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Abstract

Background: Rainbow trout (Oncorhynchus mykiss) is a salmonid species with a complex life-history. Wild
populations are naturally divided into freshwater residents and sea-run migrants. Migrants undergo an energy-
demanding adaptation for life in seawater, known as smoltification, while freshwater residents display these
changes in an attenuated magnitude and rate. Despite this, in seawater rainbow trout farming all fish are
transferred to seawater. Under these circumstances, weeks after seawater transfer, a significant portion of the fish
die (around 10%) or experience growth stunting (GS; around 10%), which represents an important profitability and
welfare issue. The underlying causes leading to GS in seawater-transferred rainbow trout remain unknown. In this
study, we aimed at characterising the GS phenotype in seawater-transferred rainbow trout using untargeted and
targeted approaches. To this end, the liver proteome (LC-MS/MS) and lipidome (LC-MS) of GS and fast-growing
phenotypes were profiled to identify molecules and processes that are characteristic of the GS phenotype.
Moreover, the transcription, abundance or activity of key proteins and hormones related to osmoregulation (Gill
Na+, K+ —ATPase activity), growth (plasma IGF-I, and liver igf1, igfop1b, ghr1 and ctsl) and stress (plasma cortisol)
were measured using targeted approaches.

Results: No differences in Gill Na+, K+ —ATPase activity and plasma cortisol were detected between the two
groups. However, a significant downregulation in plasma IGF-I and liver igfl transcription pointed at this growth
factor as an important pathomechanism for GS. Changes in the liver proteome revealed reactive-oxygen-species-
mediated endoplasmic reticulum stress as a key mechanism underlying the GS phenotype. From the lipidomic
analysis, key observations include a reduction in triacylglycerols and elevated amounts of cardiolipins, a
characteristic lipid class associated with oxidative stress, in GS phenotype.

Conclusion: While the triggers to the activation of endoplasmic reticulum stress are still unknown, data from this
study point towards a nutritional deficiency as an underlying driver of this phenotype.
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Background

Industrialised intensive aquaculture is a more recent form
of animal production than stockbreeding of terrestrial ani-
mals (i.e. poultry, cattle and pigs) and, by comparison, has
had relatively few years to selectively breed the most de-
sirable attributes [1]. Fish breeding programs rely heavily
on advances in reproductive and molecular techniques to
accelerate the selection of desirable traits [2]. The rela-
tively low degree of domestication, particularly in some
aquatic species, provides scientists with the opportunity
to study unwanted commercial phenotypes that may not
be present in the future. With the identification of the
cause(s) of such phenotypes, their development could be
prevented. For production species, fast growth is one of
the main desirable attributes. Slow or stunted growth, on
the other hand, is a phenotype that delivers negative im-
pacts on production profitability, sustainability, and more
importantly on animal welfare [3].

Rainbow trout (Oncorhynchus mykiss) is a salmonid
species with a unique life-history. Wild populations are
naturally divided into freshwater residents, which do not
migrate to seawater, and sea-run migrants. The latter
undergo an energy-demanding rheostatic process that
prepares the organism for life in seawater while still in
freshwater (i.e. smoltification), while freshwater residents
display an attenuated magnitude and rate of these
changes [4, 5]. The drivers towards either life history are
largely unknown. Efforts to produce a strain with a sin-
gle phenotype, either selecting the sea-run [4, 6, 7] or
the freshwater-resident [8], could only increase the pro-
portion of the desired phenotype. Production of seawater
transferred-rainbow trout is still relatively small but both
investment and production have increased steadily in re-
cent years [9]. The animals grown in these production
systems are only a few generations away from
freshwater-farmed rainbow trout, which were selected
for their performance in freshwater systems. Under these
circumstances, a persistent problem has affected this
sector: shortly after seawater transfer, a portion of the
animals (around 10%) die, and another portion (around
10%) experience reduced growth, a marked decrease in
condition factor, and poor welfare [10, 11]. These ani-
mals are known as growth-stunted (GS) or runts (in
Norwegian pinne, meaning stick).

Few published studies have investigated the GS
seawater-transferred rainbow trout phenotype. Two stud-
ies found nematode infections in a small proportion of the
GS rainbow trout: Roiha et al. [12] detected it in 5 runts
out of 178 discarded fish and not in harvest quality fish,

and Skov et al. [13] detected it in 9.5% of the runts and
2.1% of the harvest quality fish. This was likely due to the
reported feeding habits of the GS fish, which consumed
more small fish, crustaceans and biofouling species than
their healthier counterparts [13], and not an underlying
cause of GS development. Previous studies identified a
freshwater rainbow trout phenotype, as also seen in other
salmonid species [14—16], that occurs in both aquaculture
and laboratory conditions and presents stunted growth
and reduced condition factor [17, 18]. Studies have shown
that while reduced food intake is an important factor for
the development of this phenotype in rainbow trout [18,
19], fundamental physiological traits such as a higher
standard metabolic rate are key intrinsic drivers in brown
trout (Salmo trutta) [15]. Other studies have linked GS to
subordinate behaviour, with subordinate fish exhibiting
higher post-stress plasma cortisol levels and lower stressor
avoidance [20, 21]. From a metabolic perspective, subor-
dinate fish rely on [-oxidation of circulating free fatty
acids rather than on triacylglycerides (TAGs) for energy
[22]. Moreover, differences in carbohydrate metabolism in
subordinate fish include a lower hepatic glycogen content,
higher gluconeogenic potential [23—-25] and higher plasma
glucose levels [18, 26, 27]. From a protein perspective, re-
sults so far have been inconclusive with no significant
changes reported in liver protein levels, with only moder-
ate, but not significantly different, aspartate aminotrans-
ferase and alanine aminotransferase activities detected
[18]. These listed mechanisms may be relevant to the GS
phenotype in seawater-transferred rainbow trout but,
interestingly, the problem at hand occurs only after an
artificial and forceful seawater transfer of the fish.

