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Abstract

Background. Although delayed graft function (DGF) is associated with an increased risk of acute rejection and
decreased graft survival, there are no estimates of the long-term or lifetime health burden of DGF. Objectives. To
estimate the long-term and lifetime health burden of DGF, defined as the need for at least one dialysis session within
the first week after transplantation, for a cohort representative of patients who had their first kidney transplant in
2014. Methods. Data from the United States Renal Data System (USRDS; 2001–2014) were used to estimate a semi-
Markov parametric multi-state model with three disease states. Maximum length of follow-up was 13.7 years, and a
microsimulation model was used to extrapolate results over a lifetime. The impact of DGF was assessed by simulat-
ing the model for each patient in the cohort with and without DGF. Results. At the end of 13.7 years of follow-up,
DGF reduces the probability of having a functioning graft from 52% to 32%, increases the probability of being on
dialysis from 10% to 19%, and increases the probability of death from 38% to 50% relative to transplant recipients
who do not experience DGF. A typical transplant recipient with DGF (median age = 53) is observed to lose 0.87
quality-adjusted life-years (QALYs). Extrapolated over a lifetime, the same 53-year-old DGF patient is projected to
lose 3.01 (95% confidence interval: 2.33, 3.70) QALYs relative to a transplant recipient with the same characteristics
who does not experience DGF. Conclusions. The lifetime health burden of DGF is substantial. Understanding these
consequences will help health care providers weigh kidney transplant decisions and inform policies for patients in the
context of varying risks of DGF.
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In December 2014, nearly 100,000 patients were on the
kidney transplant waitlist in the United States after being
diagnosed with end-stage renal disease and treated with
dialysis.1 Kidney transplants are a proven treatment
option that have been shown to improve survival2,3 and
quality of life,3–6 yet only a fraction of patients on the
waitlist ever receive this benefit.7 Given the limited sup-
ply of available kidney grafts and the high demand from
waitlist patients, clinicians tend to exercise caution when
assessing risks and evaluating patients for transplanta-
tion.8,9 One such risk is the complication of delayed graft

function (DGF). DGF is a manifestation of acute kidney
injury with attributes unique to the transplant process
where the transplanted kidney does not initially function
posttransplant. The definition of DGF varies across
transplant centers, regions, and countries with over 10
definitions having been used in the literature.10,11 The
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most common definition—both in the academic litera-
ture and in epidemiologic registries—is the need for dia-
lysis in the first postoperative week.12 A recent study
comparing the definitions suggested that no one defini-
tion is inherently superior and proposed the use of dialy-
sis within the first week after transplant as the most
straightforward.13 A recent review of over 80,000 US
deceased donor kidney transplant recipients revealed
that, although considerable center-level variation exists,
at a national level 27% of transplant recipients devel-
oped DGF.14 This is notable given that patients with
transplants complicated by DGF are at a greater risk for
graft failure and acute rejection.15

To make an informed decision considering the relative
benefits of various treatment pathways, it is valuable for
patients and care providers to understand both the prob-
ability of complications and the lifetime impact of those
complications on a patient’s well-being. Risk prediction
models have been developed to assist with kidney trans-
plant decision making by identifying individual patients
at high risk for developing adverse outcomes, such as
DGF, prior to actual transplantation.16,17 However,
proper decision making about transplantation requires
full knowledge and appreciation of the magnitude of risk
being undertaken. Observational, single-center studies
examining health outcomes from DGF in the United
States are often hindered by small sample sizes and short-
or medium-term patient follow-up.18–20 US-based regis-
try cohort studies, while having much greater sample
sizes, also tend to have limited follow-up time.21,22 As a
result, much is known about the short-term (\5 years)
effects of DGF on graft survival and acute rejection,15

but little is known about its long-term consequences such
as its impact on mortality.

In this study, we examine long-term outcomes by
using a long follow-up (median = 7.1 years, maximum

= 13.7 years) of data from the United States Renal Data
System (USRDS) and extrapolate results over a lifetime
using a microsimulation model. Simulation and other
extrapolation techniques have been used to estimate the
cost-effectiveness, comparative effectiveness, and lifetime
health burdens associated with kidney disease,7,23–26 but
have not been used to study the effects of DGF. For
example, Wolfe and colleagues,23 in a seminal paper,
used survival models to calculate differences in life expec-
tancy between patients with and without transplant—
also known as life years from transplant—which has
been applied to inform kidney allocation policies.

