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Abstract
Objective  Image segmentation is an essential step in quantifying the extent of reduced or absent lung function. The aim 
of this study is to develop and validate a new tool for automatic segmentation of lungs in ventilation and perfusion SPECT 
images and compare automatic and manual SPECT lung segmentations with reference computed tomography (CT) volumes.
Methods  A total of 77 subjects (69 patients with obstructive lung disease, and 8 subjects without apparent perfusion of 
ventilation loss) performed low-dose CT followed by ventilation/perfusion (V/P) SPECT examination in a hybrid gamma 
camera system. In the training phase, lung shapes from the 57 anatomical low-dose CT images were used to construct two 
active shape models (right lung and left lung) which were then used for image segmentation. The algorithm was validated 
in 20 patients, comparing its results to reference delineation of corresponding CT images, and by comparing automatic 
segmentation to manual delineations in SPECT images.
Results  The Dice coefficient between automatic SPECT delineations and manual SPECT delineations were 0.83 ± 0.04% for 
the right and 0.82 ± 0.05% for the left lung. There was statistically significant difference between reference volumes from CT 
and automatic delineations for the right (R = 0.53, p = 0.02) and left lung (R = 0.69, p < 0.001) in SPECT. There were similar 
observations when comparing reference volumes from CT and manual delineations in SPECT images, left lung (bias was 
− 10 ± 491, R = 0.60, p = 0.005) right lung (bias 36 ± 524 ml, R = 0.62, p = 0.004).
Conclusion  Automated segmentation on SPECT images are on par with manual segmentation on SPECT images. Relative 
large volumetric differences between manual delineations of functional SPECT images and anatomical CT images confirms 
that lung segmentation of functional SPECT images is a challenging task. The current algorithm is a first step towards auto-
matic quantification of wide range of measurements.

Keywords  Image segmentation · V/P SPECT · CT · Active shape model

Introduction

Ventilation/perfusion single photon emission computed 
tomography (V/P SPECT) is an important routine diagnos-
tic tool, to validate pulmonary function in different diseases 
such as pulmonary embolism, pneumonia, heart failure and 
tumors. In V/P SPECT both a lung ventilation and perfusion 
scan is performed in direct succession. The recommended 
methods are based on the registration of ventilation and per-
fusion images to measure pulmonary function using quo-
tient images. V/P SPECT methods have been validated on 
pigs, phantom, and in the clinic for diagnosis of pulmonary 
embolism by phenotyping character of ventilation/perfusion 
defects [1–3]. For phenotyping changes in pulmonary func-
tion, such as left heart failure, Jögi et al. developed a method 
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to quantify perfusion gradient, which had been visually rec-
ognized since 1966 [4–6].

Segmentation is necessary to make objective measure-
ments of lung function and characterization of pathophysi-
ological changes. Previous work has been focused on semi-
quantitative analysis [7–11]. User-independent segmentation 
of the lung is likely to be an essential further improvement to 
these techniques, to facilitate implementation on the larger 
scale for routine use. Quantitative segmentation is also the 
first step for the assessment of functional lung volumes.

Computed tomography (CT) is the reference method for 
lung morphology and lung volume estimation. For many 
clinical indications, ventilation and perfusion scintigraphy 
functional imaging is preferred and is the indicated method. 
To quantify functional changes, image segmentation is 
required as quantification methods need to quantify changes 
only inside the lung.

To date, there has been little focus on lung segmenta-
tion on V/P SPECT images [12]. He et al. derived the lung 
segmentation from V/P SPECT images by utilizing cross-
entropy threshold selection. Kwa et al. [13] have focused 
on CT images and co-registration with SPECT images. For 
this segmentation process, the authors used a global binary 
segmentation method. A similar approach was used by Har-
ris et al. [14], where CT images were registered to SPECT 
images to analyze lobar ventilation/perfusion relationships. 
Meir et al. [15] used registration of SPECT and CT images 
to perform texture analysis and demonstrated the potential to 
perform disease classification. Fleming et al. [16] described 
a method which uses empirical rules derived from the analy-
sis of computer simulated images and local thresholds. The 
current aforementioned segmentation methods have not been 
validated against an independent reference standard.