Several explanations, such as increased stress, subordin-
ate social status, incomplete smoltification or fasting are
possible causes. In cases like this, the initial characterisa-
tion of the phenotype can be the way forward, providing a
holistic view of the underlying mechanisms that lead to a
condition [28-30]. This is where -omics technologies ex-
ceed, measuring the abundance of large numbers of pos-
teriorly annotated biomolecules (ie. transcripts, proteins,
metabolites, lipids, etc.) of a sample in an untargeted man-
ner. With this information, it is possible to pinpoint the
involved pathways before moving onto a targeted ap-
proach to study them in detail. In similar cases within
both humans and other animal species, —omics ap-
proaches have been successfully used, with both prote-
omic and lipidomic studies having been used to assess the
effects on liver tissue of differential feeding [31-33], stress
[34], and disease [35, 36], among others.
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As a target tissue, the liver, due to its central role in en-
ergy storage and mobilization, is ideal as it should reflect
differences in energy balance and metabolism [37]. Liver
pathologies like hepatic steatosis (i.e. fatty liver) have been
linked to loss of appetite and dwarfism in animals like cat-
tle and horses [38, 39], which in turn have been attributed
to endoplasmic reticulum (ER) stress [40, 41]. The ER is
central to the processes of energy production and protein
synthesis. ER stress prevents the correct function of the or-
ganelle and it is intrinsically linked with the dysregulation
of lipid metabolism [41]. One of the main consequences of
ER stress is an accumulation of mis-folded proteins in the
ER lumen and impaired protein glycosylation. Folding de-
pends on the correct function of lectins like calreticulin
and calnexin [42], while other proteins like Heat Shock
Protein 90 (HSP90) stabilize the system [43]. ER stress is
closely related to oxidative stress and redox homeostasis
[44]. ER stress in hepatic disorders like steatosis have been
linked to abnormally regulated proteins such as glycine N-
methyltransferase [45], catalase [46], and alpha-2-
macroglobulin [47]. Pathogens can also drive ER stress.
For instance, the salmonid pathogens Francisella spp. have
been shown to disrupt the transcription of enzymes in-
volved in glycosylation or deglycosylation [48]. Currently,
there is no data to support whether the GS phenotype is
linked to oxidative and ER stress although these processes
have been linked to several metabolic disorders that can
negatively affect health and growth [49, 50].

The aim of this study was to characterise the GS
phenotype using targeted and untargeted approaches.
To this end, the liver proteome (liquid chromatog-
raphy - tandem mass spectrometry (LC-MS/MS)) and
lipidome (liquid chromatography - mass spectrometry
(LC-MS)) of GS and FG phenotypes were profiled to
pinpoint molecules and processes that are characteris-
tic of the GS phenotype. Moreover, the transcription
of several genes (insulin-like growth factor 1 (igfl), in-
sulin-like growth factor binding protein 1b (igfbplb),
growth hormone receptor 1 (ghrl) and cathepsin L
(ctsl), as well as abundance (plasma IGF-I and corti-
sol) and activity (Gill Na*, K'~ATPase (NKA)) of key
proteins and hormones related to osmoregulation
(NKA activity), growth (plasma IGF-I, igfl, igfbplb,
ghrl and ctsl) and stress (plasma cortisol) were ana-
lysed using targeted approaches.

Results

Seawater tolerance in FG and GS fish

NKA activity values after 9 weeks in seawater were not
related to GS development as no significant differences
among FG and GS groups (p=0.60, df=32, t=0.53)
were observed. Values for both groups were 2.6+
0.30 umol ADP mg protein™ " h™ ' on average (Fig. 1).
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Fig. 1 Gill Na+, K+ —-ATPase activity in FG and GS fish. Samples were

taken after 9 weeks in seawater (n=17)
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Plasma cortisol in FG versus GS fish

Plasma cortisol levels showed no significant differences
among phenotypes in either freshwater (p = 0.47, df = 28,
t=0.73) or seawater (p=0.44, df=58, t=0.78). How-
ever, cortisol levels were significantly higher when fish
were in freshwater (average of 76.0+10.67 ngml ')
compared to seawater (average of 20.8 +4.19ngml ')
(p <0.0001, df = 88, t =5.76) (Fig. 2).

Growth-related parameters in FG versus GS fish
Circulating plasma IGF-I levels showed no significant
differences among phenotypes in freshwater (p=0.18,
df =14, t=1.46) but did after 9 weeks in seawater (p <
0.01, df =13, t=3.09) (Fig. 3). This significant difference
was due to a significant increase for FG (p <0.01, df =7,
t=3.76), while plasma IGF-I levels did not vary signifi-
cantly from freshwater to seawater for GS (p = 0.63, df =
7, t=0.50).

After 9weeks in seawater, concordantly with plasma
IGF-I abundance, liver igfl transcription was higher in
FG than in GS (p<0.01, df =14, t=3.99). On the other
hand, while not significant for igfbpib, there was weak
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Fig. 2 Plasma cortisol levels in FG and GS fish. Samples were taken
prior (left, n=15) and 9 weeks after (right, n = 30) seawater transfer
.
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Fig. 3 Circulating IGF-I abundance in FG and GS fish. Samples were
taken prior (left) and 9 weeks after (right) seawater transfer (n = 8)

evidence (i.e. 0.05<p-value <0.1) indicating that its
transcription might be higher in GS (p =0.07, df=14,
t=1.94). For ghrl (p=0.10, df=14, t=1.73) and cts/
transcription (p =0.39, df =14, t=0.90), no differences
were observed (Fig. 4).

Liver proteome analysis

The protein fraction in the liver of FG fish was signifi-
cantly lower (14.6% + 0.75) than in GS fish (17.5% + 1.05)
(p<0.01, df = 8, t =4.94). After MS analysis of TMT la-
belled liver samples, a total of 540 peptides were de-
tected (Additional file 1). Of those, 299 peptides were
uniquely assigned to proteins and used for quantifica-
tion. These peptides were mapped onto 132 quantified
proteins.
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In total, 19 differential proteins (q-value <0.05) were
detected when comparing the liver proteome of GS and
FG (Fig. 5). These proteins were assigned functionally to
translation, redox homeostasis, oxygen transport, stress
response, and transport and metabolism of carbohy-
drates and lipids. Among upregulated differential pro-
teins in the GS phenotype there were a number of
critical protein chaperones previously reported to be as-
sociated with reactive oxygen species (ROS) mediated
ER stress: calreticulin, protein disulphide isomerases
(PDL I, 1II and III), HSP90-al, alpha-2-macroglobulin.
Other proteins associated with the ER and involved in
the translocation of secretory proteins (translocating
chain-associated membrane protein) or involved in pro-
viding reducing equivalents to maintain adequate levels
of reductive cofactors in the ER (GDH/6PGL endoplas-
mic bifunctional protein) were also upregulated. On the
other hand, downregulated differential proteins in the
GS phenotype included catalase (I and II), a crucial anti-
oxidant enzyme, the inhibition of which has been re-
ported under ER stress conditions, and other proteins
also reported to be closely linked to ER stress and redox
homeostasis such as Glycine N-methyltransferase or in-
volved in lipid and energy homeostasis, such as annexin,
sterol carrier protein 2 (SCP-2) and malate
dehydrogenase.