In this study, we use the data in the USRDS to esti-
mate a semi-Markov parametric multi-state model—a
generalization of standard survival analysis to multiple
disease states.27–31 The richness of the data source
enables us to estimate the model using individual patient
data based on thousands of transplant recipients. After
estimating the statistical model, we made predictions by
developing a microsimulation and simulating outcomes
for individual patients. The simulated output was then
used to quantify the lifetime health burden of DGF for
US kidney transplant recipients, which will help health
care providers properly weigh kidney transplant deci-
sions and inform policies for patients in the context of
varying risks of DGF.

Methods

Sample and Model Overview

We developed a multi-state model to quantify the disease
burden of DGF following kidney transplantation. Figure
1 illustrates a patient’s passage through the model where
he or she begins with a transplant, at which point the
graft is functioning until it either fails and the patient
goes onto dialysis or the patient dies. A patient on dialy-
sis can then either have a subsequent transplant (and
return to a functioning graft state) or die while on dialy-
sis. Therefore, there are four possible transitions in the
model. These possibilities highlight the two transient
health states (transplant/functioning graft, dialysis) in
our model and the single absorbing state (death).

To help ensure that transition rates were consistent
with real-world clinical outcomes, we modeled transitions
between states using a semi-Markov model, which allows
transition rates to be a flexible function of time spent in a
given state. We estimated the burden of DGF in two
stages by first estimating transition rates absent DGF
and then estimating the effect of DGF on transition
rates. This two-stage approach has two primary benefits.
First, it allowed us to accurately predict clinical outcomes
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by age and sex without losing observations with missing
covariates. Second, we were able to estimate the clinical
impact of DGF by using a model designed to minimize
confounding rather than a model designed to predict out-
comes. Long-run health outcomes were simulated over a
lifetime by using the parameters of the multi-state state
model as inputs for a microsimulation.

The parameters of the multi-state model were esti-
mated using data from the USRDS for patients who had
any kidney transplant during the time period spanning
2001 to 2014, yielding a maximum length of follow-up of
13.7 years. We limited our sample to patients aged 18
and older who had a transplant in 2001 or later, which
resulted in a sample of 159,183 unique patients and a

total of 162,441 transplants. Additional details of the
observations dropped from our analysis are provided in
the eMethods section of the Online Supplement.

Transitions Without DGF

Transitions for patients without DGF were modeled as a
function of patient age and sex. In addition, variables
were included that indicated whether a transplant
occurred after 2009 and whether it was a patient’s first
transplant.

Table 1 shows the number of non-DGF patients at
risk for transitioning from each state, as well as the num-
ber of actual transitions from origin states to destination

Figure 1 Diagram of a multistate model for kidney transplantation. The boxes represent the 3 disease states and 4 possible
transitions (1, transplant/functioning graft to dialysis; 2, transplant/functioning graft to death; 3, dialysis to transplant/
functioning graft; 4, dialysis to death). Patients begin the model with a transplant and remain in the functioning graft state until
it fails, at which point the patient either goes onto dialysis or the patient dies. A patient on dialysis can then either have a
subsequent transplant (and return to a functioning graft state) or die while on dialysis.

Table 1 Number and Percentages of Transitions Between Disease Statesa

Origin State Patients
Destination State

Functioning Graft Dialysis Death

No DGF, n (%)
Functioning graft 131,217 (100%) 92,375 (70%)b 21,031 (16%) 17,811 (14%)
Dialysis 21,031 (100%) 2,216 (11%) 11,421 (54%)b 7,394 (35%)

DGF, n (%)
Functioning graft 31,224 (100%) 17,271 (55%)b 8,553 (27%) 5,400 (17%)
Dialysis 8,553 (100%) 1,042 (12%) 3,955 (46%)b 3,556 (42%)

DGF, delayed graft function.
aPatients can be in each state more than once.
bPatients who remained in origin state until end of follow-up.
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states. Of the 131,217 times that a non-DGF patient had
a transplant in our estimation sample, 92,375 had a func-
tioning graft until the end of follow-up; 21,031 had a
graft fail; and 17,811 died. Of the 21,031 observations in
which a patient was on dialysis after a graft failure, 2,216
had a subsequent transplant; 11,421 remained on dialysis
until the end of follow-up; and 7,394 died.