The main challenge in lung SPECT segmentation is 
that there may be perfusion/ventilation defects so that the 
parts of the lungs are not possible to differentiate from the 
background and the use of thresholding is not sufficient to 
segment the lungs. To accurately delineate the lung con-
tours, anatomical knowledge about the expected lung shape 
is required. The active shape model approach (ASM) is a 
method which incorporates the expected shape into the seg-
mentation process, known as a priori information.

CT provides image contrast between lung tissue and sur-
rounding tissue enabling anatomic lung contour to be more 
easily delineated. As such, CT also provides a suitable refer-
ence standard for the volume measurement of lung SPECT 
images.

The aim of the study was to develop an algorithm for 
automatic segmentation of the lungs in V/P SPECT images 
using active shape model of the lungs, trained by 3D shapes 
delineated in CT images and validate this automatic SPECT 
segmentation method against CT images as well as against 
SPECT manual delineations. Furthermore, the study 

compares manual segmentation in SPECT images against 
reference CT images so as to improve the understanding of 
limitations in segmenting V/P SPECT images.

Methods

Study population

In total 77 subjects were included. All subjects but eight 
come from a previously published study with known lung 
disease [10] The population were as follows; patients with 
stable chronic obstructive pulmonary disease (COPD) 
defined by spirometry (n = 55; age = 68 ± 5; 25 women; 
global obstructive lung disease score (GOLD) [1–4], smok-
ing 15–159 pack-year), and a set of current or former long-
time smokers (n = 14, age = 69 ± 3, 7 women, smoking 24–40 
pack-year) that did not have COPD defined by spirometry. 
All subjects were over the age of 40 years, clinically stable 
and, in the case of COPD patients, without any exacerba-
tions during the 4 weeks prior to inclusion. In addition to the 
above 69 subjects, 8 subjects were included retrospectively 
from clinical routine without apparent perfusion of ventila-
tion loss in SPECT.

The study was approved by the local regional ethics com-
mittee, and informed consent was obtained from all subjects 
before enrolment. The subjects were imaged with a low-dose 
CT, in conjunction to the V/P SPECT examination.

The material was divided into two sets, one for training 
and one for performance evaluation. The evaluation set was 
chosen by randomly selecting 20 subjects from the popula-
tion with known lung disease. In the evaluation set 12 of 
the selected subjects had COPD on spirometry and 8 where 
current or former smokers. The used random generator 
was Matlab R2014a (Mathworks, USA). The training set 
consisted of 57 subjects (the remaining 49 patients and 8 
subjects). The purpose of a wide range of subjects from 8 
apparently healthy subjects, 14 former or current smokers, 
and 55 with COPD was first to develop a robust algorithm 
that would be able to also handle both normal and challeng-
ing cases, and second investigate difference in manual lung 
segmentation in difficult cases.

Imaging

The examination was performed as a one-day protocol, 
according to the European Guidelines [1, 17], where it is 
suggested that the ventilation is performed before the perfu-
sion, followed by image acquisition.

V/P SPECT and low dose CT imaging were performed 
using a Philips Precedence system, which combines a dual 
head gamma camera with a Brilliance 16 slice CT. Imag-
ing begun with a CT overview image and continued with a 
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diagnostic low dose CT (120 kV, 20 mAs/slice, 16 × 1.5 col-
limator, 0.5 s rotation time, and pitch of 0.813). The slice 
thickness was 5 mm and incremental value was 5 mm. 
Filtered back projection was used for reconstruction. The 
CT was used to co-localize the morphological and func-
tional changes visualized in either of the two modalities 
and obtained during free tidal breathing. Thereafter, the 
patients in supine position inhaled 30 MBq of Technegas, 
Cyclomedica Ltd and ventilation imaging was performed. 
This was followed by perfusion images were acquired using 
an intravenously injection of 140 MBq 99 m-Technetium 
labelled macroaggregated albumin (TechneScan LyoMAA; 
Mallinckrodt Medical BV). Care was taken to ensure that 
the patient maintained the same supine position. Imaging 
parameters were as follows, acquisition was performed in 
a 64·64 matrix, zoomed to a pixel size of 6.8 mm with 128 
projections over 360°. Sixty-four steps, each of 10 s dura-
tion, were used for the ventilation study, and 64 steps of 5 s 
duration were used for the perfusion study. Reconstruction 
was performed using ordered subsets expectation maximiza-
tion with eight subsets and two iterations.