Liver lipidome analysis
Lipid levels in the liver of FG fish were not significantly
different (15.4 + 2.87%) to levels in GS fish (13.8 + 0.97%)
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Fig. 4 Liver transcription of growth-related genes. Genes igf1 (a), igfbp1b (b), ghr1 (c), and cts/ (d) in FG and GS fish after 9 weeks in
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il203lalslalz21304al5s|Accession Protein name
095479 GDH/6PGL endoplasmic bifunctional protein
Q6UD79 Calreticulin
P01023 Alpha-2-macroglobulin
AOA060XS59 Protein disulfide-isomerase (1)
AOA060WS539 Protein disulfide-isomerase (I1)
AOA060WQP1 Protein disulfide-isomerase (l11)
Q90474 Heat shock protein HSP 90-alpha 1
AOA060W2P7 Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 1
C1BG76 40S ribosomal protein S13
AOA1S3LI61 Translocating chain-associated membrane protein
P51124 Granzyme M
AOA060VXL3 Annexin
AOAO60YE44 Poly [ADP-ribose] polymerase
AOA060VZR8 Malate dehydrogenase
AOAO60W7L7 Catalase (I)
AOA060X782 Catalase (I1)
AOAO60XET2 Glycine N-methyltransferase
P22307 Sterol carrier protein 2
. Q98974 Alpha-globin IV
Fig. 5 Heatmap of protein abundance for 19 differential proteins between FG and GS liver samples (n=5). Accession and protein name are
retrieved from Uniprot (uniprot.org). Colour goes from white (less abundant) to dark red (more abundant) and each row is scaled independently

(p=0.60, df=8, t=0.54). Lipidomics analysis of liver
samples returned 6456 and 2756 lipid features in posi-
tive and negative modes, respectively. OPLS-DA analysis
(Suppl. Fig. 1, Additional File 2) revealed that neutral
lipids, specifically TAGs, as well as ceramides and a cho-
lesteryl ester were found to be the main drivers in separ-
ating the FG fish from the GS fish. TAGs ranged from
52 to 60 carbon moieties, however the 56—60 carbon
TAGs appeared to dominate, with a wide range of unsat-
uration levels, again ranging from 1 to 9 double bonds.
With regards to peak abundance, TAG peak areas were
found to be highest with peak areas in the 10° and 10’
ion count range. However, care must be taken with re-
gard to inter-lipid comparisons, as a fold change quanti-
tation method was used, which is not amenable to
absolute lipid quantitation. Six unknown features (un-
named Lipid ID rows plus LMS0601CI08 in Fig. 6) were
also detected which exhibited large fold changes, albeit
with much lower abundances (Fig. 6, Additional file 2).

In general, the phospholipids which distinguish the GS
condition tended to be larger at 44 carbons in length, as
well as being more unsaturated, containing on average
10 double bonds. There was also some compound iden-
tity ambiguity, based on mass accuracy alone, which
yielded either phosphatidyl serine or inositol-based
sphingolipids, with these compounds generally being
more abundant in the FG fish.

In total, 55 differential lipids were significantly higher
in FG (fold change > 1.5; q-value <0.05) compared to

GS. The most significant changes in terms of numbers
(24) and the greatest fold changes (ranging from 2.8 to
14.8) were observed in TAG, with most TAGs experien-
cing a fold change greater than 5 in the FG fish (Fig. 6).
On the other hand, in GS liver, 39 lipids were signifi-
cantly more abundant (fold change <-1.5; g-value <
0.05), all of which were phospholipids; phosphatidylcho-
line (PC; 15), phosphatidylethanolamine (PE; 7), phosti-
dylserine (PS; 4) and cardiolipins (CL, 4) (Fig. 7). In fact,
both conditions demonstrated fluctuations within the
main classes of phospholipid, including PC, PE and PS,
with PG 44:12 only detected in FG fish and phos-
phatidylinositol (PI) 38:6 and 36:4 only detected in GS
fish. The phospholipids in general were elevated in the
GS fish, as illustrated by the approximately 2.5-fold in-
crease in the number of phospholipids. GS fish also pro-
duced elevated amounts of CL, which was a
characteristic lipid class associated with this phenotype.

