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B1 B cells defend against infectious microorganisms by spontaneous secretion of broadly
reactive “natural” immunoglobulin that appears in the absence of immunization. Among
many distinguishing characteristics, B1 B cells display evidence of activation that includes
phosphorylated STAT3. In order to identify the origin of pSTAT3 we examined interleukin-2
receptor (IL-2R) expression on B1 cells. We found that some (about 1/5) B1a cells express
the IL-2R α chain, CD25. Although lacking CD122 and unresponsive to IL-2, B1a cells marked
by CD25 express increased levels of activated signaling intermediates, interruption of which
results in diminished CD25. Further, CD25+ B1a cells contain most of the pSTAT3 found
in the B1a population as a whole. Moreover, CD25+ B1a cells express leukemia inhibitory
factor receptor (LIFR), and respond to LIF by upregulating pSTAT3. Together, these results
define a new subset of B1a cells that is marked by activation-dependent CD25 expression,
expresses substantial amounts of activated STAT3, and contains a functional LIFR.
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INTRODUCTION
In mice, B1 cells represent a unique subset of B lymphocytes origi-
nally distinguished from the more abundant conventional splenic
B cells by expression of the pan-T cell marker, CD5. In addi-
tion to CD5, other phenotypic characteristics that identify B1 cells
include sIgMhi, sIgDlo, CD23−, and CD43+ (reviewed in Hardy
and Hayakawa, 2001; Wortis and Berland, 2001; Berland and Wor-
tis, 2002; Rothstein, 2002). During development, B1 cells appear
first after which B2 cell production proceeds while relative B1
cell numbers decline (Hayakawa et al., 1983; Lalor et al., 1989;
Hamilton et al., 1994). In adult mice, B1 cells are the predominant
lymphocyte population in the peritoneal and pleural cavities, are
present in small numbers in the spleen, and are absent in the
peripheral blood and lymph nodes (Hayakawa et al., 1983). B1 B
cells are capable of self-renewal, giving rise to their own progeny,
in contrast to B2 cells which are continually generated in the bone
marrow from stem cell precursors (Hayakawa et al., 1986; Kantor
et al., 1995), although recently it has been suggested that the B1
cell pool in adult animals admits bone marrow-derived emigrants
over time (Duber et al., 2009; Holodick et al., 2009a). Two B1 cell
populations exist, B1a cells that express CD5, and B1b cells that
lack CD5 but are otherwise phenotypically similar to B1a cells
although in some ways functionally distinct (Kantor et al., 1992;
Alugupalli et al., 2004). Much of what is known about B1 cells
concerns CD5+ B1a cells.

Abbreviations: IMGT, ImMunoGeneTics; LIF, leukemia inhibitory factor; LIFR, LIF
receptor; PLC, phospholipase C; Syk, spleen tyrosine kinase.

B1 cells contribute to immune protection through spontaneous
production of “natural” immunoglobulin that is generated in the
absence of specific immunization and accounts for most of the
“resting” IgM and a substantial portion of the “resting” IgA found
in the serum. B1 cell-derived natural immunoglobulin is criti-
cally important in the early defense against, and clearance of,
bacterial and viral infections (Briles et al., 1981; Su et al., 1991;
Boes et al., 1998; Benedict and Kearney, 1999; Ochsenbein et al.,
1999; Baumgarth et al., 2000; Alugupalli et al., 2004). Natural
immunoglobulin differs from B2 cell-derived immunoglobulin
in being more germline like – as a result of minimal N-region
addition and somatic hypermutation – and is repertoire-skewed
reflecting antigen-driven selection (Hardy et al., 1989; Pennell
et al., 1989; Gu et al., 1990). The rules governing immunoglob-
ulin production by B1 cells appear to differ from those that
regulate immunoglobulin production by B2 cells, in that B1 cell
immunoglobulin secretion is much less dependent on Blimp-1
and IRF4 than is that of B2 cells, although a role for Blimp-1 in B1
cell immunoglobulin secretion has been suggested (references Lin
et al., 2003; Tumang et al., 2005; Klein et al., 2006; Savitsky and
Calame, 2006; Holodick et al., 2010).

