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Background: Total knee arthroplasty (TKA) is effective for severe osteoarthritis and

other related diseases. Accurate prosthesis prediction is a crucial factor for improving

clinical outcomes and patient satisfaction after TKA. Current studies mainly focus on

conventional manual template measurements, which are inconvenient and inefficient.

Methods: In this article, we utilize convolutional neural networks to analyze a multimodal

patient data and design a system that helps doctors choose prostheses for TKA. To

alleviate the problems of insufficient data and uneven distribution of labels, research

on model structure, loss function and transfer learning is carried out. Algorithm

optimization based on error correct output coding (ECOC) is implemented to further

boost the performance.

Results: The experimental results show the ECOC-based model reaches

prediction accuracies of 88.23% and 86.27% for femoral components and tibial

components, respectively.

Conclusions: The results verify that the ECOC-based model for prosthesis prediction

in TKA is feasible and outperforms existing methods, which is of great significance

for templating.

Keywords: total knee arthroplasty, prosthesis prediction, deep learning, error correct output coding, transfer

learning

INTRODUCTION

TOTAL knee arthroplasty (TKA) is an effective surgical intervention for treating end-stage
osteoarthritis, and promising clinical outcomes have been reported worldwide (1). However,
due to a lack of attention to accurate preoperative prosthesis prediction, patients’ postoperative
satisfaction with TKA has been approximately 80% (2). Having an accurate prosthesis template
before surgery is a vital factor in achieving satisfactory clinical outcomes and reducing
medical costs.

Previous studies of templating systems mainly include physical X-ray templates and digital
template measurements (3). The former uses a physical template ruler provided by the prosthesis
manufacturer to perform manual measurements on the X-ray images to select an appropriate
prosthesis. The latter refers to the use of a digital template measurement system to match
preoperative X-ray images with possible prosthetic types. Both methods require rescaled X-ray
films based on a reference ball to set a consistent amplification rate for real joints. The accuracy
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of measurement varies randomly according to the quality of
the radiographs. Moreover, template measurement is labor-
intensive and relies heavily on the experience of doctors.
Therefore, template measurements are prone to increase the
risk of prosthesis mismatch in TKA and lead to further
complications (4).

In the post-5G era, research on 6G technology is increasing,
and intelligent medicine is attracting much more attention.
Artificial intelligence-aided medicine is an expanding area, and
it is anticipated to provide a better user experience. Deep
learning technology has already been applied to the medical
field and demonstrated its powerful modeling capabilities (5).
In orthopedics, the application of deep learning mainly focuses
on the diagnosis of fractures and osteoarthritis (6–8). Because
knee prosthesis selection in TKA has a clear operating criterion
and internal logic, it can be well-modeled with deep learning
approaches, we establish a convolutional neural network (CNN)-
based prediction system to achieve automatic and accurate
prosthesis prediction.

First, in this work, we propose and construct a novel
deep learning model for prosthesis size selection with knee
radiographs and patient physical information as input. To
enhance the accuracy of prediction, classic image processing
techniques such as contrast-limited adaptive histogram
equalization (CLAHE) (9) and mean-shift (10) are used as
preprocessing methods to remove redundant radiograph
information. Refinements to the loss function and model
structure are implemented to address the problem of uneven
distribution of labels. Transfer learning (11) is also introduced to
compensate for data deficiencies.

To further enhance the performance of the prediction model,
we optimize the prediction algorithm for component selection
in TKA based on error correct output coding (ECOC) (12). An
appropriate error control coding scheme and coding length are
determined considering accuracy and computational complexity.
Different decision rules for mapping model outputs to prosthesis
sizes are studied to employ the optimal one.

The results of the experiments validate that a CNN is effective
in processing a patient’s information and making an accurate
prediction. ECOC can provide other benefits as well. The final
performance of the predictive model exceeds that of manual
measurement by medical experts.

The remainder of the article is organized as follows. Section
Basic Principle gives a brief introduction to related principles
comprising error control coding, distance metrics and ECOC-
based multiclassification models. The prediction platform based
on CNN is depicted in Section Methods and is organized as
the implementation of the basic predictive model and ECOC-
based optimization. Section Results reports the data analysis and
experimental results. Discussion of the results is presented in
Section Discussion.