We used R’s flexsurv package32 to estimate hazards
for each of the four transitions using parametric pro-
portional hazard models (exponential, Weibull, and
Gompertz). Plots of cumulative hazards for the four
transitions are shown in eFigure 1. For each transition,
graphical methods were used to choose the best fitting
distribution. In particular, we first inspected the cumula-
tive hazard plots to examine the fit of the transition-
specific hazard functions. However, since the probability
of being in a state is derived by combining the hazard
functions of relevant transitions involving that state,33 we
ultimately determined the fit of the model by assessing
the probability of being in each of the three disease states,
as discussed in the Model Validation section below. The
Gompertz distribution was used for the transitions from
transplant/functioning graft to dialysis, transplant/func-
tioning graft to death, and dialysis to transplant/func-
tioning graft. The Weibull distribution was used for the
transition from dialysis to death. Parameter estimates for
the parametric models are provided in eTable 1.

Effect of DGF on Transitions

Table 1 suggests that DGF patients are more likely to
transition from a functioning graft to dialysis than non-
DGF patients. For instance, 27% of DGF patients tran-
sitioned from a functioning graft to dialysis compared to
only 16% of patients without DGF. Patients with DGF
(17%) were also slightly more like to transition from
functioning graft to death than non-DGF patients
(14%).

To account for the potential of confounding variables
driving these results, we estimated the association
between DGF and transition rates controlling for patient
and donor characteristics. While the objective of the
model for non-DGF patients described in the previous
section was to predict absolute transition probabilities
stratified by age and sex, the objective here was to esti-
mate the effect of DGF relative to not having DGF on
transition probabilities. We therefore attempted to con-
trol for all variables correlated with both DGF and tran-
sition rates in the USRDS in an effort to minimize
confounding. Summary statistics for covariates are

reported in eTable 2, and hazard ratios from the model
are reported in eTable 3.

To simulate patients with DGF, we applied the DGF
hazard ratio to the transition rates for patients without
DGF for each transition. More precisely, we multiplied
the DGF hazard ratio by the hazard function for each
non-DGF transition.

Microsimulation

We used the parameters estimated from the parametric
multi-state model to develop a continuous-time stochas-
tic lifetime microsimulation. The model simulates
hypothetical patients one at a time from their first trans-
plant until death. To examine the incremental impact of
DGF, the model was simulated in a hypothetical situa-
tion where, during the initial transplant, each patient
had DGF and hypothetical situation where no patient
had DGF.

The time spent in each disease state was a function of
the transition hazards estimated in the statistical analy-
sis, which depended on the unique characteristics of each
individual; specifically, we randomly sampled times to all
possible disease states that a patient could transition to
and set the next state equal to the disease state with the
shortest sampled time. Transition rates for non-DGF
patients depended on the covariates in the statistical
model for non-DGF patients reported in eTable 1—age,
age-squared, gender, whether the transplant occurred
after 2009, and whether the transplant was the patient’s
first transplant—and transition rates for DGF patients
were equal to those for non-DGF patients but adjusted
by the hazard ratios reported in eTable 3. The covariates
age and age-squared were updated at the time of each
transition. Likewise, whether a patient had DGF was
randomly sampled at the time of each new transplant as
a function of whether the patient had DGF during the
initial transplant. The probabilities of DGF in re-
transplants were 0.29 and 0.16 for patients with and
without DGF, respectively, which were estimated based
on observed frequencies in the USRDS data.

In order to estimate expected outcomes for current
transplant recipients, we simulated a representative
cohort of 10,000 patients using the characteristics of
patients in the USRDS who had their first transplant in
2014. We also ran the model separately by 5-year age
groups by simulating 10,000 patients in each age band.
Probabilistic sensitivity analysis was used to quantify
uncertainty in model outcomes, where the regression
coefficients for each transition were sampled 1,000 times
from multivariate normal probability distributions to
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generate probability distributions for expected quality-
adjusted life-years (QALYs). The number of simulated
patients and samples in the probabilistic sensitivity anal-
ysis were large enough that expected outcomes and
Bayesian credible intervals were stable.