Discussion

Seawater-transferred rainbow trout farming is a develop-
ing industry, which has experienced a strong increase in
production during the last three decades [9]. However,
the incidence of GS fish has hindered its economic
growth and is an animal welfare concern. The cause of
the development of this unwanted phenotype remains
unknown. Understanding the underpinning metabolic
traits that characterise this phenotype could be the first
step towards optimized rearing strategies and feeding
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Lipid ID. Adducts m/z Retention g Value Fold Change FGAvg. GSAvg. 112134541 1213]14]|5
1404.96 13.80 0.00 149.54 7.76E+03 7.40E+01
LMSP0601CI08 M-H 1508.94 15.08 0.00 63.68 6.45E+03 1.15E+02
1440.96 15.06 0.01 2791 2.02E+04 8.00E+02
1346.95 14.87 0.02 26.10 1.40E+04 6.02E+02
Dolichol M+K 1148.00 18.77 0.02 2131 5.44E+05 2.15E+04
TG 60:9 M+NH4, M+Na, M+K 974.81 1591 0.05 14.77 2.99E+05 1.64E+04
1372.97 15.08 0.02 1477 8.47E+04 6.30E+03
TG 60:8 M+NH4, M+Na, M+K 976.83 16.27 0.04 13.18 1.03E+06 6.29E+04
1G58:7 M+NH4, M+Na, M+K 950.82 16.23 0.05 12.96 1.08E+06 6.74E+04
TG 58:8 M+NH4, M+Na, M+K 948.80 15.84 0.05 12.60 2.21E+06 1.42E+05
TG 56:6 M+NH4, M+Na, M+K 924.80 15.93 0.04 11.93 7.89E+05 5.34E+04
16 56:8 M+NH4, M+Na, M+K 920.77 15.39 0.05 11.05 6.22E+05 4.55E+04
TG 56:3 M+H, M+NH4, M+Na, M+K 930.85 16.79 0.04 10.75 2.71E+06 2.05E+05
TG 58:6 M+NH4 952.83 16.38 0.04 10.74 2.99E+05 2.25E+04
TG 58:3 M+H, M+NH4, M+Na, M+K 958.88 17.15 0.04 10.29 1.03E+06 8.09E+04
TG 60:3 M+H, M+NH4, M+Na, M+K 986.91 17.46 0.03 10.24 3.38E+05 2.68E+04
16 56:7 M+NH4 922.78 15.79 0.04 9.32 1.36E+06 1.18E+05
TG 62:8 M+NH4, M+Na 1004.86 16.67 0.04 9.20 3.43E+05 3.03E+04
1G56:7 M+Na, M+K 927.74 15.79 0.05 9.12 3.72E+05 3.30E+04
900.6103 M+H, M+Na 900.61 15.05 0.02 9.09 5.67E+05 5.97E+04
1G56:4 M+H, M+NH4, M+Na 928.83 16.47 0.05 8.78 1.20E+06 1.11E+05 E
TG 56:5 M+H, M+NH4, M+Na, M+K 926.81 16.16 0.05 8.39 9.82E+05 9.49E+04
TG 56:2 M+NH4, M+Na, M+K 932.86 17.12 0.03 7.98 7.07E+05 7.25E+04
1658:4 M+H, M+NH4, M+Na 956.86 16.85 0.04 7.94 4.21E+05 4.32E+04
1344.94 14.65 0.02 7.71 1.38E+04 1.79E+03
16 58:5 M+NH4, M+Na, M+K 954.84 16.57 0.04 6.93 3.41E+05 4.03E+04
TG 54:2 M+NH4, M+Na, M+K 904.83 16.75 0.04 6.06 1.92E+06 2.60E+05
CE20:3 M+FA-H 719.60 12.42 0.00 5.31 9.23E+03 1.92E+03
Cer 43:4;02 M-H, M+FA-H 702.61 12.41 0.00 4.99 2.13E+04 4.61E+03
PS46:11 M+FA-H 954.55 6.71 0.03 4.98 6.81E+03 1.69E+03
TG54:3 M+H, M+NH4, M+Na, M+K 902.82 16.41 0.05 4.94 6.53E+06 1.08E+06
Cer 41:3;03 M+FA-H 692.58 12.42 0.00 4.88 3.61E+04 8.10E+03
PS 38:0 M-H 818.59 9.79 0.02 4.74 7.82E+03 2.01E+03
Cer 40:3;03 M+FA-H 678.56 12.13 0.01 4.59 1.15E+04 2.73E+03
PC37:1 M+FA-H 846.62 10.66 0.03 3.44 9.19E+03 3.17E+03
PS 40:5 M+FA-H 882.55 6.45 0.02 3.24 1.82E+04 5.91E+03
PC41:6 M+FA-H 892.61 9.60 0.02 3.10 1.92E+04 7.036+03
1653:3 M+NH4, M+Na, M+K 888.80 16.21 0.05 2.75 3.80E+05 1.18E+05 [ |
PC41:6 M+FA-H 892.61 9.89 0.03 2.74 1.20E+04 4.79E+03 [ |
SM42:4 M+FA-H 853.65 11.28 0.01 2.74 1.09E+04 4.32E+03
PE 38:1 M+H, M+Na 774.60 9.80 0.04 2.67 4.60E+05 1.61E+05 [ |
PE 40:1 M+H, M+Na 802.63 10.66 0.04 2.66 3.25E+05 1.15E+05 [ |
PE 44:6 M+H, M+Na 848.61 9.61 0.04 2.44 7.67E+05 2.98E+05 [ |
PS38:2 M+Na, M+K 838.56 6.44 0.03 2.41 4.41E+05 1.86E+05
16 50:2 M+NH4, M+Na, M+K 848.77 15.93 0.05 2.29 1.46E+06 5.48E+05 1 I
Hex2Cer 38:5;06 M-H, M+FA-H 972.60 10.54 0.03 217 1.39E+04 6.86E+03 [ |
PS 40:5 M+FA-H 882.55 7.54 0.05 2.11 1.69E+04 8.57E+03 | |
PC42:7 M+FA-H 904.61 10.54 0.03 2.09 7.95E+04 4.06E+04 [ |
PS 40:5 M+FA-H 882.55 7.21 0.05 2.02 2.19E+04 1.15E+04 [ |
SM43:4 M+FA-H 867.66 11.60 0.01 1.83 3.66E+04 2.17€+04 [ |
PG44:12 M-H 865.50 8.06 0.04 177 8.32E+04 5.05E+04
Hex2Cer 36:4;06 M-H, M+FA-H 946.58 10.41 0.03 1.56 2.81E+04 1.79E+04 !
Fig. 6 Significantly higher lipids in the fast-growing phenotype (n = 5). GS: Growth-stunted, FG: Fast-growing. Abundance values are based on
normalised ion counts. Colour goes from white (less abundant) to dark red (more abundant) and each row is scaled independently. Retention is
expressed in minutes

protocols that decrease the incidence of GS. To this end,
untargeted —omics approaches were used to study the
liver proteome and lipidome of GS fish compared to FG
fish, while targeted approaches were employed to meas-
ure smoltification status (NKA activity), growth-related
(plasma IGF-I abundance and liver igfl, igfbp1b, ghr, and
ctsl transcription) and stress-related parameters (plasma
cortisol).

Since growth is the attribute that most clearly distin-
guishes GS and FG fish, it would be expected that
growth-related molecular drivers differ between the two
phenotypes. As determined by a genome-wide associ-
ation studies [51, 52], somatic growth is polygenic trait
in rainbow trout. It is associated to single-nucleotide
polymorphisms in several candidate genes including
genes involved in development processes, growth factors,
and bone tissue and nutrient metabolism. It is highly
likely that the GS condition is also genetically deter-
mined, which would justify breeding programs to reduce
the appearance of GS. Some genes and proteins are clas-
sically measured as determinants of growth. IGF-I is a

