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Purpose: Immune checkpoint blockade agents were shown to provide a

survival advantage in urothelial carcinoma, while some patients got minimal

benefit or side effects. Therefore, we aimed to investigate the prognostic value

of m6A methylation regulators, and developed a nomogram for predicting the

response to atezolizumab in urothelial carcinoma patients.

Methods: A total of 298 advanced urothelial carcinoma patients with response

data in the IMvigor210 cohort were included. Differential expressions of 23m6A

methylation regulators in different treatment outcomes were conducted.

Subsequently, a gene signature was developed in the training set using the

least absolute shrinkage and selection operator (LASSO) regression. Based on

the multivariable logistic regression, a nomogram was constructed by

incorporating the gene signature and independent clinicopathological

predictors. The performance of the nomogram was assessed by its

discrimination, calibration, and clinical utility with internal validation.

Results: Six m6Amethylation regulators, including IGF2BP1, IGF2BP3, YTHDF2,

HNRNPA2B1, FMR1, and FTO, were significantly differentially expressed

between the responders and non-responders. These six regulators were also

significantly correlated with the treatment outcomes. Based on the LASSO

regression analysis, the gene signature consisting of two selected m6A

methylation regulators (FMR1 and HNRNPA2B1) was constructed and showed

favorable discrimination. The nomogram integrating the gene signature, TMB,

and PD-L1 expression on immune cells, showed favorable calibration and

discrimination in the training set (AUC 0.768), which was confirmed in the

validation set (AUC 0.755). Decision curve analysis confirmed the potential

clinical usefulness of the nomogram.
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Conclusions: This study confirmed the prognostic value of FMR1 and

HNRNPA2B1, and constructed a nomogram for individualized prediction of

the response to atezolizumab in patients with urothelial carcinoma, which may

aid in making treatment strategies.
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Introduction

Urothelial carcinoma is one of the most common cancers

worldwide (1), and the bladder is the usual site of occurrence (2).

Due to the high recurrence rate and complicated therapeutic

strategies, bladder cancer (BCa) is considered the most expensive

tumor, which has brought a heavy economic burden to patients

and society (3). Notably, a considerable proportion of urothelial

carcinoma patients develop metastases during follow-up after

radical therapies. The prognosis for advanced urothelial

carcinoma remains poor (4). Emerging immunotherapy

heralds a new era for the treatment of urothelial carcinoma.

For the past few years, immunotherapy for malignant tumors

has achieved many encouraging breakthroughs, making it the

fourth treatment technique for cancer therapy after the

operation, radiation therapy, and chemotherapy (5).

Currently, blockade of immune checkpoint molecule,

programmed cell death 1 (PD1), or its ligand, PD ligand 1

(PDL1), was shown to provide a survival advantage in numbers

of different advanced malignancies (6, 7). Effective as it is, only

a subset of patients experienced durable responses and long-

term survival after anti-PD1/PDL1 therapy, and the majority of

patients achieved minimal or no clinical benefit (8). For

example, the effective response rate for BCa is approximately

20% (9). Meanwhile, immunotherapy may cause adverse

effects, and some may even lead to serious or life-threatening

consequences (10, 11). Therefore, the optimization of

individualized treatment has been listed as one of the top ten

challenges of immunotherapy for tumors (12). How to identify

the patients who are prone to have a good response to anti-

PD1/PDL1 therapy is the current focus of intense research

efforts. Many biomarkers have been reported to be predictive of

cancer response to immunotherapy. The immunity system

extends from systems-level principles of immune cell

connectivity down to mechanistic characterization of

individual receptors, which could provide potential

opportunities for therapeutic intervention (13). Of these,

tumor mutational burden (TMB) quantifying the number of

somatic mutations in the tumor, CD8+ T-cell abundance, and

PDL1 expression are commonly used predictors (9, 14, 15).
02
However, their predictive efficacy may vary in specific cancer

types (9, 12).