Segmentation algorithm overview

The segmentation was performed on a sum image of both 
ventilation and perfusion. The segmentation method was 
based on the active shape model approach [18]. In short, 
the active shape model approach a mean shape is place in 
the image and are allowed to deform until the shape fits the 
image. In a training step both mean shape as well as a priori 
information on allowed deformations are extracted.

The training set was used to create two shape priori mod-
els, one for each lung. The training was based on lung shapes 
extracted from CT images in the training set. This training 
process was performed once and is illustrated in Fig. 1. More 
details are given in the section below.

Shape model extraction

Semi‑automated segmentation of CT images

Contours in coronal CT slices were derived using an auto-
mated method that combined simple thresholding based 
on Hounsfield units and binary morphological operations 
to find the two largest coherent areas representing left and 
right lung, respectively. Thereafter further binary opera-
tions were performed to fill holes in the segmented lung 
shapes. Based on the edge of the binary objects, contours 
were extracted. The contours were carefully inspected by a 
trained observer (biomedical laboratory scientist), and were 
manually corrected to remove the vessels and other cardiac 

structures. For difficult cased another observer (expert phy-
sician) provided second opinion. An example of the semi-
automated segmentation is illustrated in the insert of Fig. 1 
which depicts the training process. Two sets of segmenta-
tions were constructed, one for each lung. As a consequence, 
the shape representation of the lung in CT images was a set 
of points distributed along the lung perimeter for each slice 
of the image volume.

The training phase consisted of four main parts: semi-
automatic lung segmentation, shape parameterization, align-
ing shapes to each other and principal component analysis 
(PCA). The PCA computes orthogonal modes deformation 
based on all training examples. Training data consisted of 
semi-automatically segmented volumetric CT images. This 
information needed to be parameterized so as to permit 
usage of the active shape models theory. In the next step, 
the set of training shapes were aligned by a version of the 
Procrustes algorithm. In short, all points in a shape were 
transformed by stretching and rotating to best fit the mean 
shape. In the final part, PCA was performed and the outcome 
mean lung shape and its main variability modes were input 
to the segmentation procedure to constrain the model defor-
mation to physiological plausible shapes.

The active shape model theory required that we math-
ematically described the lung in a way that for each point in 
one lung, we could identify the corresponding point in the 
other lung [19]. We used separate models for the left and 

Semi-automated 
segmenta�on of lungs

Landmark placement

CT images (N=57)

Shape alignment 
(Procrustes)

Principal component 
analysis

A priori lung (expected shape) model

Fig. 1   Flow-chart describing lung shape model creation. On the 
right, it is depicted the semi-automatic segmentation and the major 
landmark placement. The major landmarks are RA on top of the right 
lung, RB on the left of the right lung, RC on the right of the right 
lung, LA on top of the left lung, LB on the left of the left lung, LC on 
the right of the left lung
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right lung, respectively. Thus, there was a need for equal 
number of points in each lung. We selected three landmarks 
which were annotated for each lung in all imaging slices. 
These landmarks were defined as point extremas of slice 
contours: top, bottom left and bottom right. In between, N 
points (pseudo-landmarks) of the original representation 
were sampled in equal distances [20]. As a consequence, 
every slice contour was described by 3 × (N − 1) points, 
where 3 is the number of landmarks and N − 1 is the number 
of points between each landmark.

Having the same number of points in each slice is not 
enough we also require the same number of slices for each 
subject. Therefore, the training shapes were reshaped to keep 
a constant number of slices in the z- (from chest to back) 
direction. In the training set, the average number of slices 
were 30 (resolution in z-direction was 5 mm). We, therefore, 
chose to describe each shape with 3 × (N − 1) × 30 points. 
The rationale for choosing 30 was to minimize the impact 
of slices resampling. The resampling procedure was carried 
out as follows: Each point in a slice was connected with a 
straight line to the corresponding point in the slices above 
and/or below. These connections resulted in 3 (N − 1) con-
nected line segments. New points were interpolated on the 
intersections of these lines with a fixed number 30 slices 
with the same distance between them.