peptide hormone that promotes growth in fish, as is
IGF-II [53-55], along with growth hormone and its re-
ceptor GHr1, among others. Among the IGFBPs (1 to 6)
present in rainbow trout, IGFBP1b was of especial inter-
est as it inhibits the binding of IGF-I to its receptor and
represses growth [56, 57]. Both IGFBP1b and CTSL, an
endopeptidase, are induced under catabolic conditions
[58, 59]. Indeed, differences between the two phenotypes
were found in some of these growth-regulatory mole-
cules. No evidence to confirm changes in the expression
of ghril, igfbplb or ctsl was obtained, but the involve-
ment of IGF-I was demonstrated. IGF-I was significantly
lower in GS fish at both plasma and liver transcription
levels. These results reiterate the importance of the
somatotropic axis in the regulation of growth and show
their involvement in the development of GS [60]. More-
over, while plasma IGF-I increased in FG fish during
their time in seawater, levels in GS did not vary. This
suggests that GS development might be associated to
suboptimal seawater adaptation, which may trigger the
development of this phenotype after animals are
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p
Lipid 1D Adducts m/z Retention Value  Fold Change FG Avg. GS Avg. 1/2]3]4|5})1]2]3]4]|5
CL80:17 M-H 1541.95 14.50 0.01 3.93 2.41E+03 8.40E+03 .
PE 36:5 M-H 736.49 9.31 0.00 291 5.74E+03 1.64E+04
PE 38:7 M-H 760.49 8.87 0.01 2.87 4.49E+03 1.21E+04
PS 0-44:9 M+H, M+Na, M+K 872.58 8.94 0.04 2.86 4.15E+05 1.26E+06
CL80:16 M-H 1543.96 14.81 0.00 2.77 8.77E+03 2.25E+04
PC36:3 M+H 784.58 9.88 0.01 2.67 5.49E+05 1.51E+06
PC40:8 M+H, M+Na, M+K 830.57 9.11 0.01 2.57 1.29E+06 3.64E+06
PE 38:6 M-H 762.51 9.73 0.00 2.57 1.02E+05 2.45E+05
PS42:6 M+H-H20, M+H, M+Na 846.56 8.53 0.02 2.54 1.02E+05 2.75E+05
PC34:3 M+H 756.55 9.14 0.01 2.43 1.02E+05 2.45E+05 .
PC36:4 M+H 782.57 9.31 0.02 2.30 1.77E+05 3.96E+05
PE 38:6 M-H 762.51 9.48 0.00 2.24 2.49E+04 5.38E+04 .
CL84:20 M-H 1591.96 14.62 0.01 2.22 5.90E+03 1.19E+04
PS 40:8 M-H 830.50 9.74 0.00 2.21 1.31E+04 2.73E+04 .
PC40:9 M+H, M+Na, M+K 828.55 8.56 0.02 2.19 4.39E+05 1.01E+06 .
CL80:15 M-H 1545.98 15.16 0.00 2.13 8.98E+03 1.81E+04
PE 40:8 M-H 786.51 9.29 0.01 2.13 4.79E+04 9.57E+04
PC34:2 M+H 758.57 9.69 0.01 2.12 7.46E+05 1.61E+06
PC40:8;0 M+FA-H 890.56 8.54 0.02 2.09 6.19E+03 1.16E+04
PE 40:9 M-H 784.49 8.72 0.02 2.09 6.23E+03 1.27E+04
PS42:10 M-H, M+FA-H 854.50 9.29 0.01 2.04 8.09E+03 1.56E+04
Pl 38:6 M-H 881.52 8.90 0.03 2.03 8.00E+03 1.47E+04
MIPC 30:2;03 M-H, M+FA-H 898.48 9.74 0.01 2.02 6.48E+03 1.24€+04 u
PC44:1 M+H, M+K 880.58 9.16 0.02 2.02 2.99E+05 6.35E+05
PC36:5 M+H, M+Na, M+K 780.55 9.14 0.01 2.00 3.70E+06 7.65E+06
PS45:10 M+FA-H 942.55 9.11 0.00 197 7.03E+03 1.41E+04
PE 42:7 M-H 816.56 9.71 0.00 1.77 1.05E+04 1.85E+04
PS 38:6 M-H 806.50 8.95 0.01 1.72 9.08E+03 1.61E+04
Pl 36:4 M-H 857.52 9.01 0.04 1.69 2.42E+04 3.96E+04
PC38:6 M+H, M+K 806.57 9.56 0.02 167 2.43E+07 4.29E+07
PC38:5 M+H, M+K 808.58 9.80 0.03 1.66 1.99E+06 3.27E+06 .
PE 40:7 M-H 788.53 9.89 0.00 1.64 1.93E+05 3.07E+05
PC42:1 M+H, M+Na 854.57 8.85 0.05 1.64 3.28E+05 5.53E+05
PC40:7 M+FA-H 876.58 9.71 0.00 1.62 2.70E+05 4.42E+05 .
SM42:2 M+H, M+Na, M+K 813.68 11.99 0.02 1.58 1.40E+06 2.14E+06
PC36:2 M+H, M+K 786.60 10.47 0.04 1.54 9.76E+05 1.54E+06
PC38:7 M+H, M+Na, M+K 804.55 8.88 0.05 1.51 2.80E+06 4.48E+06
PC34:1 M+H, M+Na, M+K 760.58 10.31 0.03 1.51 3.83E+06 6.15E+06
PC44:11 M+FAH 924.58 9.15 0.02 1.50 1.23E+04 1.84E+04
Fig. 7 Significantly higher lipids in the growth-stunted phenotype (n =5). GS: Growth-stunted, FG: Fast-growing. Abundance values are based on
normalised ion counts. Colour goes from white (less abundant) to dark red (more abundant) and each row is scaled independently. Retention is
expressed in minutes

forcefully transferred to seawater. Another hypothesis
for the reduction in growth once fish are transferred
could be that GS fish become subordinate fish. Other
studies have demonstrated how subordinate social status
has a detrimental effect on growth, which is accompan-
ied by a metabolic mobilisation of reserves [18, 61].
However, in such cases, metabolic changes have been, at
least in part, driven by chronically high levels of plasma
cortisol in the subordinate fish [17, 18, 62]. In the
present study, plasma cortisol levels were similar be-
tween both groups suggesting that this phenotype is un-
likely to be triggered by the development of a
subordinate social status when animals are transferred at
sea. Furthermore, from a metabolic perspective, subor-
dinate fish have been shown to rely on B-oxidation of
circulating free fatty acids rather than on triglycerides
for energy [22] a feature not observed in the seawater-
transferred GS phenotype.

The liver is a key organ for the accumulation and
mobilization of energy reserves [37]. A labelled prote-
omic approach was used to unravel differences in the
liver proteome between FG and GS. From a protein

perspective, several proteins from the 19 identified dif-
ferential proteins consistently pointed towards ER stress
in GS livers. The ER is central to the processes of energy
production, protein and lipid synthesis and it is closely
related to oxidative stress and redox homeostasis [44]. In
this study, an upregulation of chaperones known to in-
crease in response to ER stress such as calreticulin and
PDI [63, 64] was detected in GS livers. Downregulated
differential proteins in the GS phenotype included cata-
lase (I and II), a crucial antioxidant enzyme, the inhib-
ition of which has been reported under ER stress
conditions. Other proteins also reported to be closely
linked to ER stress and redox homeostasis, such as gly-
cine N-methyltransferase, or involved in lipid and energy
homeostasis, such as annexin, SCP-2 and malate de-
hydrogenase were also differentially expressed in the two
phenotypes [65, 66]. The increase, and more recently the
proven relocation of stress induced ER cytosol chaper-
ones to the cell plasma membrane have expanded the
understanding of the functional role of these proteins,
which can modulate immune responses in response to
proteotoxic stress [67]. Within this context, ER stress
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has been shown to induce inflammation. The release of
cytokines can be directly induced by ER/unfolded pro-
tein response (UPR) pathways or indirectly through the
interaction with innate immune cells. In other organ-
isms, the cross-talk of Toll-like receptors and ER/UPR
pathways is associated to viral infections due to in-
creased viral protein synthesis and assembly. This hy-
pothesis cannot be discarded, as in the GS phenotype,
besides the indication of ER stress, an increase in gran-
zyme M was detected. This protein is a chymotrypsin-
like serine protease that is abundantly expressed in in-
nate effector natural killer cells and acts as a first line of
defence against virus-infected or transformed tumour
cells [68]. With current data, it is not possible to map
out if the activation of ER/UPR pathways is a trigger or
a consequence of an inflammatory state, a question that
has been previously raised [69].

Other proteins upregulated in GS livers included the
chaperone HSP90-al, alpha-2-macroglobulin (broad
spectrum protease inhibitor) and other proteins also as-
sociated with the ER. These proteins are involved in the
translocation of secretory proteins (i.e. translocating
chain-associated membrane protein) or involved in pro-
viding reducing equivalents to maintain adequate levels
of reductive cofactors in the ER (i.e. GDH/6PGL endo-
plasmic bifunctional protein) [70, 71]. Therefore, our
proteomic results in GS point towards ER stress as a key
mechanism reflecting a state of functional imbalance.