N6-methyladenosine (m6A) modification represents one of

the most common chemical modifications in eukaryotic mRNA,

which is a reversible process regulated by the balanced activities of

methyltransferases, binding proteins, and demethylases, also

known as “writers”, “readers” and “erasers” (16). Studies have

demonstrated that m6A plays an important role in mRNA

splicing, localization, translation, export, degradation, and

stability (17–19). In addition, substantial evidence showed that

dysregulated expression and genetic changes of m6A methylation

regulators were associated with multiple biological disorders

including dysregulated cell proliferation, differentiation and

death, developmental defects, cancer progression, damaged self-

renewal capacity, and aberrant immune regulation (20–22).

Moreover, m6A methylation regulators also played critical roles

in the development and progression of BCa by promoting cancer

cell proliferation, self-renewal of cancer stem cells and so on (23–

25). Besides, m6A regulators were reported to serve as reliable

biomarkers to predict the treatment response and/or prognosis in

BCa (26) as well as other tumors (27–29). Nonetheless, whether

m6A regulators could aid in the prediction of immunotherapy

response in urothelial carcinoma remains unknown.

In the present study, we systematically analyzed the

association between the expression of 23 widely reported m6A

regulators and the anti-PDL1 treatment (i.e., atezolizumab)

response in advanced urothelial carcinoma patients. And we

developed and validated a nomogram that integrated a gene

signature derived from pre-treatment expression of m6A

regulators and clinical variables for individualized prediction

of the response to atezolizumab treatment in patients with

urothelial carcinoma.
Methods

Data acquisition

Under the Creative Commons 3.0 license, standardized RNA-

sequencing data and corresponding clinicopathological data,
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including TMB, PD-L1 expression on immune cells (IC), and

tumor cells (TC), for the IMvigor210 cohort were extracted from

the IMvigor210CoreBiologies R package (http://research-pub.gene.

com/IMvigor210CoreBiologies/) developed by Mariathasan et al

(30). Tumor specimens were scored via immunohistochemistry

for PD-L1 expression on immune cells as IC0, IC1, IC2, or IC3 if

<1%, ≥1% but <5%, ≥5% but <10%, or ≥10% of immune cells were

PD-L1 positive, respectively. Besides, tumor tissue samples were

scored as TC0, TC1, TC2, or TC3 if <1%, ≥1% but <5%, ≥5% but

<50%, or ≥50% of tumor cells were PD-L1 positive, respectively.

RNA-seq count data were transformed into Transcripts Per

Million (TPM). Among 348 bladder cancer patients in the

IMvigor210 cohort, we excluded those patients without

treatment response data. Therefore, a total of 298 patients were

finally included in our study (Supplementary Table S1). A

reduction of tumor volume over 10% is defined as partial

response (RECIST v1.1). All patients were classified into

responders (complete and partial response) and non-responders

(stable and progressive disease).
Atezolizumab treatment response
associated m6A methylation regulators

To explore the role of m6A methylation regulators in

atezolizumab treatment, their differential expressions in

different treatment outcomes were analyzed in all enrolled

patients. The expressions of m6A methylation regulators were

compared between the response group and non-response group

using Wilcoxon’s test. To further understand the interactions

among 23 m6A regulators, their expression correlations were

evaluated using the correlation plot and the Spearman

correlation test.
Functional enrichment annotation

Metascape (http://metascape.org) is an online analysis tool

designed to provide a comprehensive gene list annotation and

analysis resource for experimental biologists, including gene

annotation, functional enrichment, and construction of

protein-protein interaction networks (31). In this study, we

used Metascape to conduct the pathway and process

enrichment of the m6A methylation regulators.
Construction of the gene signature and
evaluation of performance