The simulation was used to estimate 1) the probability
of being in each disease state (functioning graft, on dialy-
sis, or death) posttransplant and 2) QALYs posttrans-
plant. Results were compared for patients who
experienced DGF versus those who did not experience
DGF. To estimate QALYs, we weighted each year lived
with a functioning graft and dialysis by 0.84 and 0.68,
respectively, based on QALY weights from the litera-
ture.25,34 Additional details of the algorithm and calcula-
tion of disease state probabilities are provided in
eMethods in the Online Supplement. The model was pro-
grammed using C++ and integrated with R using the
Rcpp package so that it could be run quickly.35

Model Validation

We conducted a number of analyses to check our assump-
tions. First, we examined the sensitivity of our results to the
parametric distributions used in the model. We began by
comparing results from our parametric approach to a less

model driven semiparametric approach. In particular, we
compared the accuracy of our parametric microsimulation
during available follow-up time (13.7 years) to a microsi-
mulation using the Cox multi-state model. Second, we
checked the external validity of our estimates by comparing
our results to estimates from official reports and published
studies cited in the Results section. We focused specifically
on median graft survival and life expectancy following
transplantation. Third, we considered the potential impact
of re-transplantation given the shortage of data for patients
receiving multiple transplants.24

Results

Disease State Probabilities

Figure 2 plots the probability that a patient occupies a
given disease state at any given time after their first trans-
plant. Patients with DGF are less likely to have a func-
tioning graft at all times following transplantation, spend
considerably more time on dialysis, and have higher mor-
tality rates than patients without DGF. At the end of
follow-up (13.7 years), DGF patients have a 32% chance
of having a functioning graft, a 19% chance of being
on dialysis, and a 50% chance of being deceased.

Figure 2 Estimated probability of being in disease state following transplantation by DGF status using microsimulation.
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Meanwhile, their non-DGF counterparts are more likely
to have a functioning graft (52%), less likely to be on dia-
lysis (10%), and less likely to be deceased (38%).

QALYs Lost

Table 2 reports QALYs at the end of follow-up and
over a lifetime by age group for DGF and non-DGF
patients. Over 13.7 years, the burden of DGF is largest
for older patients, who are sicker on average. For
example, a patient between ages 70 and 74 is predicted
to lose 1.25 QALYs while a patient between ages 30
and 34 is only predicted to lose 0.67 QALYs. The aver-
age patient lost 0.95 QALYs, and a patient having their
first transplant at 53 years of age (the median age) lost
0.87 QALYs.

The burden of DGF is larger over a lifetime but the
relationship between age and lost QALYs is less clear.

On the one hand, younger patients have more potential
years to live, but on the other hand, the effect of DGF is
largest in the sickest patients. The burden of DGF is
largest in patients between ages 45 and 49, who lose, on
average, 3.03 QALYs. QALYs lost become increasingly
smaller the further the departure from ages 45 to 49, yet
all ages between 30 and 74 lose at least 2 QALYs over a
lifetime. On average, 2.60 QALYs are lost due to DGF
and a patient having their first transplant at the median
age of 53 lost 3.01 QALYs.

Model Validation

eFigure 2 provides a comparison of our parametric simu-
lation to a simulation using the Cox model using avail-
able follow-up data. In both simulations, the estimated
probabilities of being in each of the three disease states
are similar, although there are some differences in the

Table 2 Quality-Adjusted Life Years by DGF Status and Time Since First Transplant From the Microsimulationa