Thus, the representation of each lung X was 
3 × ( N − 1) × 30 points:

where 3 is the number of landmarks per slice, (N-1) is the 
number of points between landmarks, and 30 is the fixed 
number of slices.

Alignment

To measure the shape variation, each lung X was transformed 
by translation parameters: tx , ty , tz,scaling parameters s, and 
rotation parameters θ, φ into a common frame of reference.

The centroid of a lung shape is defined by C =
(
x�, y�, z�

)
 , 

where x� is the mean value of x1,… xn−1, xn coordinates of 
the shape (1) and so forth. By subtracting from each point 
of a shape its centroid’s coordinates (x�, y�, z�) , the shape 
X =

(
x1 − x�, y1 − y�, z1 − z�, .., xn−1 − x�, yn−1 − y�, zn−1

−z�, xn − x�, yn − y�, zn − z�
)
 , is translated and its new cen-

troid is the image origin (0,0,0). This process was repeated 
for all the shapes, so that all shapes had a common centroid.

Calculation of volume was defined by the Frobenius met-
ric [12, 20]. The calculation was simplified due to the previ-
ous translation:

(1)X =
(
x1,y1, z1,.., xn−1, yn−1,zn−1, xn,yn,zn

)
,

(2)X = Ttx,ty,tz,s,�,�(X).

for all i points of a lung shape. Then, all coordinates 
were divided by Vol so that all scaled shapes had volume 
|X| = 1 [20]. An implementation of the Procrustes algo-
rithm rotated each shape so that the sum of distances 
D =

n∑
i=1

��Xi − X̃��
2 of each shape Xi to the mean shape 

X̃ =
1

m
×

�
m∑
i=1

Xi

�
 , was minimized (m is the number of 

training shapes).
Specifically, the following steps were performed: [20]. 

First, every shape was rotated to get aligned to one random 
shape of the set. Second, the mean shape was calculated 
and then every shape was rotated to align to it. This final 
step was repeated until a low value of sum of distances D 
was achieved (D < 1).

Principal component analysis

The core of the shape model extraction was principal com-
ponent analysis, which was used to define main variations 
of the shapes model.

To avoid non-linearity in the aligned training set, all 
shapes that were stored in one matrix were projected in 
tangent space by scaling them by 1

/(
Xi × X̃

)
 where X̃ is 

the mean shape that occurred after the last iteration of the 
alignment process. The mean shape was subtracted from 
the shape matrix, to calculate the covariance matrix:

The eigenvectors pi and eigenvalues �i of this covari-
ance matrix were calculated. A shape instance could be 
generated by deforming the mean shape by a linear com-
bination of eigenvectors:

where P was a matrix with t number of eigenvectors and b 
was the shape coefficients vector. The number of eigenvec-
tors to retain, t, was chosen so that the model represented 
some proportion (e.g. 95%) of the total variance of the data 
[20]. Eigen modes that may be caused by outliers or by bad 
alignment were removed because they may have created 
unrealistic shapes. The selection of the number of eigen 
modes affected the quality of the shape model as well as 
the segmentation procedure. If the eigen modes were few 
then the segmentation was over constrained and if there were 

(3)Vol =

(
∑

i

(
xi
2 + yi

2 + zi
2
)
)1∕2

,

(4)S =
1

m
×

(
m∑

i=1

(
Xi − X̃

)
×
(
Xi − X̃

)T
)
.

(5)X̃ + P × b,
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too many then the segmentation results may have appeared 
unrealistic.

Segmentation

A flow chart of the segmentation process is illustrated in 
Fig. 2. First, a summation of both ventilation and perfu-
sion image volumes was created. Before summation, the two 
respective image volumes were normalized with the larg-
est pixel intensity. The mean lung shape was placed into 
the image volume. The initial location was found by simple 
binary segmentation of the lungs. The lung shape iteratively 
updated both position and shape based on image intensities 
in both ventilation and perfusion images. The active shape 
model discarded shapes that were not plausible. This helped 
to overcome the possibility of erroneous segmentation due 
to matched defects and consequently helped to recognize 
such defects.