BASIC PRINCIPLE

Error Control Coding
The concept of error control coding was initially applied in
telecommunication. The demand for efficient and reliable data

transmission and storage systems has been accelerated by the
emergence of large-scale, high-speed data networks for exchange,
processing and so on. A major concern of the system design is
the control of errors so that the data from transmitters can be
reliably reproduced at receivers (13). In this article, we mainly
deal with block codes, one of the commonly used error control
coding schemes, to fulfill our task.

A message block in block coding is represented by the binary
k-tuple u =

(

u0, u1, . . . , uk−1

)

. A binary encoder transforms
each message u independently into a binary n-tuple v =

(v0, v1, . . . , vn−1) of discrete symbols called a codeword. To have
a different codeword assigned to each message, k < n is ensured.
The n − k redundant bits provide a code that can be used to
correct errors (13).

Hamming codes and Hadamard codes are two important
linear block codes. For any positive integer m ≥ 3, there exists
a Hamming code with the following parameters:

- Code length n = 2m − 1
- Number of information symbols k = n− m
- Number of parity-check symbolsm.

The codewords of a Hadamard code consist of the row vectors
of Hadamard matrices. An n-dimensional Hadamard matrix has
the following features (14):

- n is an even number, and all elements in the matrix take the
value of either 0 or 1.

- One line of the matrix is all 0s, and the rest of the lines contain
n/2 0s and n/2 1s.

- The Hamming distance between any two lines is n/2.

We can obtain M2n from Mn with Equation (1), where Mn

represents the complement matrix ofMn.



















M2 =

[

0 0
0 1

]

M2n =

[

Mn Mn

Mn Mn

]

(1)

Distance Metrics
Hamming distance is one of the widely adopted distance metrics
for evaluating the error-correcting performance of different
codes. For two n-tuples w and v, the Hamming distance
between them, denoted by dH (w, v), is defined as the number of
positions where the components differ. Given a block code C, the
minimum distance dH,min is

dH,min , min
{

dH (w, v) :w, v ∈ C,w 6= v
}

(2)

dH,min determines the random-error-correcting capabilities of a
code. Code C with dH,min can correct all the error patterns with t
or fewer bits, where t is a positive integer meeting the condition
of 2t + 1 ≤ dmin ≤ 2t+ 2.

If dH,min of a Hamming code is 3, it can only correct one
error, regardless of how long the code is. For a Hadamard code,
dH,min = n/2, and its correcting capability is in accordance with
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half the code length. Thus, longer Hadamard codes have better
error correcting performance.

The Hamming distance can be used in hard decision decoding
by comparing the similarity of received vectors with different
codewords at receivers. In addition to Hamming distances,
Euclidean distance is also popularly employed in similarity-based
decoding, which is referred to as soft decision decoding.

The Euclidean distance between two vectors v andw in n-tuple
space is defined as:

Euclidean (v,w) =

√

√

√

√

n
∑

i=1

(v [i]− w [i])2 (3)

It can be inferred that Euclidean distance contains more specific
difference information than Hamming distance.

ECOC-Based Classification
In general, there are two main approaches to multiclass
classification: direct multiclass representation and
decomposition design (15). The former aims to design multiclass
classifiers directly, while the latter tries to split the original task
into multiple binary subproblems.

For decomposition design, there aremany approaches, such as
one-vs.-all (16), one- vs.-one (17) and ECOC-based algorithms
(12). Dietterich and Bakiri (15) proposed a binary ECOC
framework comprised of three steps:

1. Encoding. In this stage, a coding matrix is determined, and
each class is represented by one row of the matrix.

2. Binary classifier learning. The dataset of each classifier
depends on the corresponding column of the coding matrix.

3. Decoding. A specific class is predicted based on the output
sequence of the classifiers and the method of decoding.

In this article, we choose the Hamming code and the Hadamard
code as the optimum schemes to boost the accuracy of neural
networks. The number of output nodes in networks needs to
be compatible with codewords. We will study the effects of
coding schemes, code lengths, decision rules, etc., on the accuracy
of classification.

METHODS

Participants
This study has been approved by Peking University Third
Hospital Medical Science Research Ethics Committee.
Information on patients diagnosed with knee osteoarthritis
and undergoing TKA was collected to constitute the dataset.

We selected patients who take the primary total knee
arthroplasty in Peking University Third Hospital from 2018 to
2020. The selected dataset includes the X-rays of knees before
and after the operation, where domestic AK posterior stable knee
prosthesis are applied. As a training set, only cases with satisfied
prothesis size would be included for deep learning model.
Therefore, cases meet the following conditions are excluded:

FIGURE 1 | Research procedure.