Age Group
Quality-Adjusted Life Years

No DGF DGF QALYs Lost

Follow-up (13.7 years)
20–24 10.59 (10.37, 10.82) 9.92 (9.52, 10.32) 0.67 (0.37, 0.97)
25–29 10.58 (10.39, 10.78) 9.92 (9.58, 10.26) 0.67 (0.38, 0.95)
30–34 10.52 (10.35, 10.70) 9.86 (9.54, 10.17) 0.67 (0.41, 0.92)
35–39 10.42 (10.27, 10.57) 9.73 (9.45, 10.02) 0.69 (0.45, 0.93)
40–44 10.24 (10.09, 10.40) 9.51 (9.25, 9.77) 0.74 (0.51, 0.96)
45–49 10.01 (9.86, 10.15) 9.21 (8.95, 9.47) 0.80 (0.57, 1.02)
50–54 9.70 (9.56, 9.84) 8.83 (8.58, 9.07) 0.87 (0.66, 1.08)
55–59 9.29 (9.14, 9.45) 8.32 (8.08, 8.56) 0.97 (0.76, 1.17)
60–64 8.79 (8.64, 8.95) 7.72 (7.49, 7.95) 1.07 (0.87, 1.28)
65–69 8.23 (8.07, 8.39) 7.06 (6.83, 7.30) 1.17 (0.97, 1.37)
70–74 7.56 (7.38, 7.73) 6.30 (6.08, 6.55) 1.25 (1.05, 1.45)
75–79 6.83 (6.64, 7.01) 5.53 (5.29, 5.77) 1.30 (1.10, 1.48)
All 9.28 (9.14, 9.44) 8.34 (8.10, 8.58) 0.95(0.73, 1.15)

Lifetime
20–24 31.01 (28.85, 33.10) 30.30 (27.74, 32.77) 0.71 (20.88, 2.35)
25–29 28.22 (26.36, 30.07) 26.82 (24.60, 29.16) 1.40 (20.01, 2.93)
30–34 25.59 (24.06, 27.14) 23.52 (21.65, 25.48) 2.07 (0.77, 3.41)
35–39 23.15 (21.82, 24.50) 20.56 (18.92, 22.21) 2.58 (1.44, 3.74)
40–44 20.75 (19.66, 21.85) 17.83 (16.53, 19.16) 2.91 (1.89, 3.90)
45–49 18.53 (17.62, 19.45) 15.50 (14.48, 16.59) 3.03 (2.16, 3.82)
50–54 16.44 (15.67, 17.20) 13.43 (12.57, 14.31) 3.01 (2.33, 3.70)
55–59 14.39 (13.79, 15.03) 11.50 (10.83, 12.18) 2.89 (2.31, 3.45)
60–64 12.47 (11.93, 12.98) 9.79 (9.27, 10.36) 2.68 (2.23, 3.14)
65–69 10.81 (10.37, 11.24) 8.37 (7.93, 8.83) 2.44 (2.08, 2.81)
70–74 9.21 (8.85, 9.58) 7.03 (6.65, 7.43) 2.17 (1.85, 2.47)
75–79 7.79 (7.48, 8.12) 5.90 (5.58, 6.22) 1.89 (1.64, 2.15)
All 16.25 (15.46, 17.03) 13.65(12.77, 14.54) 2.60 (1.94, 3.27)

DGF, delayed graft function; QALY, quality-adjusted life year; USRDS, United States Renal Data System.
aPoint estimate is mean value from probabilistic sensitivity analysis; 2.5% and 97.5% quantiles are in parentheses. Estimates are based on a

simulation of all patients in the USRDS who had their first transplant in 2014. The age group ‘‘All’’ consisted of all patients 18 years or older.

Median age at first transplant was 53 years.
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probability of a functioning graft after year 7. Overall,
the predictions suggest that our parametric distributions
fit the data well.

Our predictions of graft survival and remaining life
expectancy are also consistent with estimates from other
studies. For example, our simulation predicts that after
14 years, ;50% of non-DGF patients had a functioning
graft, while other studies have found that median graft
survival is around 10 to 15 years.36–38 In addition, as
shown in eTable 4, our estimates of life expectancy by
age group are similar to those reported by the USRDS.7

As shown in eTable 5, rates of re-transplantation
within the model were low, which suggests that re-
transplantation had a minor impact on the results. DGF
patients had, on average, 1.028 transplants, while non-
DGF patients had 1.031 transplants. The maximum
number of transplants was 3 for both DGF and non-
DGF patients.

Discussion

Clinicians continue to view DGF as a potential challenge
for kidney transplant recipients, but there remains debate
about the extent to which DGF affects graft and patient
survival, as the effects are not well understood. With the
disparity between the number of donors and those wait-
listed for organs, kidney transplantation is proceeding
with more marginal kidneys and as a result the risk of
DGF is likely to become more significant in coming
years.39 Although knowledge of both the mechanism and
risk factors associated with DGF has improved, the
development of new interventions that translate this
knowledge into improved management of DGF has been
scarce. Based on current trends, the use of kidneys from
expanded criteria or cardiac death donors is likely to rise,
increasing the likelihood of DGF in transplant recipients.