As already mentioned, the ER is a key organelle of cel-
lular lipid synthesis coordinating the transfer of lipids at
the cellular level with ER stress associated with anomal-
ous lipid metabolism [72]. In this respect, ER stressors
can disrupt lipid metabolism. Lipidomic data showed
important differences in the hepatic lipid composition of
the two phenotypes. The biggest differences between FG
and GS livers were found in energy reserve species (i.e.
TAGs), which were lower in GS fish livers. Other studies
have shown how ER stressors such as starvation and nu-
trient deficiencies can modulate autophagy, which plays
a vital role in cell survival under long-term ER stress sit-
uations [73]. Autophagy provides cells with energy by
mobilising energy stores such as TAGs. This mobilisa-
tion of lipid reserves is clearly observed in GS fish livers.

Other lipids which differentiated the two phenotypes
were found in the phospholipid fraction. Phospholipids
are key structural constituents of cellular membranes
and of lipoproteins involved in the transport of dietary
lipid from the intestine and liver to the rest of the body
[74, 75]. In general terms, glycerophospholipids were el-
evated in GS fish livers, mainly PC, PE, PS and CL. Pre-
vious studies have reported that changes in PC species
associated with dietary vegetable oil intake may cause an
abnormal lipid deposition in the liver [76], which has
also been linked to reduced growth [77] and suppressed
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immunity and antioxidant capacity [78]. Perturbations of
glycerophospholipids, especially PC and PE levels, can
result in lipid bilayer stress, which in turns causes ER
stress [79]. Furthermore, being components of mem-
branes, glycerophospholipids are affected by oxidative
stress. This is especially the case for CL, due to their al-
most exclusive location in mitochondrial membranes
where the electron-transport chain occurs, and where
there is intense ROS production [80]. CL are involved in
the biogenesis, dynamics and organization of mitochon-
drial membranes, controlling their permeability and con-
tributing to the assembly of mitochondrial protein
complexes involved in respiration and energy production
[81, 82]. These lipids, which were elevated in GS fish
livers, can be used as biomarkers for mitochondrial dys-
function [82, 83].

Some interesting associations between the proteomics
and lipidomics datasets were also found. For instance,
the higher abundance of the differential protein SCP-2
in the FG group is likely related to the higher abundance
of TAGs found in this group. SCP-2 is thought to trans-
fer cholesterol and phospholipids from the inner ER
membrane to the plasma membrane [84], binding both
fatty acids and isoprenoids such as dolichol [85], and fa-
cilitating the esterification of cholesterol to cholesteryl-
esters. This putative SCP-2 was more abundant in FG
fish, with C20:3 cholesteryl-ester also found to be ele-
vated within the same condition, albeit at low absolute
levels. The abundance of TAG in FG fish livers likely re-
sults in the formation of lipoproteins within the blood,
resulting in the translocation of cholesterol and
phospholipid to the plasma membrane, as well as the
upregulation of cholesteryl-esters as a means of storage.
Also of interest is the decreased abundance, 21-fold, of
dolichol in GS fish livers. GS fish were found to have el-
evated dolichyl-disphophooligosaccharide-protein glyco-
syltransferase subunit 1 protein, which correlates with
the reduction in the dolichol substrate pool. Decrease in
dolichol has been proposed as a marker of aging, as well
as of calorie restriction. In calorie restricted mice, doli-
chol was found to decrease in the liver [86], with this
trend appearing to be present within the GS fish, this
may indicate that at least to some extent, GS are experi-
encing caloric restriction.

CL are implicated in the energetic balance [81, 82] and
ceramides regulate a wide variety of molecular processes
[87, 88]. While they are very different in composition
and nature, both lipid classes are prone to peroxidation,
which can lead to dysfunctional mitochondria in the case
of CL [80], and to the induction of apoptosis for cera-
mides [87, 89]. In this sense, the differential proteins
catalase (I and II) and PDI (I, II, and III) are both in-
volved in cell redox homeostasis. Catalase catalyses the
decomposition of hydrogen peroxide to water and
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oxygen and its activity is used as a biomarker of oxida-
tive stress. Therefore, it is a crucial enzyme in protecting
the cell from oxidative damage by ROS and has been
proposed as a biomarker and potential tool for the treat-
ment of liver diseases like hepatitis and hepatocarcinoma
[90]. Moreover, this enzyme may also control bioener-
getic metabolism by regulating the activity of the Krebs
cycle, respiratory chain, and ATP synthesis [90]. On the
other hand, PDI acts as a converging hub for hydrogen
peroxide generation pathways, including oxidases and
peroxidases [91]. Moreover, it is tightly connected to ox-
idoreductases, mitochondria, and NADPH oxidases, the
three main mechanisms of oxidant generation [91-93].
Therefore, although PDI deficiency results in health con-
ditions [94, 95], it represents a mechanism of oxidative
stress regulation. Therefore, these two seemingly oppos-
ite differential proteins, in combination with the differ-
ences in CL and ceramide lipid composition, seem to
indicate that GS might be under higher levels of oxida-
tive stress. In turn, this could be associated with dys-
functional ~ hepatic  cellular ~ membranes  and
mitochondrial membranes and might explain their
physiological challenges. Indeed, hepatic oxidative stress
induced by diet [49, 96] or chemical exposure has been
linked to decreased growth and feed efficiency in fish.
Therefore, it is possible that GS fish have different nutri-
tional needs that their current diet is unable to fulfil.

Conclusions

Results from this study reveal ER stress as a key mech-
anism underlying stunted growth in seawater transfer in
rainbow trout. While the drivers leading to the activa-
tion of ER stress are still unknown, proteomic and lipi-
domic data point towards a nutritional deficiency as an
underlying driver of this phenotype. Future efforts
should be directed at identifying the genetic traits of GS
and re-evaluate feed formulations that can offset the nu-
tritional deficiencies of GS.

Methods
Fish and rearing conditions
Post-smolt rainbow trout (O. mykiss) with a weight of
2479+ 221 g (mean * SE) at seawater transfer (n =306)
were used in this experiment. Fish were fed ad libidum
using a standard commercial dry diet (Skretting AS)
from automatic feeders according to temperature and
fish size. Fish were kept indoors in tanks equipped with
LED lights in a rainbow trout facility from Lergy Vest
AS (Bjorsvik, Hordaland, Norway). Animals were kept at
continuous light, natural temperature, water flow at 0.4
L/kg/min and O, was above 80% in the outlet.

The present experiment was carried out on a subset of
samples from n=64 (n=32 GS and n=32 FG) tagged
(Carlin) fish generated in Morro et al. (2019). GS
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Fig. 8 A representative specimen of the fast-growing (a) and
growth-stunted (b) phenotypes in seawater-transferred
rainbow trout

presented the lowest Fulton index (<1.25gcm™?) and
standard growth rate (SGR) (< 0.65% day~ 1Y in the batch,
while FG presented the highest Fulton index (>1.45¢g
cm?) and SGR (> 0.65% day '). A representative speci-
men of each phenotype can be seen in Fig. 8.

