
ice base and processes operating near the GL. Only by investigating
the ocean cavity and seafloor beneath ice shelves of different sizes,
experiencing different rates of change, and forced by different
oceanic and atmospheric drivers, will it be possible to capture the
full-range of processes operating there. The areas requiring further
focus should include, but not be limited to, the spatial distribution
of sediment facies/facies geometries, sediment and meltwater fluxes,
seafloor benthos, circulation patterns and advection of detrital and
biogenic particles as well as processes which form enigmatic land-
forms (e.g., GZWs, corrugations ridges). With planned multi-
national expeditions to the Eastern Ice Shelf of Thwaites Glacier as
well as further work on the Amery and Ross ice shelves over the
coming years, our knowledge of these processes is set to expand
considerably.

Finally, an important aim of paleo reconstructions is to provide
highly resolved records of past changes that can be used to
constrain and/or initialise numerical models144. This includes
information on key boundary conditions (e.g., bathymetry, cavity
geometry) as well as accurate constraints on the rates and drivers
of ice shelf and ice sheet changes. However, integration of data
and models is often intended but not always realised, which calls
for a concerted effort to provide relevant paleo data in a form that
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can be easily utilised by modellers144. By producing detailed
information on known past ice sheet-ice shelf configurations—
such as complete loss of buttressing due to ice shelf collapse or
stabilisation of a grounding line due to sediment deposition (see
Box 1)—the paleo record can serve as a critical test for assessing
the abilities of models in predicting future changes as well as
refining our understanding of the processes which limit or pro-
mote fast retreat of marine ice sheets.
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Detailed sedimentological and bathymetric data together with accurate dating of foraminifera illustrates a major phase of GL retreat following the
collapse of an ice-shelf in Whales Deep Basin (WDB), eastern Ross Sea116. The study shows retreat was underway from the shelf edge prior to 14.7 ±
0.4 cal. kyr B.P. A paleo-ice-shelf collapse occurred at 12.3 ± 0.2 cal. kyr B.P. The GL was maintained on the outer-continental shelf until at least 11.5 ±
0.3 cal. kyr B.P before experiencing a 200-km retreat. GL retreat lagged ice-shelf collapse by at least two centuries and by as much as 14 centuries. This
delay was due to rapid aggradation of sediment (GZW 5-7) as ice-stream discharge accelerated following ice-shelf collapse which helped stabilise the
ice-sheet. This study serves as an example of how targeted coring, geomorphological mapping and reliable dating can provide well-constrained
palaeodata with which to test the predictive skill of ice-sheet models and explore key processes, e.g., the dynamic response of ice-streams to ice shelf
collapse and de-buttressing. One element that is missing from this study is information related to external and/or internal forcing which could be
explored via numerical modelling and/or by applying multi-proxy analyses of nearby sediment cores to reconstruct key environmental variables (e.g.,
ocean temperature).
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