Binary Segmentation

To identify initial location and size, a low threshold (15% of 
the maximum intensity of the image) was applied to extract a 
binary lung volume. This initial segmentation overestimated 
the volume, but was used to calculate the centroid of the 
lung. Furthermore, it allowed estimation of upper and lower 
limits of the lungs.

Initialization‑place shape

The initial shape was the mean shape calculated in the train-
ing phase. The shape was then transferred to fit the limits 
defined by binary segmentation. First, the mean shape was 
scaled to obtain the volume of binary shape. Then, it was 
rotated to be the reference shape. To align the mean shape 
x̃ to a shape of reference xref , their inner product Xp was 
computed

(6)Xp = X̃ × X ref.

Fig. 2   Flow-chart of the pro-
posed automatic lung segmenta-
tion algorithm

Create sum image

Ven�la�on & perfusion SPECT images

Binary segmenta�on

Ini�aliza�on of 
shape posi�on

Project to a priori 
model and check 

plausibility

Final segmenta�on

A priori
shape model

Get profiles in 
normal direc�ons

Update posi�ons

Converged
No

Yes
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By performing single value decomposition on X, we get 
U, S, V i.e. the matrices of specific properties that satisfy 
the equation X = U × S × VT . The rotated mean shape was 
calculated:

Finally, X̃rotwas translated so as to have the same centroid 
as the binary segmented volume.

Update positions

The initial shape was iteratively updated according to inten-
sity of pixels that were normal to the contour. For each 
update step, the shape was restricted to only generate con-
tours that were plausible according to the training data [19]. 
Each point in the contour was moved to new positions based 
on intensity profiles and their derivatives which were normal 
to the contour. The location of the minimum of the deriva-
tives indicated where to place the updated contour point. In 
addition, there are two rules that overrode the above behav-
iour so as to avoid getting stuck in local minima or maxima: 
(a) if the intensity on the contour point was above 30% then 
it moved outwards and (b) if the intensity was below 5% 
then it moved inwards (intensities were normalized in the 
space 0–1). This last rule was applied so as to ensure that 
the contour shrunk to the expected position if it extended 
outside the lungs. The shape was updated for a fix number 
of ten iterations which was after experiments was deemed 
sufficiently to achieve convergence.

Constrain to plausible shapes

To ensure that the updated shape was plausible we first 
aligned it to the mean shape of the shape model [12]. There-
after, we described the difference to the mean shape by pro-
jecting the shape on the shape model basis (i.e. we calcu-
lated b = Φ × (X� − X̃) , where Φ was the matrix with all 
eigenvectors that corresponded to the Eigen modes chosen). 
Then, if the elements in b were inside the space �
−�i ×

√
2, �i ×

√
2

�
 , where �i the eigenvalue that corre-

sponded to each bi element, the movement calculated in 
boundary search was accepted. If not then their values were 
adjusted either to �i ×

√
2 or−�i ×

√
2 . Therefore, either the 

original b parameters were kept or some were adjusted to the 
space 

�
−�i ×

√
2, �i ×

√
2

�
 . This process was iterated suffi-

ciently for convergence (ten times).

(7)X̃rot = (V � ∗ U�) ∗ X̃�.

Validation

The semi-automated segmentation of the corresponding CT 
images was used as the reference standard. The accuracy of 
the automatic segmentation was evaluated both as differ-
ence in lung volumes compared to the reference CT stand-
ard, as well as comparison between automatic segmenta-
tion and manual segmentation in SPECT images using Dice 
coefficient.

To further evaluate the performance of the algorithm, the 
lung contour provided by the algorithm was compared with 
the manual SPECT delineation of the lung. Manual SPECT 
delineations were performed in a subset of 20 patients by 
one observer (biomedical laboratory scientist). For difficult 
cases another observer (physician) performed second opin-
ion. The manual delineations were then compared to the 
automatic segmentation.