Aside from constitutive immunoglobulin secretion, B1 cells
manifest a number of distinctive features. In comparison to B2
cells, they present antigen more efficiently and unlike B2 cells,
they induce naïve CD4 T cells to become Th17 cells (Zhong et al.,
2007a,b). Moreover, B1 cells respond mitogenically to phorbol
ester in the absence of a calcium ionophore whereas B2 cells do
not, and in contrast to B2 cells, B1 cells fail to proliferate, nor to
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activate NF-κB, in response to BCR engagement (Rothstein and
Kolber, 1988a, 1988b; Morris and Rothstein, 1993). The unique
mitogen responses of B1 cells are reflected in distinct alterations
of cyclins D2 and D3 (Tanguay et al., 1999, 2001).

Beyond these functional characteristics, the nature of B1 cells
remains uncertain. B1 cells express a number of genes, proteins,
and transcription factors differently than B2 cells (Fischer et al.,
2001; Wong et al., 2002; Frances et al., 2006, 2007). This fits with the
idea that B1 cells represent a separate B cell lineage, a notion sup-
ported by the recent identification of a distinct B220lo/−CD19+
B1 cell progenitor (Herzenberg, 2000; Montecino-Rodriguez et al.,
2006). On the other hand, B1 cells appear to develop in relation
to the strength and nature of BCR signaling (Arnold et al., 1994;
Casola et al., 2004; Hardy, 2006). This fits with the idea that B1 cells
represent a particular differentiation state of a single B cell lineage
(Cong et al., 1991; Wang and Clarke, 2004). The finding that B1
cells show evidence of prior or ongoing activation, such as CD44
expression and elevated baseline pERK (Murphy et al., 1990; Wong
et al., 2002), would seem to support the latter notion, and we have
concluded in other work that B1 cells experience continual signal-
ing (Holodick et al., 2009b). On the other hand, B1 cells lack some
facets of activation, such as CD69 expression or elevated baseline
nuclear NF-κB or c-myc expression (Morris and Rothstein, 1993;
Wang et al., 1995; Tumang et al., 2004). Particularly perplexing has
been the constitutive expression by B1 cells of activated, tyrosine
phosphorylated STAT3 (Karras et al., 1997).

CD25 [interleukin-2 receptor (IL-2R) α chain] is a 55-kDa
glycoprotein, which along with CD122 (β chain) and CD132 (com-
mon γ-chain) forms the high affinity receptor for IL-2 (Minami
et al., 1993). In B cells, CD25 expression is first detected dur-
ing the pre-B cell stage of development after which expression
declines as newly formed B cells migrate to the spleen to form the
mature B2 cell compartment (Rolink et al., 1994). In mature B2
cells, CD25 is re-expressed as an activation marker in response
to antigenic encounter in an NF-κB/c-Rel dependent manner
(Muraguchi et al., 1985; Tumang et al., 1998).

Interleukin-2 receptor signaling has been shown to induce
phosphorylation and activation of STAT3 (Nielsen et al., 1994;
Brunn et al., 1995; Frank et al., 1995). In order to elucidate the
origin of pSTAT3 in B1a cells, and in view of our finding that
B1 cells show evidence of continual signaling, we considered the
possibility that B1 cells might express CD25/IL-2R and that IL-2R
signaling might account for B1 cell activated STAT3. In fact, we did
find that some, but not all, B1 cells express CD25, although not as
a complete, IL-2-responsive receptor. We further found that CD25
expression divides B1 cells into two populations, one of which
(CD25+) contains pSTAT3 and activated signaling intermediates,
expresses leukemia inhibitory factor receptor (LIFR),and responds
to LIF, whereas the other (CD25−) for the most part does not.

MATERIALS AND METHODS
ANIMALS
Male BALB/cByJ, C57BL/6, and C.B17-Prkdcscid mice at 8–
14 weeks of age were obtained from The Jackson Labora-
tory. All experiments were approved by the Institutional Ani-
mal Care and Use Committee, and mice were cared for and

handled in accordance with National Institutes of Health and
institutional guidelines.