The model construction flowchart of this study is presented

in Supplementary Figure S1. All enrolled patients were randomly

divided into two groups at a ratio of 7:3. As a result, 209 patients

were allocated to the training set, whereas 89 patients were
Frontiers in Immunology 03
allocated to the independent validation set. In the training set,

the univariable logistic regression analyses were used to measure

the potential associations between 23 m6A regulators and the

therapeutic outcomes. And the least absolute shrinkage and

selection operator (LASSO) regression algorithm was

performed to select treatment response-related genes with

nonzero coefficients among 23 m6A regulators (32). An m6A-

related gene signature was developed to evaluate the probability

of treatment outcome for each patient using the gene score,

which was calculated as a linear combination of the selected

genes weighted by their respective coefficients. The

discrimination of the gene signature was estimated by the area

under the receiver operator characteristic (ROC) curve (AUC) in

the training set and then validated in the validation set.
Weighted gene co-expression
network analysis

We used genes in the IMvigor210 dataset that were in the top

25% of variance from responders and non-responders to

construct a weighted gene co-expression network analysis

(WGCNA). Detailed descriptions regarding the WGCNA are

shown in Supplementary Methods. To ensure the reliability of

the WGCNA result, outlier samples that were distant from other

samples were removed. An appropriate power cut-off threshold

was selected to generate a scale-free topology overlap matric

(TOM) and average linkage hierarchical clustering was used to

detect gene modules. With the Dynamic Tree-Cut algorithm,

gene modules were displayed as branched of dendrogram. The

significance and correlation of module eigengenes of each gene

module were generated. Then, we explored whether the module

that most significantly correlated to treatment response contains

m6A-related genes.
Relationship of treatment
outcome-related genes with
immune infiltration patterns

The CIBERSORT algorithm was utilized to estimate the

infiltration of 22 types of immune cells in all samples (33).

Furthermore, to further investigate the role of treatment

outcome-related genes in atezolizumab therapy, the

relationship of those m6A methylation regulators selected in

the LASSO regression analysis with different types of immune

cells were analyzed.
Construction of the nomogram

After univariable logistic regression analyses, the variables

with P < 0.05 in the regression analyses were included in the
frontiersin.org
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following multivariable analysis in the training set. Backward

stepwise selection using Akaike’s Information Criterion (AIC)

was used to identify the significant predictors to develop the

prediction model. A variance inflation factor (VIF) was

calculated to assess the collinearity diagnostics of the

multivariable logistic regression. According to the results of

the multivariable logistic analysis, a nomogram was then

constructed. A response score for each patient was calculated

based on the multivariable logistic regression formula to reflect

the probability of treatment response.

Assessment of performance of
the nomogram

In the training set, the AUC was used to measure the

discrimination performance of the nomogram. In addition, a

calibration curve was performed to estimate the calibration of the

nomogram, along with the Hosmer-Lemeshow test to assess the

goodness-of-fit (34).

Validation of the nomogram

The performance of the nomogram was subsequently

validated in the validation set. A response score can be

calculated for each patient in the validation set by using the

formula constructed in the training set. The AUC was then

calculated, and the calibration curve and the Hosmer-Lemeshow

test were conducted.
Clinical usefulness of the nomogram

All patients were categorized into the predicted response or

the predicted non-response groups according to their response

scores, whose optimal cut-off point value was determined by the

maximum Youden index in the training set (35). The log-rank

test was performed to compare the Kaplan-Meier overall

survival curves of the predicted response and the predicted

non-response groups in the training and validation sets.

Moreover, to determine the clinical usefulness of the

nomogram, a decision curve analysis (DCA) was performed by

calculating the net benefits for different threshold probabilities

using the training and validation sets separately (36).
Statistical analysis

All statistical tests were conducted using R statistical

software (version 4.0.4; R Foundation for Statistical

Computing). R packages used in this study, detailed

descriptions regarding the LASSO algorithm, and DCA are

available in Supplementary Methods. A two-sided P-value <

0.05 was considered statistically significant.
Frontiers in Immunology 04
Results