To validate accuracy of lung shape and position, the 
Dice coefficient was computed [21]. The Dice coefficient 
D is defined by D = 2 × |X ∩ Y|∕(|X| + |Y|) , where X rep-
resented all voxels of the reference and Y represented all 
voxels of the automated method. We also used sensitivity (S) 
and precision (P) over the entire image, defined as S = TP/
(TP + FN) and P = TP/(TP + FP) with TP as the number of 
true positives (voxels that were part of both reference seg-
mentation and automatic segmentation result), FP as the 
number of false positives (voxels that were segmented but 
were not part of the reference segmentation) and FN as the 
number of false negatives (voxels that were not segmented 
but were part of the reference). Separate analyses were made 
for the right and left lungs.

Results

The mean values for reference volumes from CT, manual 
SPECT and automatic SPECT delineations for the right 
and left lung are presented in Table 1. The volumes from 
CT were 1673 ± 582 ml (left lung), and 2080 ± 633 ml 

Table 1   The volumes for CT, manual delineations, automatic deline-
ations and volumetric difference gives difference from reference CT 
volume (bias and SD)

Negative numbers means larger volumes compared to reference CT 
volume. Results are given as mean ± standard deviation over 20 cases

Left Right

Reference volume CT (ml) 1673 ± 582 2080 ± 633
Automatic volume SPECT (ml) 1732 ± 403 2085 ± 399
Manual volume SPECT (ml) 1684 ± 505 2044 ± 554
Manual volumetric difference (mm3) − 10 ± 491 36 ± 524
Automatic volumetric difference (mm3) − 58 ± 420 − 5 ± 540
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(right lung). The volumes from automatic delineations 
were 1732 ± 403 ml (left lung), and 2085 ± 399 ml (right 
lung). The volumes from manual SPECT delineations was 
1684 ± 505 ml (left lung), and 2044 ± 554 ml (right lung).

Figure 3 shows two patient examples, where to top row is 
a patient without any apparent loss of peripheral ventilation/
perfusion and the bottom row shows a patient with periph-
eral loss of both ventilation and perfusion. Left column show 

Fig. 3   CT image, manual and automatic segmentation of two 
patients. Top row shows a slice from a patient with normal ventila-
tion/perfusion and the bottom row shows a slice from a patient with 
peripheral loss of both ventilation and perfusion. The left column 

shows CT images, the middle column shows manual segmentations, 
and the right column shows automatic segmentations. Green delinea-
tion colour = left lung, red delineation colour = right lung
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Fig. 4   Comparison between automatic and manual delineations for the left and right lung

Table 2   Comparison between automatic SPECT segmentation and 
manual SPECT delineation for the right and left lung

Results are given as mean ± standard deviation over 20 cases

Left lung (%) Right lung (%)

Dice coefficient 82 ± 2 83 ± 3
Sensitivity 81 ± 9 82 ± 9
Precision 85 ± 9 88 ± 8
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CT image, middle column show manual segmentation, and 
right column show automatic segmentation.

Comparison between manual SPECT and automatic 
SPECT delineations

There was no observed statistically significant volumetric 
difference between manual SPECT and automatic SPECT 
delineations for the left and right, Fig. 4, p = 0.4 (left lung) 
and p = 0.6 (right lung). A summary of the comparison 
between manual SPECT and automatic SPECT delineations 
for the right and left lung are presented in Table 2. Figure 5 
shows a scatter plot and a Bland–Altman plot comparing 
manual and automatic delineations in SPECT images.

Automatic SPECT delineations vs reference CT

There was a significant difference between the reference 
volumes from CT and automatic SPECT delineations for 
the left lung (R = 0.69, p < 0.001, Fig. 6, left column) and 
right lung (R = 0.53, p = 0.02, Fig. 6, right column). For the 
left lung, the bias was − 59 ± 420 ml (Fig. 6, left column), 

and for the right lung, the bias was − 5 ± 540 ml, (Fig. 6, 
right column).

Manual SPECT delineations vs reference CT

There was a statistically significant difference between the 
reference volumes from CT and manual delineations on 
SPECT images for the left lung (R = 0.60, p = 0.005, Fig. 7, 
left column) and right lung (R = 0.62, p = 0.004, Fig. 7, right 
column). For the left lung, the bias was − 10 ± 491, (Fig. 7 
left column). For the right lung, the bias was 36 ± 524 ml, 
(Fig. 7, right column). The coefficient of variation compar-
ing manual SPECT delineation vs reference volume from CT 
are 29, and 25% for left and right lung, respectively.