B CELL PURIFICATION AND CULTURE
Sort-purified peritoneal B1 were obtained on the basis of CD5 and
B220 staining (CD5+B220lo). Splenic follicular (FO) B2 and mar-
ginal zone (MZ) B2 cells were obtained on the basis of CD23 and
CD21 expression. Splenic T cells were obtained on the basis of CD5
and B220 staining (CD5+B220−). Sort-purified B1 cells were fur-
ther subdivided on the basis of CD25 expression. Populations were
reanalyzed for purity by flow cytometry and subsets determined
to be >98% pure. Sort-purified B cells were cultured in RPMI
1640 containing 10% heat-inactivated fetal bovine serum, 2 mM
L-glutamine, 50 μM 2-mercaptoethanol, 100 U/ml penicillin, and
100 μg/ml streptomycin.

GENE EXPRESSION
RNA was prepared from B cells using Ultraspec reagent
(BiotecX), was DNase treated, and was reverse tran-
scribed using iScript (BioRad). Gene expression was then
assessed by real-time PCR (Stratagene) using the following
primers (forward/reverse): β2-microglobulin (CCCGCCTCACA
TTGAAATCC/GCGTATGTATCAGTCTCAGTGG); LIFR;ATGGC
ACATTGACTCGCCTC/GCACGAAGGGTATTGCCGAT),SOCS3
(CCCGCTTCGACTGTGTACTCA / GAGGTCGGCTCAGTACCA
GC),and CD122 (CACAGGCCAGCTGCTTCAC/AGGCATTGGG
CAGATGGAA).

PROTEIN EXPRESSION
Sort-purified cells were extracted and extracted proteins were
immunoblotted as previously described (Tumang et al., 2005).
Membranes were developed using the ECL Western Blotting
Analysis System from Amersham Biosciences. As a protein loading
control, blots were stripped and reprobed with anti-actin Ab.

PHOSPHOFLOW ANALYSIS
Intracellular phosphospecific flow cytometry and fluorescent cell
barcoding were carried out as previously described (Holodick
et al., 2009b). Flow cytometric analysis was performed using a
BD Biosciences LSR II.

REAGENTS
Fluorescently labeled anti-B220, anti-CD5, anti-CD23, anti-
CD21, anti-CD69, and anti-CD25 (clone PC61) antibodies
for flow cytometry and cell sorting were obtained from
BD Biosciences. F(ab′)2 fragments of goat anti-mouse IgM
for B cell stimulation in vitro were obtained from Jackson
Immunoresearch. Recombinant LIF and IL-6 for B cell stim-
ulation in vitro were obtained from R&D Systems. LY294002
and Syk inhibitor [(3-(1-Methyl-1H-indol-3-yl-methylene)-2-
oxo-2,3-dihydro-1H -indole-5-sulfonamide] were obtained from
Calbiochem. Antibodies directed against tyrosine phosphorylated
(705) STAT3 and STAT3 for immunoblotting were obtained from
Cell Signaling Technology. Fluorescent antibodies directed against
tyrosine phosphorylated Syk, PLCγ2, and STAT3 for phosphoflow
analysis were obtained from BD Biosciences. Anti-LIFR antibody
for immunoblotting was obtained from Santa Cruz Biotechnology.
Anti-actin antibody was obtained from Sigma-Aldrich.
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FIGURE 1 | CD25 is expressed on a subset of naïve peritoneal B1 cells.