1. The prothesis overhangs or the lack of coverage is more
than 2mm.

2. Prosthesis malalignment.
3. Femoral notching.
4. With long stem or screw.

Overall System Design
As Figure 1 shows, the research procedure of the proposed
prediction system for prosthesis selection mainly consists of data
preparation, implementation and optimization of the predictive
model, and evaluation.

Specifically, first, we complete the process of data collection.
The anterior-posterior and lateral X-ray images of the patients’
knees together with physical information are utilized as training
features. The radiographs provide primary information, and
physical information provides supplementary features for model
training. Abnormal data are excluded from the final dataset
in this step. Furthermore, the distribution of data and the
correlation between features are analyzed as the analytics
foundation for further modeling.

Then, preprocessing is employed on the prepared dataset to
remove noise. This step benefits the training of CNN models.
Following that, a CNN model is exploited. Optimization of the
model structure and loss function along with transfer learning is
further carried out to achieve better prediction performance.

To construct a more accurate prediction model, data are
preprocessed according to their types. For the categorical feature
gender, one-hot encoding is conducted. For continuous values,
such as height and weight features, normalization is applied.

For X-ray images, redundant information such as text
information and noise are removed through CLAHE (9), mean-
shift (10) and cropping methods. After these operations, the
images are ready as proper input for model training. Processed
by the prediction model, the predicted prosthesis sizes are
compared with the practically used ones and calculated a
prediction accuracy.
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FIGURE 2 | The distribution of prosthetic size by gender.

Baseline Predictive Modeling
A baseline model for prediction is constructed based on (18)
and introduced briefly in this section. To address the vanishing
gradient problem in deep learning, a deep residual learning
framework, ResNet (19), is introduced and selected as the
fundamental structure for our prediction platform. A commonly
used 18-layer ResNet framework is adopted in consideration of
both the computational complexity and prediction accuracy.

The ResNet18 structure is illustrated in Figure 2. The
radiographs are fed sequentially into the network. Features are
extracted by four groups of convolutional layers. Finally, fully
connected layers output the prediction. This configuration is
hereinafter referred to as the baseline model.

To address the problem of uneven distribution, a focal
loss function (20) based on cross-entropy is introduced. The
refined loss function is defined in Equation (4), where fi denotes
the output of a fully connected layer, pi is the predicted
probability, Ni represents the number of types i, and β and γ are
hyperparameters to be tuned.

Li = −αi (1− Pi)
β log (Pi)

Pi = efi/
∑

j e
fj

αi = (1/Ni)
γ /

∑

j (1/Nj)
γ

(4)

Along with cross-entropy loss, two additional factors, αi and
(

1− pi
)β
, are considered. The former enables models to pay

more attention to classes with fewer samples, and the latter
focuses more on hard-to-train classes.

Inspired by Zhang et al. (21), an automatic fine-grained
recognition approach is introduced to amend the inadequacy
of samples in each class, which flexibly responds to any object
annotation at both the training and testing stages.

Moreover, for the problem of data deficiency, transfer learning
is applied. The model is pretrained with the MURA dataset (22)
and then fine-tuned to accommodate our knees dataset.

ECOC-Based Optimization
The ECOC-based prediction model introduces error control
coding to decompose the multiclass classification into several
binary subtasks and enable error correction. To utilize the

TABLE 1 | Automatic codewords selection procedure.

Target: a set of codewords S

Require: the number of codewords needed N

1. Initialize the weight matrix:

w = [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15]

Index:i = 11

Minimum distance: distmin = w [i].

2. Add the codeword consisting of all 0s into S, the other codewords compose

a candidate set O.

3. Let C be the last element of S, update O:

1) Delete the codeword that the distance between it andC is smaller than distmin.

2) Move the first element of updated O to S.

4. Judge whether the number of elements in S is not smaller than N. If yes, jump

to step 6; otherwise, jump to step 5

5. Judge whether O is empty. If yes, i-, update the minimum distance distmin =

w [i], jump to step 2; otherwise, jump to step 3.

6. End the selection for codewords.

relationships among different binary classifiers, we employ an
18-layer ResNet (19) to train these binary tasks jointly. Each
output node of the CNN represents a binary classifier, and
its value represents the probability of the positive class of the
corresponding classifier.