Patient clinical characteristics

Patient clinical characteristics in the training and validation

sets are shown in Table 1. Totally, 22.8% (68/298) of patients

achieved complete response/partial response after atezolizumab

treatment. In addition, 189 patients (63.4%) were dead during

the follow-up. The median follow-up was 10.3 months

(Interquartile range, 4.4–18.8). No significant difference was

found between the training and validation set regarding the

clinical characteristics (Table 1).
Atezolizumab treatment response
associated m6A methylation regulators

Figures 1A, B show that six m6A methylation regulatory

genes (IGF2BP1, IGF2BP3, YTHDF2, HNRNPA2B1, FMR1,

and FTO) expressed differentially between the responders

and non-responders. The expression levels of IGF2BP1,

IGF2BP3 , YTHDF2 , HNRNPA2B1 , and FMR1 were

significantly higher in the response group, while expression

levels of FTO were significantly decreased in the non-

response group. Among them, a significant difference in

expression between bladder cancer and normal tissue in

the TCGA-BLCA cohort is only detected in IGF2BP3

(Supplementary Figure S2). The correlation heatmap

ind ica t ed tha t FMR1 , YTHDF3 , CBLL1 , ZC3H13 ,

METTL14 , YTHDC1 , KIAA1429 , and LRPPRC have a

strong association with others (most r2>0.4; Figure 1C).

Supplementary Figure S3 presents the results of the functional

enrichment analysis obtained from Metascape. As shown in

Supplementary Figure S3A, we found that several pathways

were enriched, including regulation of mRNA metabolic

process, regulation of mRNA stability, mRNA metabolic

process, mRNA modification, regulation of mRNA process,

mRNA transport, and negative regulation of mRNA metabolic

process. The network of enriched terms can be found in

Supplementary Figure S3B and Table S2. Supplementary Figures

S3C, D presents the protein-protein interaction network and

Molecular Complex Detection (MCODE) components. Five

treatment response associated m6A regulators were found in the

MCODE_1 component.
Construction of the gene signature and
evaluation of performance

In the univariable logistic regression analysis, ELF3, FMR1,

HNRNPA2B1, HNRNPC, IGF2BP3, and KIAA1429 were

associated with the therapeutic outcomes in the training
frontiersin.org
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B

CA

FIGURE 1

Relationship between the expression of m6A RNA methylation regulators and treatment response in urothelial carcinoma patients. (A) The
heatmap shows the expression patterns of the 23 m6A methylation regulators between the response group and non-response group. (B) The
violin plots exhibit the differential expression of the 23 m6A methylation regulators in the response group (red) and the non-response group
(blue). (C) Spearman correlation analyses of the expression of the 23 m6A methylation regulators. *P < 0.05, ***P < 0.001.
TABLE 1 Baseline characteristics of the patients.

Characteristic Training set (n = 209) Validation set (n = 89) P

Sex

Male 164 (78.5) 69 (77.5) 0.979

Female 45 (21.5) 20 (22.5)

IC

IC0 59 (28.2) 25 (28.1) 0.757

IC1 81 (38.8) 31 (34.8)

IC2 69 (33.0) 33 (37.1)

TC*

TC0 164 (78.8) 74 (83.1) 0.494

TC1 14 (6.7) 3 (3.4)

TC2 30 (14.4) 12 (13.5)

TMB, mut/Mb†

Median (Interquartile range) 8 [5, 14] 8 [5, 14] 0.662

Treatment response

Complete response 14 (6.7) 11 (12.4) 0.059

Partial response 26 (12.4) 17 (19.1)

Stable disease 42 (20.1) 21 (23.6)

Progressive disease 127 (60.8) 40 (44.9)

Gene score

Median (Interquartile range) -1.490 [-1.615, -1.352] -1.475 [-1.597, -1.286] 0.355
Frontiers in Immunology
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Data are presented as No. (%) unless indicated otherwise.
P values were derived from the univariable association analyses between the training and validation set.
*One patient’s PD-L1 expression on tumor cells (TC) data was not available.
†TMB data were available for 161 and 73 patients in the training and validation sets, respectively.
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set (Figure 2A). Additionally, using the LASSO regression

analysis, two treatment outcome-related genes (FMR1 and

HNRNPA2B1) with nonzero coefficients were selected in the

training set (Figures 2B, C). Based on the LASSO logistic

regression analysis, a gene signature was constructed, which

can be calculated as a gene score for each patient: gene score =

0.000545 × FMR1 expression level + 0.004127 × HNRNPA2B1

expression level - 2.30373.