(A,B) Freshly isolated BALB/c (A) and C57BL/6 (B) peritoneal washout cells
were immunofluorescently stained for surface expression of B220, CD5, and
CD25. Gates were set to identify B1a (B220lo, CD5+), B1b (B220lo, CD5−), and
B2 (B220+, CD5−) cells among B220+ B cells and expression of CD25 was
assessed for each population. Representative results from one of seven (A)

and three (B) comparable experiments are shown. (C) Freshly isolated

BALB/c B220loCD5+ B1a cells, and BALB/c splenic B220+CD5− B2 cells
cultured in medium (MED) or stimulated with LPS (25 μg/ml) or with F(ab′)2

fragments of goat anti-mouse IgM (15 μg/ml) for 2 days, were immuno-
fluorescently stained for CD25 and CD69. CD25 mean fluorescence intensity
values (above background isotype staining) for CD25+ B1a cells and for
CD25+CD69+B2 cells after stimulation with LPS and anti-Ig were, respect-
ively, 53, 123, and 189. One of three comparable experiments is shown.

RESULTS
CD25 IS EXPRESSED ON A SUBSET OF NAÏVE PERITONEAL B1 CELLS
CD25 is expressed on B2 cells as an activation marker (Tumang
et al., 1998), and naïve B1 cells show evidence of continual activa-
tion (Holodick et al., 2009b), which together raise the possibility
that B1 cells might constitutively express CD25. To determine
whether B1 cells express CD25, we analyzed B cell populations
by flow cytometry following immunofluorescent staining. Results
are shown in Figure 1. We found that some (about 1/5), but
not all, naïve BALB/c peritoneal B1 (B1a) cells expressed CD25,
as did a smaller number of B1b cells (about 1/10). In contrast,
few if any splenic B2 cells (data not shown) or peritoneal B2
cells (Figure 1A) expressed CD25. B1a cell expression of CD25
was not limited to BALB/c mice, as some, albeit fewer, C57BL/6
B1a cells also expressed CD25 in contrast to C57BL/6 B2 cells
(Figure 1B). Thus, CD25 expression divides B1 cells into two
separate populations. We compared the level of CD25 expres-
sion on BALB/c peritoneal B1a cells with the level of expres-
sion on splenic B2 cells after stimulation by LPS or anti-Ig for
2 days. Results are shown in Figure 1C. We found that CD25
expression by CD25+ (CD69−) peritoneal B1a cells encom-
passed a range similar to that of CD25+CD69+ splenic B2 cells,
although the mean fluorescence intensity of the latter outweighed
the former.

CD25 EXPRESSION BY B1a CELLS IS ASSOCIATED WITH, AND DEPENDS
ON, ACTIVATED SIGNALING INTERMEDIATES
The finding that some B1a cells do, and other B1a cells do not,
express the activation-related marker, CD25, raises the possi-
bility that CD25+ B1a cells are signaling more intensely than

CD25− B1a cells. To address this issue, we examined the phos-
phorylation status of BCR-triggered signaling intermediates in
sort-purified B cell populations by phosphoflow analysis, utilizing
barcoding after fixation and permeabilization to facilitate exper-
imentation (Krutzik and Nolan, 2006). To enhance detection of
phosphorylated intermediates, we added sodium orthovanadate
to unstimulated B cells for 1 or 2 min, to block dephosphoryla-
tion (Holodick et al., 2009b). Results are shown in Figure 2A.
We found that B1a cells accumulated substantial amounts of
intracellular pSyk and pPLCγ2 after exposure to sodium ortho-
vanadate for 2 min, whereas B2 cells showed a much smaller
increase, as previously reported (Holodick et al., 2009b). Impor-
tantly, within the B1a population, CD25+ B1a cells showed evi-
dence of much more pSyk and pPLCγ2 than did CD25− B1a
cells. The same patterns held true when B cells were stimulated
by anti-IgM (in the absence of Na3VO4). Here again B1a cells
increased pSyk and pPLCγ2 to higher levels than did B2 cells, and
CD25+ B1a cells were more responsive than CD25− B1a cells.
Thus, CD25 expression marks a B1a subset that is more active
in terms of constitutive, ongoing phosphorylation of signaling
intermediates, and is more responsive in terms of BCR-triggered
signaling.