Sampling

Non-lethal sampling for morphometrics and blood took
place on the 5th of July. Fish were transferred to sea-
water on the same day and lethal sampling took place 9
weeks after on the 14th of September.

For the lethal sampling, fish were quickly dip-netted
out of the tanks and euthanized by a lethal overdose of
isoeugenol (AQUI-S). Weight and total length were re-
corded. Blood was withdrawn using heparinised syringes
and centrifuged at 3500xg for 10 min to obtain plasma,
which was frozen at — 80 °C. The first gill arch was dis-
sected out and preserved at —80°C in SEI buffer (Su-
crose 250 mM, Na,EDTA 10 mM, Imidazole 50 mM (all
Sigma-Aldrich)). Liver samples were either preserved
fresh frozen at — 80 °C (for proteomic and lipidomic ana-
lysis) or preserved in RNAlater overnight at 4 °C and fro-
zen at — 80 °C according to manufacturer guidelines (for
transcription analysis).

Gill Na*, K*-ATPase (NKA) activity

NKA activity is a measurement of osmoregulatory cap-
acity in seawater and of the smoltification status. NKA
activity was measured in gill tissue collected from 17
randomly selected fish from each group at the end-point
sampling in seawater (1 =17).

Activity was measured following McCormick [97],
which couples the hydrolysis of ATP to the enzymatic
production of NAD™ through the involvement of the en-
zymes pyruvate kinase and lactate dehydrogenase, and
uses the NKA inhibitor ouabain to trace the baseline.
Kinetic assay readings were carried out at 340 nm for 10
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min (60 cycles) at 25°C in a Sunrise-basic (Tecan) spec-
trophotometer. Total amount of protein in the hom-
ogenate was analysed using a bicinchoninic acid (BCA)
assay run in triplicate. NKA values were determined as
the ouabain sensitive fraction of the ATP hydrolysis,
expressed as umol ADP mg protein ' h™ .

Time-resolved fluoroimmunoassay for plasma IGF-I
Circulating IGF-I levels were measured in plasma col-
lected from 8 randomly selected fish from each group
(n = 8). Repeated measurements took place on the same
fish before seawater transfer and at the end-point sam-
pling in seawater.

Time-resolved competitive fluoroimmunoassay (TR-
FIA) was used to measure plasma IGF-I concentration
[98]. Prior to the assay, plasma IGF-I was dissociated
from the binding protein with acid-ethanol [99]. Specific
details of the method are explained in Morro et al. [10].

Plasma cortisol

Plasma cortisol levels were measured in plasma collected
from randomly selected fish from each group, n=15 in
freshwater and n = 30 in seawater. Plasma cortisol levels
of all fish sampled in freshwater (15) were measured
again in seawater.

Plasma cortisol was measured using a custom enzyme-
linked immunoassay (ELISA). Specific details of the
method are explained in Bos et al. [100], with a volume
of plasma or controls of 10 pl in this case.

Real-time polymerase chain reaction (RT-PCR)

RT-PCR analysis was performed on liver tissue collected
from 8 randomly selected fish from each group at the
end-point sampling in seawater (1 = 8).

FG and GS individuals were analysed for liver igfl,
igfbp1b, ghrl and ctsl mRNA abundance as previously
described in Morro et al. [10]. Briefly, 20-25 mg of liver
tissue was homogenized in RLT buffer (Qiagen). Total
RNA isolation was carried out using the Qia symphony
RNA kit in the QIAsymphony SP automatic system
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following manufacturer instructions (Qiagen). Comple-
mentary DNA was reversely transcribed using 1.4 pug of
total RNA using oligo (dT20) primer and the Superscript
II kit (Thermo Fisher Scientific). Pipetting for both
¢DNA synthesis and RT-PCR was carried out using a
MicrolabSTARlet  Liquid Handling  Workstation
(Hamilton Robotics). RT-PCR was performed in a CFX-
96 Real-Time PCR platform (Bio-Rad) using the follow-
ing PCR conditions: 3 min at 95°C, 34 cycles of 155 at
95°C and 1 min at 60 °C and a melting curve step at the
end (10s at 95°C, 5s at 65-95°C with increments of
0.5°C and 5 at 95 °C). Samples were run in 25 pl dupli-
cates using iTaq universal SYBR green supermix (Bio-
Rad), 0.20 uM of each primer and 5 ul of 1:30 diluted
¢DNA. Samples with a coefficient of variation between
duplicates above 1.25% were run again. The relative
transcription levels of the genes were normalized follow-
ing the efficiency corrected method [101] using efla as
an endogenous reference gene [102]. Primers used in
this study are summarized in Table 1.

Liver proteome analysis

Samples

To compare the liver proteome of the FG and GS phe-
notypes, livers of 5 FG and 5 GS individuals were se-
lected. The criteria for GS were low weight (<285g),
Fulton index (< 1.21gcm’3) and SGR (<0.5% day ')
while for FG it was high weight (> 460 g), Fulton index
(>1.50gcm™ %) and growth (> 0.9% day™ 1 (Table 2).

Liver sample preparation

Homogenization of 50 mg of liver was done in 1 ml of
0.1 M Tris-HCl pH 7.6 supplemented with 1% protease
inhibitor cocktail (Roche) using a pestle motor mixer.
Sodium dodecyl sulphate and dithiothreitol were added
to the homogenates to a final concentration of 4% and
0.1 M, respectively. The samples were then incubated at
95°C for 5min and cleared by centrifugation at 16,000
xg for 10 min at room temperature.

Table 1 Primers used for RT-PCR analysis. Accession numbers of the gene sequences were obtained from GeneBank

Gene name Primer sequence (5'> 3) Accession number Reference

Igf1 TGCGGAGAGAGAGGC A M81904 [103]
AGCACTCGTCCACAATACCA

igfbp1b AGTTCACCAACTTCTACCTACC AF403539 [104]
GACGACTCACACTGCTTGGC

ghrl CGTCCTCATCCTTCCAG A AF403539 [104]
GTTCTGTGAGGTTCTGGAAAAC

ctsl CAACTACCTGCAGGCACCTA AF358668 [103]
ACATGATCCCTGGTCCTTGAC

efal CCCCTCCAGGATGTCTACAAA AF498320 [105]

CACACGGCCCACGGGTACT
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Table 2 Growth attributes of fish included in the FG and
GS phenotypes. Samples were analysed by LC-MS/MS
(proteomics) and LC-MS (lipidomics)

Sample Length (cm) Weight (g) Fulton index SGR
FG 317 +028° 4943 +997° 16+ 003° 10 + 008°
GS 268 +070° 2302+ 1856° 12+ 001° 0.1 +0.14°

Length, weight and Fulton index correspond to end-point sampling
measurements. Fulton index is measured in g cm™>. SGR is measured in
weight gain (%) day™'.