To further enhance prediction performance, coding
specifications such as coding scheme, length and decision
rules are explored to find an appropriate set according to the
prediction accuracy and other criteria, e.g., computational
complexity, and the optimal setting is selected.

1) Coding Scheme
Considering that the number of classes is 8 for femoral

components and 9 for tibial components, the coding length is
set to approximately 16, and the model outputs are binarized
with 0.5 as the threshold and then mapped to classes based on
the minimum Hamming distance.

The first option is a (15, 11) Hamming code with
a code length of 15 and 11 message bits. There is a
computationally high expense in selecting 8 and 9 codewords
for the femoral and tibial components, respectively, among
the total of 211 codewords if we adopt an exhaustive
method. Table 1 describes an algorithm for the automatic
selection of codewords that guarantees that the minimum
distance is maximized.
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FIGURE 3 | Hard decision with Hamming distance.

A Hadamard code with a 16-bit code length is another
optional coding scheme, and the Hamming distance between
any two codewords is constant at 8. Therefore, we mainly
focus on whether the distribution of samples is balanced
when selecting codewords. The experimental results in Section
Results verify that the Hadamard code performs better in
this task.

2) Coding Length
Coding length is also a crucial factor for performance.

In general, a code with longer length means a stronger
capability of correcting errors, but it also requires more
binary classifiers. If the training difficulty of binary tasks
increases after decomposition, the final accuracy decreases.
In addition, the distribution of samples observably influences
the accuracy of the binary model. Therefore, when we
choose the coding length, we focus on not only the
minimum distance of codewords but also the distribution of
samples after decomposition.

Here, a Hadamard code is employed as the coding
scheme, and the optimal code length is discussed with
other modules fixed.

For the Hadamard code, as the code length increases
from n to 2n, the minimum distance increases by n/2
bits, and the capability of correcting errors increases by
n/4 bits. Only if the additional binary classifiers with
incorrect prediction are less than n/4 is the increase in code
length effective. Intuitively, this requires that the accuracy
of each binary classifier be greater than 75%, which is a
determining factor for choosing a 16-bit Hadamard code in
Section Result.

3) Decision Rules
The decision rules significantly enhance classifying

performance if selected properly. Hard or soft decisions
are the first option to be considered. A soft decision uses
the output values of the model directly in the following
calculation, while a hard decision binarizes the model outputs
with a threshold of 0.5.

FIGURE 4 | Soft decision with Euclidean distance.

Hamming distance is accordingly applied together with a
hard decision to indicate the difference between output and
classes. Figure 3 elaborates the detailed mapping procedure.

Considering the effect of the imbalanced dataset, hard
decisions can be improved by designing a new threshold.
When the sum of instances in one class overwhelms the other,
the threshold can be revised to N+

N −
, where N+ represents the

number of positive classes and N− represents the number of
negative classes (23).

When the model outputs are classified by the hard decision
rule, output values of 0.1 and 0.2, for instance, may both be
binarized to 0, but 0.2 has a larger confidence of the positive
class than 0.1. Therefore, soft decisions maintain the original
probability and retain more information than hard decisions.

If a soft decision is employed, the Euclidean distance
is calculated to select the class with minimal distance
as the prediction. The complete process is shown
in Figure 4.

The Euclidean distance may overwhelm the difference
when the output is far different from the label. For example,
there are two outputs of 0.8 and 0.9 for negative samples. The
Euclidean distance of the latter is larger than that of the former;
however, they are both quite wrong. In fact, the region we
need to focus on is the difference at approximately 0.5, where
the binary classifier has insufficient confidence to classify
the sample into either of the classes. When the difference is
too large or too small, the distance can be almost saturated.
Therefore, a sigmoid-based distance is proposed to solve this
problem. It is defined in Equation (5), where p is the output
and labelmeans the real class.

d
(

p, label
)

= 1/(1+ e−(|p−label|−0.5)×10) (5)

RESULTS

We obtained 308 valid samples in total consisting of 68 males
and 240 females, which were split into a training set, validation
set and testing set in a ratio of 4:1:1. Each sample was made
up of preoperative X-ray films of the knees and other basic
information, i.e., weight and height. The labels to predict
included the femoral and tibial prosthesis size. The prediction

Frontiers in Surgery | www.frontiersin.org 5 March 2022 | Volume 9 | Article 798761

https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org
https://www.frontiersin.org/journals/surgery#articles


Yue et al. Prosthesis Prediction of TKA

FIGURE 5 | The distribution of prosthetic size with different genders.