The elevated level of phosphorylated signaling intermediates in
B1a cells that express the activation-related marker, CD25, suggests
the possibility that B1a CD25 expression depends on enhanced sig-
naling. To address this possibility, we examined sort-purified B1a
cells for CD25 expression before and after inhibition of PI-3K by
treatment with LY294002 and inhibition of Syk by treatment with
a peptide Syk inhibitor, for 18 h. Over this period of time these
inhibitors do not affect B cell viability (Holodick et al., 2009b).
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FIGURE 2 | CD25 expression by B1a cells is associated with, and depends

on, activated signaling intermediates. (A) Four populations of B cells were
sort-purified: peritoneal B1a cells (“B1a” in blue in upper panels), splenic
follicular B2 cells (“B2” in red in upper panels), CD25+ peritoneal B1a cells
(“CD25+ B1a” in red in lower panels), and CD25− peritoneal B1a cells
(“CD25− B1a” in blue in lower panels). B cells were cultured in medium alone
(“Medium”), and with Na3VO4 at 10 mM for 1 or 2 min, as
indicated, or with F(ab′)2 fragments of goat anti-mouse IgM at 15 μg/ml for
4 min (“anti-IgM”). Cells were then harvested, fixed, permeabilized, and

examined for intracellular tyrosine phosphorylated Syk (“pSyk”) and
tyrosine phosphorylated PLCγ2 (“pPLCγ2”) by phosphoflow analysis.
Isotype control antibody staining is displayed in gray. Representative
results from one of three comparable experiments are shown. (B)

Sort-purified B1a cells were cultured for 18 h with either LY294002 or
with Syk inhibitor after which expression of CD25 (left panel) and of CD80
(right panel) was assessed by flow cytometry. Mean results from three
independent experiments are shown along with lines indicating SE of
the means.

Results are shown in Figure 2B. We found that interference with
PI-3K or with Syk substantially abrogated CD25 expression by
B1a cells. In contrast, and as a control, inhibition of neither PI-3K
nor Syk produced a reduction in expression of the B7 molecule
CD80. Thus, B1a expression of CD25 is specifically dependent on
enhanced activation of signaling intermediates.

CD25+ B1a CELLS DISPLAY ELEVATED LEVELS OF PHOSPHORYLATED
TYROSINE705 STAT3
Because IL-2 is capable of activating STAT3, CD25 expression by
some B1a cells raises the possibility that the CD25+ B1a subset
harbors all of the constitutively phosphorylated STAT3 attributed
to B1 cells as a whole (Karras et al., 1997). To address this possibil-
ity, we examined sort-purified lymphocyte populations by Western
blotting for the activated form of STAT3 (pTyr705STAT3). Results

are shown in Figure 3A. We found that, as previously described,
peritoneal B1 cell lysates contained pTyr705STAT3 whereas splenic
B2 and T cell lysates did not. Importantly, we found that among
B1a cells, the large majority of pTyr705STAT3 was located specif-
ically within the CD25+ B1a fraction. To verify the relative
enrichment of CD25+ B1a cells for pTyr705STAT3 we examined
expression of the STAT3-regulated gene, SOCS3, by real-time PCR
amplification of reverse-transcribed RNA obtained from sort-
purified B cell populations. Results are shown in Figure 3B. We
found that, as expected, B1a cells expressed levels of SOCS3 much
higher than the levels expressed by B2 cells. Importantly, we found
that among B1a cells, the large majority of SOCS3 transcripts
were located specifically within the CD25+ B1a fraction. Thus, a
select subset of B1a cells that expresses the IL-2Rα chain (CD25)
and contains elevated levels of activated signaling intermediates
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FIGURE 3 | CD25+ B1a cells display elevated levels of phosphorylated

tyrosine705 STAT3. Five lymphocyte populations were sort-purified:
splenic follicular B2 cells (“B2”), peritoneal B1a cells (“B1”), CD25−

peritoneal B1a cells (“CD25− B1”), CD25+ peritoneal B1a cells (“CD25+

B1”), and splenic T cells (“T”). (A) Protein extracts were prepared from
each of these populations and immunoblotted for expression of
pTyr705STAT3 (“pSTAT3”). Blots were stripped and reprobed for expression
of total STAT3 as a loading control. Representative results from one of two
comparable experiments are shown. (B) RNA was prepared from each of
these populations, reverse transcribed, and evaluated for expression of
SOCS3 by real-time PCR, normalized to β2-microglobulin. Expression by
each population relative to peritoneal B1a cells is shown as the mean of six
experiments with lines indicating the SE of the means.

also expresses the bulk of phosphorylated, functionally active
STAT3 that was previously known to be upregulated in B1a cells as
a whole.