TMT labelling

After measuring protein concentration by BCA (Inter-
chim Uptima) equal amounts of protein (100 pg) were
reduced, alkylated, precipitated, trypsin digested and
TMT labelled following manufacturer instructions
(TMT10plex™ Isobaric Label Reagent Set, ThermoFisher
Scientific). Multiplexed peptide samples were cleaned-up
using Hypersep SpinTip (ThermoFisher Scientific), ac-
cording to manufacturer instructions. Finally, samples
were dried using a vacuum drier (Savant DNA SpeedVac
110, Thermo Scientific).

LC MS/MS analysis of TMT

Samples were analysed with an LTQ-Orbitrap XL LC -
MSn mass spectrometer (Thermo Fisher Scientific)
equipped with a nanospray source and coupled to an
Ultra High Pressure Liquid Chromatographer system
(Waters nanoAcquity). Initially, 5pL of sample resus-
pended in ultrapure water was loaded, desalted and con-
centrated in a BEH C18 trapping columns (Waters) with
the instrument operated in positive ion mode. The pep-
tides were then separated on a BEH C18 nanocolumn
(1.7 pm, 75 um x 250 mm, Waters) at a flow rate of 300
nL/min using an ACN/water gradient; 1% ACN for 1
min, followed by 0-62.5% ACN over 21 min, 62.5-85%
ACN for 1.5 min, 85% ACN for 2 min and 1% ACN for
15 min.

MS spectra were collected using data-dependent ac-
quisition in the m/z range 400-2000 using a precursor
ion resolution of 30,000, following which individual pre-
cursor ions (top 5) were automatically fragmented using
collision induced dissociation with a relative collision
energy of 35%. Dynamic exclusion was enabled with a
repeat count of 2, repeat duration of 30 s and exclusion
duration of 180s.

LC MS/MS data analysis and sequence annotation for TMT

MS data was analysed using Proteome Discoverer (Ther-
moFisher Scientific). Peak integration allowed for a win-
dow tolerance of 20 ppm using the ‘most confident
centroid’ method. Peptide quantification was based on
TMT label abundance. Only unique peptides were used
for protein quantification (i.e. peptides that could be ex-
clusively matched to a single protein in the database).
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Data across samples was normalized based on protein
median. Only high-confidence peptides were used for
quantification. Protein abundance was further normal-
ized by dividing it in each sample by the total abundance
for that protein (sum of all 10 samples). A multiple t-
test followed by FDR 5% was used to compare the abun-
dance of each detected protein in both conditions.

Peptide sequences were annotated by database search
against the rainbow trout SwissProt database, which was
downloaded from MASCOT and loaded into Proteome
Discoverer. The initial search parameters allowed for a
single trypsin missed cleavage, carbamidomethyl modifi-
cation of cysteine residues, oxidation of methionine,
acetylation of N-terminal peptides, a precursor mass tol-
erance of 10 ppm, a fragment mass tolerance of +0.5 Da,
and an FDR of 1%. Any proteins named ‘uncharac-
terised’ in the rainbow trout protein database were fur-
ther searched by sequence homology against the
Atlantic salmon (Salmo salar), zebrafish (Danio rerio),
and human (Homo sapiens) SwissProt databases, in this
order. Only homologies of E-value higher than 0.01 were
accepted as valid.

Data was tested for normal distribution and homogen-
eity of variance assumptions using the Shapiro and Bart-
lett tests, respectively. Next, multiple t-test analysis and
5% FDR correction were used.

Liver lipidome analysis

Individual samples

The same liver samples from FG and GS (n =5/group)
described in the liver proteome section were used for
lipidomic analysis (Table 2).

Lipid extraction

Lipid extraction was carried out following the Folch
method [106, 107]. Briefly, 25 mg of liver sample were
homogenized in 10 ml of chloroform/methanol (2:1), in-
cubated on ice for 1h, with 2.5 ml of 0.88% KCl added,
vortexed, incubated on ice for 5min and centrifuged at
400 xg for 5 mins. Afterwards, the top layer was re-
moved by aspiration and the lower layer was filtered
through paper filters (No.l, Whatman). Solvent was
evaporated under a stream of oxygen-free nitrogen and
desiccated in vacuo overnight. Samples were stored
under argon at — 20 °C.

LC MS/MS analysis of lipids

Lipids were analysed by LC-MS using a Thermo Orbi-
trap Exactive MS (Thermo Scientific), equipped with a
heated electrospray ionization probe and coupled to a
Thermo Accelal250U HPLC system. All samples were
analysed in both positive and negative ionization modes
over the m/z range 200-2000. The samples were
injected into a Thermo Hypersil Gold C18 column (2.1
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mm x 100 mm, 1.9 mm). Mobile phase A consisted of
water containing 10 mM ammonium formate and 0.1%
(v/v) formic acid. Mobile phase B consisted of 9:1 iso-
propanol/ACN containing 10 mM ammonium formate
and 0.1% (v/v) formic acid. All solvents were LC-MS
grade (Fisher Scientific). The initial conditions for ana-
lysis were 65%A/35% B. The percentage of mobile phase
B was increased to 100% over 10 min and held for 7
mins before re-equilibration with the starting conditions
for 4 mins.

LC MS/MS data analysis and lipid identification

Raw LC-MS data was processed with Progenesis QI v2.4
software (Non-linear Dynamics). Relative fold quantifica-
tion was performed by the software using all ion
normalization, followed by data filtering based on the
ANOVA score (< 0.05), fold change (> 1.5) and ANOVA
FDR (< 0.05). This was performed for data acquired in
both positive and negative ionization modes. Retention
and mass aligned feature data were exported for multi-
variate analysis (Simca-P v12.0), with OPLS-DA with
parametric scaling used for data analysis [108]. An S-
plot was used to identify features of interest - features
with a w (1) score higher than +/-0.04 and a p (corr)
score greater than +/- 0.6 selected. These features were
then identified using both the Lipid Maps and Lipidblast
databases.

General data analysis and representation
Figures were plotted using R statistical software and R
package ggplot2 [109].

Differential proteins and differential lipids (both g-
value <0.05) were plotted in heatmap form showing in-
dividual sample abundance scaled by protein (i.e. by
row) for liver proteins.

Unpaired t-test was used to test for differences in mor-
phometric data, liver protein and lipid percentage, NKA
activity, IGF-I abundance, cortisol abundance, and gene
transcription among FG and GS groups. Data was trans-
formed by either natural logarithm or square root to sat-
isfy the normal distribution and homogeneity of variance
assumptions, tested with the Shapiro and Bartlett tests,
respectively. Similarly, paired t-test was used to test for
differences between freshwater and seawater IGF-I
abundance.
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