TABLE 2 | t-test value.

Feature Gender Height Weight

label

Femoral 13.65 14.36 7.943

Tibial 14.24 14.77 8.331

TABLE 3 | Correlation coefficient.

Feature Gender Height Weight

label

Femoral 0.6151 0.6345 0.4134

Tibial 0.6314 0.6452 0.4300

model attempts to predict the size of both components used in
TKA at the same time.

The metric that evaluates the model performance is defined
as the ratio of correct predictions. In real scenarios for specific
patients, at least three adjacent prosthesis sizes are usually
provided for doctors before TKA surgery. For this reason, we
suggest that if a label lies in the top three possible classes, it will
be regarded as a correct prediction in our experiments.

Data Collection and Analysis
The statistical characteristics of the features and labels are
further explored, and the results correspond to related medical
knowledge of TKA. The distributions of prosthetic size by gender
are shown in the histogram of Figure 5. The conclusion can be
drawn that the distributions of both labels resemble the normal
distribution, and that the basic information, i.e., gender, height,
and weight, have a significant impact on the size of both the
femoral and tibial components. On the other hand, both the small
number of data samples and the uneven distribution of labels are
adverse factors for building precise prediction models.

The correlation coefficient r between features and labels is
further calculated, and a t-test is conducted with Equations (6)
and (5) to further provide confidence in the correlation. The
results are shown in Tables 2, 3.

r = E (x− E (x))E
(

y− E
(

y
))

/

√

Var (x)Var
(

y
)

(5)

t = r/
√

(

1− r2
)

/(n− 2) (6)

According to the statistical characteristics of the t-value, if the
practical t-value is greater than 2.601, there is 99% confidence
that the labels are correlated with features. Thus, with an error
risk of less than 1%, we can claim that basic information could
influence component size. This provides an analytical basis for
measuring the effectiveness of prediction algorithms.

Experiment Results for the Baseline Model
We first show the experimental results from the baseline
prediction system. To verify the effect of the ECOC-based model,
we compare its experimental results with the baseline model.

We experimented on the baseline model described
in Figure 3, and optimizations were implemented in the
basic version.

The baseline model was first trained with raw radiographs
through the original ResNet18, and the accuracy was 70.59% for
femoral components and 68.72% for tibial components.

To optimize this model, preprocessed radiographs were
acquired as substitutive input. Physical information was added
to form multimodal data together with the feature maps of
the radiographs. For the loss function, the refined focal loss
function in Equation (4) was employed. Then, the structure of the
network was modified based on inspiration from a fine-grained
recognition task. The modified model is illustrated in Figure 6.

Finally, transfer learning was applied, and a fine-grained
ResNet18 using a refined loss function, with the addition
of transfer learning and multimodal data, was modeled. The
optimized baseline model eventually achieved an accuracy of
84.31% for both components. As reported in (24), the accuracy
of prediction by experienced doctors through preoperative X-ray
images and CT scans is 84% at best. Our system achieves the same
level of accuracy at a lower cost.

Experiment Results for the ECOC-Based
Model
The ECOC-based model was constructed on the optimized
baseline model. As discussed in Section Methods, appropriate
parameters and decision rules were tested and selected.

Figure 7 shows the ratio of positive samples of each binary
classifier under different coding schemes. The distribution for the
Hadamard code in Figures 7A,B was more balanced than that of
the Hamming code in Figures 7C,D because the ratio of positive
samples was closer to 50%, which was beneficial to achieving
better performance. The experimental results verify that the
Hadamard code outperforms the Hamming code by more than
2%. The computational complexity of selecting codewords is also
a disadvantage for Hamming code, so we finally applied the
Hadamard code as the code scheme.

Frontiers in Surgery | www.frontiersin.org 6 March 2022 | Volume 9 | Article 798761

https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org
https://www.frontiersin.org/journals/surgery#articles


Yue et al. Prosthesis Prediction of TKA

FIGURE 6 | Fine-grained ResNet18 with multimodal data.

FIGURE 7 | The ratio of positive samples for each binary classifier. (A) Hadamard Code for Femoral Component Prediction; (B) Hadamard Code for Tibial Component

Prediction; (C) Hamming Code for Femoral Component Prediction; (D) Hamming Code for Tibial Component Prediction.