However, it is unlikely that CD25 and pSTAT3 are directly con-
nected, inasmuch as expression of CD25 was not accompanied
by expression of CD122 (IL-2Rβ chain) transcript (Figure 4) or
surface protein (data not shown), which were essentially absent in
B1 and B2 cell populations, as contrasted with activated T cells.
Further, there was no response of CD25+ B1a cells to IL-2 as
shown by the failure of IL-2 to produce tyrosine phosphoryla-
tion of STAT5 (data not shown). These results indicate that CD25
marks a pTyr705STAT3-containing subset of peritoneal B1 cells
but does not function as a complete, cytokine-responsive receptor.

CD25+ B1a CELLS EXPRESS LIF RECEPTOR
The association between CD25 expression and phosphorylated
STAT3, combined with the lack of a direct mechanism connecting
the two, raises the possibility that another STAT3-active cytokine
receptor segregates with CD25+ B1a cells. In previous work with
embryonic stem cells, LIF-induced self-renewal was shown to
depend on STAT3 (Niwa et al., 1998); inasmuch as B1 cells dis-
play the property of self-renewal along with activated STAT3, we
considered the possibility that LIF and LIFR might play a role in
B1a pSTAT3 expression. Inasmuch as immunofluorescent reagents
are not available to detect murine LIFR, we first examined sort-
purified B cell populations for LIFR gene expression by real-time
PCR. Results are shown in Figure 5A. We found that B1a cells
expressed LIFR transcripts whereas B2 cells did not. Importantly,
we found that the level of LIFR gene expression was much greater

FIGURE 4 | CD25 expression on a subset of B1a cells is not

accompanied by expression of CD122. Five lymphocyte populations were
sort-purified: splenic follicular B2 cells (“B2”), peritoneal B1a cells (“B1”),
CD25− peritoneal B1a cells (“CD25− B1”), CD25+ peritoneal B1a cells
(“CD25+ B1”), and splenic T cells (“T”). B cell populations were
unstimulated whereas T cells were stimulated by ConA at 5 μg/ml for
2 days. RNA was prepared, reverse transcribed, and evaluated for
expression of CD122 by real-time PCR, normalized to β2-microglobulin.
Expression by each population relative to peritoneal B1a cells is shown as
the mean of six experiments with lines indicating the SE of
the means.

FIGURE 5 | CD25+ B1a cells express LIF receptor (LIFR). Five lymphocyte
populations were sort-purified: splenic follicular B2 cells (“B2”), peritoneal
B1a cells (“B1”), CD25− peritoneal B1a cells (“CD25− B1”), CD25+

peritoneal B1a cells (“CD25+ B1”), and splenic T cells (“T”). (A) RNA was
prepared from each of these populations, reverse transcribed, and
evaluated for expression of LIFR by real-time PCR, normalized to
β2-microglobulin. Expression by each population relative to peritoneal B1a
cells is shown as the mean of six experiments with lines indicating the SE
of the means, with the exception of splenic T cells for which n = 3. (B)

Protein extracts were prepared from each of these populations and
immunoblotted for expression of “LIFR”. Blots were stripped and reprobed
for expression of total beta actin (actin) as a loading control. Representative
results from one of three comparable experiments are shown.