There seems to be a consensus on the short-term clini-
cal consequences of DGF: a need for several posttrans-
plantation dialysis sessions leading to increased
morbidity and an increased length of hospitalization.
The long-term consequences of DGF, however, have
been heretofore uncertain. One perspective is that the
risk of DGF is related to increased cold ischemia time
and is associated with a higher incidence of acute rejec-
tion, as well as an increased risk of long-term graft fail-
ure as a consequence of acute kidney injury.36,39 The
second view is based on recent studies that strongly sug-
gest cold ischemia time-induced DGF may not have dele-
terious long-term consequences.40,41 These results are in
line with the common observation that patients receiving
a kidney transplanted from a donor after cardiac death

show a high incidence of DGF, while their long-term
results are not significantly different from those of
patients receiving a standard criteria donor kidney, who
show a much lower incidence of DGF.42

One of the reasons for these seemingly inconsistent
results may lie in the fact that these studies lacked the
ability to follow patients over their remaining lifetime.
Differences in patients at 5, 10, or even 15 years may not
be easily extrapolated to lifetime outcomes using straight-
forward linear models. Nonetheless, it is important to
take a lifetime perspective in order to account for delayed
health outcomes such as deaths or graft failures.43–45

Indeed, our study showed that differences between DGF
and non-DGF populations in both graft survival and life
expectancy were considerably larger over a lifetime than
during 13.7 years of follow-up.

The model used in this article has some important
strengths. First, since we had patient-level data, we were
able to estimate a number of different parametric models
and ultimately select a model based on fit. Second, we
used a semi-Markov model rather than a Markov model
(as is typically used in kidney transplantation model-
ing)25,26 to simulate long-term outcomes. The advantage
of the semi-Markov approach is that it allows future out-
comes to depend on both patient history and time in a
given health state. Third, we developed a bespoke micro-
simulation algorithm, which allowed us to develop a
more flexible model. For instance, we were able to
update the age covariates as patients aged during the
simulation and to allow the probability of DGF in subse-
quent transplants to depend on whether a patient had
previously had DGF. Moreover, since our simulation
ran quickly, we were able to perform subgroup analyses
while still simulating a sufficient number of patients
(10,000) and parameter sets (1,000) to generate stable
point estimates and credible intervals.

It is important we highlight the limitations inherent in
the model as well. First, the impact of DGF on patient
and graft survival is based on observational data from
the USRDS rather than experimental data from a con-
trolled trial, even though the generalizability, scale, and
national representativeness of this real-world data may
act as a counterweight to this limitation. In addition,
because of the data source used, we were only able to
adjust for patient and donor characteristics that were
available in the USRDS. There are inevitably much more
detailed clinical data available at the patient level, which
may improve the accuracy of the model. Third, we did
not account for the number of patients on the waiting list
when modeling time from transplant failure to a subse-
quent transplant, which in reality is likely to be a key
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driver. However, the ratio of waiting list to transplant
recipients has barely moved over the period of the data
and if anything the gap has risen. Finally, we do not dif-
ferentiate between hemodialysis and peritoneal dialysis.
While some of these factors may marginally affect the
primary outcomes of the model, our belief is that they
do so in both directions, and likely to a small degree.

Conclusions

With a growing gap between demand and supply of kid-
neys leading to more marginal kidneys used for trans-
plantation, the significance of DGF has the potential to
rise. As such, a more complete understanding of the full
consequences of this complication will be an important
factor to both those deciding who receives transplants
and when transplants take place, as well as those invest-
ing in technologies that would improve outcomes in
patients at greater risk or directly suffering from DGF.
The lack of consensus in the transplantation field around
whether there are significant long-term health conse-
quences to DGF is a barrier to physicians and patients,
and the transplantation processes. We consequently
developed a microsimulation model and simulated life-
time outcomes for kidney transplant recipients. Our
results suggest that DGF significantly reduces life expec-
tancy and increases time on dialysis and, therefore,
causes significant reductions in QALYs. Furthermore,
the model can be easily adapted to study other resource
allocation problems in kidney transplantation where
long-term outcomes are of interest.
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