Figure 8 shows the accuracies of binary models for a
Hadamard code with a 16-bit code length, most of which
were smaller than 75%. As discussed in Section Methods, such
evidence shows that more than n/4 bit errors appear, so the
increase in code length does not bring a distinct enhancement
to performance. Thus, a code length of 16 bits is the optimized
selection for the system.

Performances with different decision rules are illustrated
in Figure 9. Method-I refers to hard decision rules, and
in Method- II, the threshold was revised. The Hamming

distance was adopted as the distance metric in these two
methods. Method III and IV utilized soft decision rules with
Euclidean and sigmoid-based distances, respectively. The black
line represents the best performance of the baseline model. It also
represents the accuracy of manual measurements conducted by
common surgeons.

We can see that Method IV with sigmoid-based distance
achieves the best performance because it focuses on a
reasonable distance region. Another reason why this model
can obtain higher accuracy is that the distribution of labels
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FIGURE 8 | Accuracy of each binary classifier.

FIGURE 9 | Accuracies in different decision rules.

after decomposition is more balanced than that of the
multiclass model.

DISCUSSION

Accurate prosthesis matching is a key factor to gain good
clinical function and postoperative satisfaction after total knee
arthroplasty (4). On the opposite, complications such as
postoperative knee pain, aseptic loosening, and poly wearing
might happen due to overall or mismathcing of prosthesis (25).

Unfortnately, the selection of prostheses depends on the
surgeon’s intraoperative experience, which has great subjectivity
and long learning curve. Preoperative templating is helpful
prosthesis matching, and also can simplify the prosthesis
preparation, which effectively reduce medical costs, improve the

TABLE 4 | Accuracy metrics for different cases.

Models Femoral (%) Tibial (%)

Baseline model 70.59 68.72

Optimized baseline model 84.31 84.31

ECOC-based model 88.23 86.27

The bold values are best performances of proposed models.

work efficiency of the operating room, and obtain good health
economic benefits (26).

Preoperative templating is highly dependent on quality of
X-ray, and the inherent limitation of X-ray magnification has
a significant impact on the prediction of prosthesis, which is
difficult to completely eliminate even if with a metal ball as a
marker (3, 27, 28).

With the continuous maturity and development of image
recognition and deep learning, we have reason to believe that
the accuracy size of prosthesis might be predict before surgery by
artificial intelligence technique with non-marker X-ray (29–31).

The performances of the three primary models in our study
are summarized in Table 4. By providing the model with
the capability of correcting errors, the ECOC-based algorithm
reaches accuracies of 88.23 and 86.27%, outperforming the
optimized baseline model by 4% for femoral components and 2%
for tibial components, which is better than the average accuracies
of experienced doctors. The practical value of this research is
further confirmed through verification experiments.

This article proposes a novel software system for automatic
prediction of prosthetic sizes in TKA based on a CNN,
with patient gender, BMI and non-marked X-ray. Many
optimizations are implemented in the loss function, model
structure and transfer learning to solve the problems of data
deficiency and uneven label distribution. To further boost the
performance, we introduce ECOC to the classification algorithm,
which decomposes the original multiclass problem into several
binary subproblems and then trains the corresponding binary
classifiers jointly. The ECOC-based prediction system exceeds the
direct multiclass classifier in terms of prediction accuracy and
surpasses the average level of manual measurements conducted
by surgeons.

There are limitations to be addressed: (1) From the
methodological point of view, the amount of observed samples
is still relatively deficient to train a perfect model. (2) The model
training process is based on the experts’ intra-operative decisions;
thus, the prediction accuracy has an upper bound of the ground
truth, that is, the surgeon expertise. (3) For the concern of
expense, the prediction model only based on X-ray images and
BMI information. If the information of other medical images is
taken into account, the performance may be further enhanced.

To conclude, our project proposes an intelligent prediction
system that does not depend on the quality of X-rays or require
reference balls. It achieves acceptable accuracy from a small
existing dataset. This system can offer optimal TKA component
size suggestions to doctors, especially those with limited
experience. It can also help reduce labor and sterilization costs.
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While the research conducted on real medical diagnostic data
sheds light on how to improve the performance of learning with
small datasets, it also gives impetus to the application of AI-
aided tools in the medical sector. Our work may contribute to
the development of intelligent medicine for the 5G or the coming
6G era.
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