in CD25+ B1a cells than in CD25− B1a cells. To verify the relative
enrichment of CD25+ B1a cells for LIFR expression, we evaluated
LIFR protein expression by Western blotting. Results are shown
in Figure 5B. Much like LIFR gene expression, we found that B1a
cells expressed LIFR protein whereas B2 cells (and T cells) did not;
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FIGURE 6 | CD25+ B1a cells respond to LIF. Four populations of B cells
were sort-purified: peritoneal B1a cells (“B1” in blue in upper panel),
splenic follicular B2 cells (“B2” in red in upper panels), CD25+ peritoneal
B1a cells (“CD25+ B1” in red in lower panels), and CD25− peritoneal B1a
cells (“CD25− B1” in blue in lower panels). B cells were cultured in medium
alone (“Medium”), with Na3VO4 at 10 mM for 1 or 2 min, as indicated, with
F(ab′)2 fragments of goat anti-mouse IgM at 15 μg/ml for 4 min (“anti-IgM”),
with recombinant LIF at 10 ng/ml for 5 min, or with recombinant IL-6 at
10 ng/ml for 5 min. Cells were then harvested, fixed, permeabilized, and
examined for intracellular tyrosine phosphorylated STAT3 (“pSTAT3”) by
phosphoflow analysis. Isotype control antibody staining is displayed in gray.
Representative results from one of three comparable experiments are
shown. The displayed results were obtained at the same time as the results
shown in Figure 2A.

importantly, we found that the level of LIFR was much greater
in CD25+ B1a cells than in CD25− B1a cells. Thus, LIFR segre-
gates with CD25 expression among peritoneal B1a cells, much like
phosphorylated STAT3 and activated signaling intermediates.

CD25+ B1a CELLS RESPOND TO LIF
The CD25+ B1a cell LIFR might mediate STAT3 phosphorylation;
on the other hand, the failure of CD25 to mediate IL-2 signaling
in these cells raises the possibility that LIFR might be similarly
indolent. To address this issue, we examined the phosphorylation
status of STAT3 after LIF treatment in sort-purified B cell pop-
ulations by phosphoflow analysis. Results are shown in Figure 6.
We found that, at baseline and as expected, B1a cells contained
more pTyr705STAT3 than B2 cells, and CD25+ B1a cells con-
tained more pSTAT3 than CD25− B1a cells; these relationships
were both accentuated by treatment with Na3VO4. Importantly,
we found that addition of LIF (in the absence of Na3VO4) pro-
duced a marked increase in pSTAT3 in B1a cells (but not in B2
cells), resulting in a bimodal distribution, suggesting the presence
of responsive and non-responsive populations. Further examina-
tion of separated CD25+ and CD25− B1a cells revealed that the
increase in pSTAT3 induced by LIF occurred predominantly within
the CD25+ B1a population. As a control, IL-6 treatment of these B
cell populations produced an increase in pSTAT3 that was equally
shared by the CD25+ and CD25− B1a populations. Thus, LIF
specifically affects LIFR-expressing CD25+ B1a cells indicating
that the LIFR is functional in this B1a subset.

DISCUSSION
The work described herein identifies a novel subset of B1 cells
that expresses the high affinity IL-2 receptor α chain, CD25.
Despite comprising only one-fifth of peritoneal B1a cells, the
CD25+ population accounts for two key characteristics previously
attributed to the whole population of peritoneal B1a cells: consti-
tutive expression of pSTAT3 (along with attendant expression of

SOCS3); and, continual activation of signaling intermediates. It is
unclear why CD25− B1a cells are deficient in these features, but
this finding raises the possibility that CD25+ and CD25− B1a cells
differ in origin, development, BCR specificity, and/or function.