The gene signature showed favorable discrimination, with an

AUC of 0.634 (95% confidence interval [CI] 0.535-0.733) in the

training set, which was validated in the validation set with an

AUC of 0.646 (95% CI 0.520-0.773; Figure 2D).
Frontiers in Immunology 06
Weighted gene co-expression
network analysis

There was one outlier in the sample clustering

(Supplementary Figure S4), which was excluded in the

subsequent WGCNA. As 4 is the lowest value that allows

obtaining more than 90% similarities in topology models

(Figures 3A, B), a soft threshold power of 4 was selected.

Finally, a total of 15 modules was obtained using a dynamic

tree-cutting method (Figure 3C). Among these modules, the

turquoise module was the most significantly correlated to

treatment response (Pearson correlation coefficient = 0.23 and
BA

C

D

FIGURE 2

Construction and assessment of the m6A-related gene signature. (A) Univariable logistic regression analyses evaluating the predictive ability of
m6A methylation regulators for treatment response of urothelial carcinoma patients. (B) Tuning parameter (l) selection in the LASSO model
used 10-fold cross-validation via minimum criteria. Binomial deviances from the LASSO regression cross-validation procedure were plotted as a
function of log(l). The numbers along the upper x-axis represent the average number of predictors. The red dots indicate the average deviance
values for each model with a given l, and the vertical bars through the red dots show the upper and lower values of the deviances. The dotted
vertical lines are drawn at the optimal values where the model provides its best fit to the data. The optimal l value of 0.053 with log (l) = -2.936
was chosen. (C) LASSO coefficient profiles of the 23 m6A methylation regulators. The dotted vertical line is drawn at the value selected using
10-fold cross-validation in Figure 2B, where optimal l resulted in 2 nonzero coefficients. (D) ROC curves of the gene signature in the training
and validation sets.
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P < 0.001, Figure 3D). Of note, two identified treatment

outcome-related genes, FMR1 and HNRNPA2B1, are found in

the turquoise module, indicating the important role of these two

m6A regulators in the immunotherapy of bladder cancer.

Patients with low expression of FMR1 and HNRNPA2B1

were more likely to have death after receiving immunotherapy in

the IMvigor210 cohort (Supplementary Figure S5). Their

performance in prognostic prediction is also presented in

Supplementary Table S3. However, we found that expression

of FMR1 and HNRNPA2B1 were not correlated with the overall

survival in bladder cancer patients based on TCGA-BLCA

dataset, who were not treated with immunotherapy

(Supplementary Figure S6). These results suggest that these

two identified genes might influence the immunotherapy

response through m6A methylation, affecting the prognosis of

patients with urothelial carcinoma.
Relationship of treatment
outcome-related genes with
immune infiltration patterns

As shown in Figure 4, FMR1was negatively related to regulatory

T cells, resting NK cells, M0 macrophages, M2 macrophages, was
Frontiers in Immunology 07
positively correlated with activated CD4+ memory T cells, gamma

delta T cells, activated myeloid dendritic cells, and eosinophil.

HNRNPA2B1 was negatively related with M0 macrophages, and

was positively correlated with activated CD4+ memory T cells and

activated myeloid dendritic cells. Note that FMR1 was most

negatively correlated with M2 macrophages, and HNRNPA2B1

was most negatively correlated with M0 macrophages.
Construction of the nomogram and
assessment of performance

According to the univariate logistic regression analyses,

three candidate variables were found to meet the threshold of

P < 0.05, including the gene signature, IC, and TMB (Table 2).