Discussion

A method for the automated segmentation of V/P SPECT 
images was developed. The automated segmentation and the 
manual delineations on V/P SPECT images yielded volumes 
that were not significantly different. The shape between auto-
mated segmentation and manual delineation on V/P SPECT 

Fig. 5   Scatter plot comparing manual and automatic segmentation on SPECT. Bottom panel, corresponding Bland–Altman plots for left and 
right lung, respectively
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images agreed well. However, both manual and automatic 
segmentation did not manage to estimate well with respect 
to the reference CT volumes. This highlights the difficulties 
in segmentation of lung volumes in functional images.

The idea of using anatomical lung shapes derived from 
reference CT lung images and use them to train an active 
shape model applied to lung SPECT images is new. The 
approach of cross imaging modality using active shape 
models were previously proposed by Ordas et al. where the 
authors presented an approach using active shape models 
extracted from cardiac magnetic resonance imaging for left-
ventricle segmentation on SPECT images [22].

Comparison between CT and SPECT images

The idea of comparing volumes from CT images with both 
automatic and manual delineations of V/P SPECT images is 
novel. CT images depicts the anatomical parts of the lungs, 
while the SPECT images depicts the functional parts of the 
lungs. Given this, this method illustrates the challenge of 
anatomical segmentation in functional SPECT images.

Importantly, there was no observed statistically differ-
ence between volumes extracted from manual SPECT and 

automatic SPECT delineations. The Dice analysis also 
confirmed that the results were similar and showed that the 
segmentation performance was better for the right lung com-
pared to the left lung. This is in part expected, as the position 
and shape of the left lung is dependent on the position and 
shape of the heart, particularly in heart disease.

The results showed a significant difference between vol-
umes from anatomical reference CT images compared to 
both automatic SPECT and manual SPECT delineations 
of functional images. One of the explanations is that the 
patients that were studied represent a group with very severe 
obstructive lung disease with large areas of reduced/absent 
ventilation and perfusion in the periphery. Peripheral loss 
of function limits the possibilities to find correct anatomi-
cal outlines by both manual SPECT and automated SPECT 
segmentations of the lungs.

Image segmentation

The active shape model approach correctly estimated the 
expected lung shape regardless of loss of ventilation/per-
fusion. Peripheral defects still allowed the estimation of 

Fig. 6   Automatic delineations vs CT for the right lung (right column) and left lung (left column). Upper panel: correlation plots for right and left 
lung. Lower panel: Bland–Altman plots
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peripheral contour with the proposed automated segmenta-
tion method. An example is illustrated in Fig. 3.

Limitations

We used CT as a reference standard for lung volumes. 
An alternative approach would be to use a lung phantom 
as an objective reference standard. The selection of land-
marks is important for active shape appearance models. 
In this study, three landmarks (reference points in the 
lung contour) were used with a fixed number of contour 
points between each landmark (see landmark placement 
in Fig. 1). The landmarks worked well for the right lung. 
However, for the left lung it was observed that the land-
marks LB and LC often were placed too close to each 
other and did not have a distinctive anatomical location. 
We tried to only use two landmarks (LA and LC), but this 
did not improve the results for the left lung.

Future work

Given the results in this study with automated SPECT 
segmentation of the lungs it would be beneficial to add 
calculation of perfusion gradient and validate it to exist-
ing algorithms. Moreover, we would like to use an active 
shape model framework to automatically generate a 3D 
lung segment division. This could be accomplished by 
transferring manual lung segment charts [23] to the shape 
model. This would result in patient-specific lung segmen-
tal charts and could allow for the quantification of regional 
functional loss automatically.

Conclusion

The algorithm presented in this study showed results com-
parable to manual delineations functional SPECT images. 
Relative large differences between manual delineations 
of functional SPECT images and anatomical CT images 
show that anatomical segmentation of V/P SPECT images 
is a challenging task. The present algorithm is a first step 

Fig. 7   Manual delineations by observer 1 vs CT for the right lung (right column) and left lung (left column). Upper panel: correlation plots for 
right and left lung. Lower panel: Bland–Altman plots
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towards automatic quantification of wide range of measure-
ments, such as perfusion gradients.
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