One function in particular that differs between CD25+ and
CD25− B1a cells relates to LIF signaling, the receptor for which is
here shown to be expressed preferentially by CD25+ B1a cells. LIFR
expression to our knowledge has not been previously reported on
any B cell subset. Further, LIFR on CD25+ B1a cells constitutes
a functioning receptor that responds to LIF with an increase in
STAT3 phosphorylation. This suggests a role for LIF in the base-
line level of pSTAT3 previously shown to be elevated in B1a cells
and here shown to segregate with CD25+ B1a cells. Although
the net result of LIFR and pSTAT3 expression by CD25+ B1a
cells remains uncertain, these molecules have been reported to
contribute powerfully to processes of activation, expansion, dif-
ferentiation, and immunoregulation (Taupin et al., 1998; Bowman
et al., 2000; Bromberg and Darnell, 2000; Calo et al., 2003; Dim-
itriou et al., 2008), implying a distinct physiology for CD25+
as opposed to CD25− B1a cells. In particular, LIF and STAT3
promote self-renewal and pluripotency of embryonic stem cells
(Niwa et al., 1998; Cartwright et al., 2005), suggesting that B1a cell
self-renewal may be focused on the CD25+ population that is acti-
vated, presumably, as a result of self-antigen recognition. It may be
speculated that this would promote the maintenance of a popu-
lation of B1a cells specialized for production of immunoglobulin
that serves to homeostatically bind and dispose of cellular debris
(Binder and Silverman, 2005). Of note, SOCS3 inhibits pSTAT3
and LIFR signaling (Naka et al., 1997; Starr et al., 1997; Auern-
hammer and Melmed, 2001; Yoshimura et al., 2007), suggesting a
complex interplay among these components that in the context of
B cells takes place solely within a minor subset of B1a cells that
expresses CD25.

Although LIFR expression correlates with signaling in response
to LIF, the index marker for the CD25+ B1a subset, CD25 (IL-2Ra),
does not constitute a complete receptor and does not mediate sig-
naling in response to IL-2 as it does in activated B2 cells, due
to the lack of CD122 (IL-2Rβ; Muraguchi et al., 1985; Minami
et al., 1993). On the other hand, CD25 expression appears to
reflect activation in B1a cells as it does in B2 cells, because CD25+
B1a cells preferentially manifest continual activation of signal-
ing mediators, as previously described for B1a cells in general,
and because interference with signalosome mediators produces a
rapid decline in CD25 expression. Of note, however, the stability
of CD25 expression over long periods of time in vivo after adop-
tive transfer (unpublished observations) suggests that CD25 does
not reflect a temporary stage of, or transient event in, B1a cells, but
rather corresponds to a chronic condition of activation. Our previ-
ous work suggests that continual activation of signaling mediators
in B1a cells is BCR-driven, presumably on the basis of antigen, or
self-antigen, recognition. In this scenario a consequence of contin-
ual signaling, upregulation of CD25, would also be determined by
BCR antigen specificity, which as an unchanging characteristic is
consistent with CD25 persistence. Analysis of CD25+ and CD25−
B1a immunoglobulins showed a trend toward more N-less (and
thus more germline like) sequences in the former (unpublished
observations); however, this did not reach the level of significance
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and it will be necessary to examine antigen recognition rather than
antibody structure to elucidate the origin of B1a continual signal-
ing and CD25 expression. Of note, no difference in spontaneous
antibody secretion has been noted between CD25+ and CD25−
B1 cells (unpublished observations).

As a positive control for activation of signaling intermediates
B cell antigen receptors were polyclonally crosslinked with anti-
IgM. In B1a cells, this led to an increase in pSyk and pPLCγ2,
that was more marked in CD25+ as compared to CD25− B1a
cells. These results recapitulate our earlier finding (Morris and
Rothstein, 1994) that BCR crosslinking in B1 cells yields normal
induced phosphorylation of PLCγ2 that, however, fails to pro-
duce full enzymatic activation. In light of the failure of BCR
crosslinking in B1 cells to produce NF-κB activation or mito-
genic stimulation, phosphorylation of signaling intermediates as
shown here and elsewhere (Wong et al., 2002) emphasizes that

BCR signaling in B1 cells is not indolent, just different. The recent
report that SOCS3 can interfere with NF-κB activation (Bruun
et al., 2009) suggests another explanation for the early termina-
tion of BCR signaling in B1 cells (Rothstein and Kolber, 1988a,b;
Morris and Rothstein, 1993).

In sum, CD25+ B1a cells represent a minor B1 cell population
that preferentially embodies the known B1 cell characteristics of
continual signaling and activated STAT3, and is here shown to be
the sole B cell population that expresses LIFR and responds to LIF.
The latter may contribute to constitutive expression of pSTAT3 in
B1 cells.
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