They were identified as the significant predictors of treatment

outcomes in the subsequent multivariable logistic regression

analysis. The VIF values ranged from 1.000 to 1.003,

indicating that there was no collinearity in the collinearity

diagnosis. By incorporating IC, TMB, and the gene signature,

a nomogram was developed (Figure 5A) and the response score

could be calculated for each patient to reflect the probability of

treatment response based on the multivariable logistic regression

formula. The calculating formula was as follow: response score =
B

C

DA

FIGURE 3

Weight Gene Co-expression Network Analysis. (A) Analysis of the scale-free index for various soft power thresholds. (B) Analysis of the mean
connectivity of various soft power thresholds. (C) Dendrogram of the genes clustered based on a dissimilarity measure (1-TOM). (D) Average
gene significances and errors in the modules associated with treatment response. The turquoise module was the most significantly correlated to
treatment response. FMR1 and HNRNPA2B1 are in this module.
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1.673 × gene score + 0.481 × IC + 0.093 × TMB − 0.542. The

predicted treatment response probability was calculated using 1/

[1 + exp (−response score)].

In the training set, an AUC of 0.768 (95% CI, 0.678-0.858)

indicated that the nomogram had good discrimination (Figure 5B).

The calibration curve of the nomogram estimating the probability

of an effective treatment response demonstrated good agreement

(Figure 5C), and the Hosmer-Lemeshow test yielded a non-

significant statistic (P = 0.256), suggesting no departure from the

perfect fit. The favorable calibration and discrimination
Frontiers in Immunology 08
performance of the nomogram was confirmed in the validation

set, with an AUC of 0.755 (95% CI 0.636-0.875; Figures 5B, C). The

Hosmer-Lemeshow test also demonstrated a non-significant

statistic for the nomogram (P = 0.214).
Clinical usefulness of the nomogram

After obtaining the response scores from the nomogram,

the patients were classified into the predicted response and
B C D

E F G H

I J K

A

FIGURE 4

The relationship of FMR1 and HNRNPA2B1 with different types of immune cells. (A–H) Correlation plots show the relationship between FMR1
and different types of immunocytes. (I–K) Correlation plots show the relationship between HNRNPA2B1 and different types of immunocytes.
TABLE 2 Univariate logistic regression analysis of the gene score and clinical candidate predictors in the training set.

Variables Univariate logistic regression Multivariate regression

OR (95% CI) P OR (95% CI) P

The gene score 6.970 (1.567-35.815) 0.014* 5.330 (1.072-30.194) 0.044*

Sex (male vs. female) 2.171 (0.861-6.648) 0.130 – –

IC 1.894 (1.129-3.316) 0.019* 1.618 (0.933-2.910) 0.095

TC 1.170 (0.723-1.815) 0.499 – –

TMB 1.105 (1.055-1.168) <0.001* 1.098 (1.047-1.163) <0.001*
frontie
*P < 0.05.
CI, confidence interval; OR, odds ratio.
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the predicted non-response groups according to the optimal

cutoff value of 0.194. Notably, in the training set, patients in

the predicted response group had better OS compared with

those in the predicted non-response group (Figure 6A); the

same was true in the validation set (Figure 6B).

In the training and validation sets, the DCA suggested

that using the nomogram to detect a treatment response adds

more net benefit than either the treat-all or treat-none

scheme for a wide range of threshold probabi l i ty

(Figures 6C, D).
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Discussion

Anti-PD1/PDL1 treatment has been increasingly recognized as

a critical strategy in urothelial carcinoma. Precise targeting of

patients is of great importance to increase benefits and cost-

effectiveness. In this study, we determined the associations

between m6A methylation regulators and atezolizumab treatment

response. Furthermore, we developed a nomogram incorporating

the m6A-related gene signature and clinical variables for

individualized prediction of the response to atezolizumab in
B C

A

FIGURE 5

Nomogram to predict the response of atezolizumab treatment for patients with advanced urothelial carcinoma and its performance evaluation.
(A) Points were assigned for gene score, IC and TMB by drawing a line upward from the corresponding values to the “Points” line. The sum of
these three points, plotted on the “Total points” line, corresponds to predictions of the treatment response. (B) ROC curves of the nomogram.
(C) Calibration curves of the nomogram. The observed treatment outcome is shown compared with the nomogram using the training set and
validation set, respectively. The calibration curves depict the calibration of the nomogram in terms of the agreement between the predicted
treatment outcomes and the observed treatment outcomes. The 45-degree dotted gray line represents a perfect prediction, and the solid lines
represent the predictive performance of the nomogram. The distance between the solid line and the ideal line represents the superior predictive
accuracy of the nomogram.
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patients with urothelial carcinoma. This could aid in making

treatment strategies and facilitate precision medicine.

In the study, differential expression analysis showed that six

m6A methylation regulators, including IGF2BP1, IGF2BP3,

YTHDF2, HNRNPA2B1, FMR1, and FTO, were significantly

differentially expressed between the responders and non-

responders. Moreover, the expression of these six regulators

was significantly correlated with the treatment outcomes. These

results may preliminarily indicate that these six m6A regulators

have the potential of influencing the survival of urothelial

carcinoma cells. Subsequently, we identified two critical m6A

methylation regulators (i.e., FMR1 andHNRNPA2B1) to develop

an m6A-related gene signature for the prediction of the response
Frontiers in Immunology 10
to atezolizumab. The gene signature showed satisfactory

discrimination with an AUC of 0.634 in the training set,

which was further confirmed in the validation set with an

AUC of 0.646.

Furthermore, after using multivariable logistic regression

analysis to select candidate predictors, a nomogram was

built by incorporating the gene signature, IC, and TMB.

The nomogram demonstrated favorable calibration and

discrimination in the training set (AUC 0.768) and also

performed well in the validation set (AUC 0.755). Moreover,

the DCA suggested that within a broad threshold probability,

using the prediction tool to predict treatment response adds

more benefit than the treat-all or the treat-none scheme. The
B

C D

A

FIGURE 6

Clinical Usefulness of the Nomogram. (A, B) Kaplan-Meier survival curves of patients categorized into response and non-response groups in the
training set (A) and validation set (B), respectively. (C, D) DCA of the nomogram in the training set (A) and validation set (B), respectively. The x-
axis represents the threshold probability. The y-axis measures the net benefit. The black line depicts the net benefit of the strategy of treating
no patients. The gray line depicts the net benefit of the strategy of treating all patients. The red line represents the nomogram. The net benefit
was calculated by subtracting the proportion of all patients who are false positive from the proportion who are true positive, weighting by the
relative harm of forgoing treatment compared with the negative consequences of unnecessary treatment. The threshold probability is where the
expected benefit of treatment is equal to the expected benefit of avoiding treatment.
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presented nomogram could serve as a reliable prediction tool

and inform a clinician how big the possibility is that a certain

patient with advanced urothelial carcinoma would respond to

atezolizumab treatment. Furthermore, this tool would aid in

better risk stratification among these patients, which could allow

better allocation of health resources and avoid adverse effects

brought by atezolizumab on patients that would not

respond well.

In our study, two treatment outcome-related m6A

methylation regulators, i.e., FMR1 and HNRNPA2B1, were

determined by the LASSO regression analysis. And a high

expression of FMR1 and HNRNPA2B1 indicated a favorable

treatment outcome. The result of the prognostic value of FMR1

is in line with previous research where the expression levels of

FMR1 were positively correlated with the overall survival of

testicular germ cell tumors (37). On the other hand, the finding

regarding HNRNPA2B1 is contrary to other studies where high

expression of HNRNPA2B1 was significantly associated with

poor prognosis in osteosarcoma (38), esophageal cancer (39) and

adrenocortical carcinoma (40).

FMR1 and HNRNPA2B1 were both regarded as m6A

methylation reader (41–43). FMR1 plays an important role in

promoting m6A-modified mRNA nuclear export (44, 45) and

interacts with m6A reader YTHDF1 and YTHDF2 to maintain

the stability of its mRNA targets (43, 46, 47). To our knowledge,

there is a lack of studies between FMR1 and tumor immunity.

In our study, FMR1 was correlated with several types of

tumor-infiltrating immune cells, suggesting that FMR1

may be involved in the regulation of immune cells in the

tumor microenvironment. HNRNPA2B1 mediates mRNA

slicing, primary microRNA processing and facilitates

nucleocytoplasmic trafficking of mRNAs (41, 48–50). Previous

studies have found that high expression of HNRNPA2B1

promotes lymphatic metastasis (51)and recurrence (52)of

bladder cancer. The function of HNRNPA2B1 in tumor

immunity remains controversial. Some studies have shown

that HNRNPA2B1 can promote tumor immunity and anti-

tumor. For example, there is a significant positive correlation

between HNRNPA2B1 and M1 macrophages in esophageal

cancer (39), and the expression of HNRNPA2B1 is higher in

M1 macrophages and T/NK cells than in other cells in

glioblastoma (53). In contrast, other studies have revealed that

HNRNPA2B1 inhibits tumor immunity. For example,

HNRNPA2B1 is negatively correlated with the immune score,

stromal score, and ESTIMATE in adrenal cortical cancer (40), as

well as Th1 and Th17 in prostate cancer (54). In our study,

HNRNPA2B1 was positively correlated with activated CD4+

memory T cells and activated myeloid dendritic cells, implying

that HNRNPA2B1 may enhance the efficacy of immunotherapy

through regulating the tumor-infiltrating immune cells.
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However, further experiments are needed to clarify the

mechanism between these two genes and tumor immunity.

Of note, tumor mutation burden (TMB) has been found to

be able to predict treatment efficacy of immune checkpoint

blockade and has become a reliable biomarker for the

identification of patients that will benefit from immunotherapy

in many tumor types (55–57). In our study, patients with high

TMB were prone to achieve a positive response. This is

consistent with some previous studies which have shown that

high TMB is associated with response to anti-CTLA-4 in

melanoma (58, 59), and anti-PD1 in NSCLC (60). Given that

high TMB is correlated with a greater likelihood of presenting

cancer neoantigens on cancer cell surface (61), it is reasonable to

speculate that those cancers with high TMB tend to respond to

immune checkpoint blockade drugs as this greater mutation

load may increase the probability of recognition by neoantigen-

reactive T cells.

In addition, IC was positively correlated with an effective

response in our study, which is in line with previous studies (62,

63). Webb et al. found that PD-L1 was mainly expressed by

tumor-associated CD68+ macrophages rather than cancer cells,

and showed a positive association with survival in high-grade

serous carcinomas (62). PD-L1+ tumor-infiltrating lymphocytes

densities were favorable prognostic indicators for progression-

free (PFS) and overall survival (OS) (63).

Our study has several limitations. First, although m6A

methylation regulatory genes have been found to have high

prognostic values in the response to atezolizumab among

advanced urothelial carcinoma patients, their specific

mechanisms in urothelial carcinoma progression and

prognosis are not yet clear and warranted to be further

investigated by in vitro and in vivo experiments. Second,

external validation in a larger dataset is needed to confirm the

performance of the nomogram.

In summary, two critical m6A methylation regulators

associated with immunotherapy in patients with advanced

urothelial carcinoma were identified in our study. In addition,

the presented nomogram derived from the m6A-related gene

signature and clinical variables could serve as a reliable tool to

predict the response to atezolizumab in advanced urothelial

carcinoma. Further external validation is needed to determine

the performance of the nomogram before its application in

clinical practice.
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