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Abstract: Introduction: The dysregulation of cortisol secretion has been associated with a number
of mental health and mood disorders. However, diagnostics for mental health and mood disorders
are behavioral and lack biological contexts. Objectives: The goal of this work is to identify volatile
metabolites capable of predicting changes in total urinary cortisol across the diurnal cycle for
long-term stress monitoring in psychological disorders. Methods: We applied comprehensive
two-dimensional gas chromatography coupled with time-of-flight mass spectrometry to sample the
urinary volatile metabolome using an untargeted approach across three time points in a single day
for 60 subjects. Results: The finalized multiple regression model includes 14 volatile metabolites and
7 interaction terms. A review of the selected metabolites suggests pyrrole, 6-methyl-5-hepten-2-one
and 1-iodo-2-methylundecane may originate from endogenous metabolic mechanisms influenced by
glucocorticoid signaling mechanisms. Conclusion: This analysis demonstrated the feasibility of using
specific volatile metabolites for the prediction of secreted cortisol across time.

Keywords: volatile metabolomics; cortisol; diurnal; gcxgc-tofms; mental health; predictive modeling;
biomarkers; personalized diagnostics

1. Introduction

Cortisol, a glucocorticoid, is a biologically-important steroid hormone with a direct role in the
regulation of blood pressure, immune activation, inflammation, energy availability, and metabolism [1].
The synthesis of cortisol, originating in the cortex of the adrenal glands, is a well-understood
response to stress and represents the final product of the hypothalamic-pituitary-adrenal (HPA) axis.
The predictable daily pattern of cortisol synthesis, known as the diurnal cortisol rhythm, is regulated by
a complex network of interacting transcription factors and glucocorticoid-induced signaling cascades
(i.e., negative feedback loop) within the HPA axis [2,3]. Studies have long associated the dysregulation
of the HPA axis with mental health and mood disorders, with specific emphasis on depression;
however, underlying mechanisms still require further elucidation [4–7]. It has been reported that
the hyperactivity of glucocorticoid-receptors (GR) in the hippocampus, common in the dysregulated
HPA axis, causes chronic inflammation, reduced GR sensitivity, a lasting decrease in the number of
GRs, and cell death [4,8]. Alterations to HPA signaling mechanisms and GR sensitivity over time can
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impede healthy circadian function, detectable as an increase or decrease in basal cortisol levels, and are
frequently reported in studies examining psychiatric disorders [8–10].

Common analytical approaches for the clinical quantification of cortisol include immunoassays,
gas chromatography mass spectrometry (GC-MS), and liquid chromatography tandem mass
spectrometry (LC-MS/MS). Immunoassays remain the method of choice for many clinical laboratories
due to throughput-capability, despite limitations in dynamic range and accuracy due to antibody
cross-reactions with other endogenous steroids (i.e., prednisolone, corticosterone, and 5-beta-reduced
metabolites) [11–13]. To overcome limitations in the accuracy, chromatography- and spectrometry-based
methods have become increasingly common in clinical laboratories [13]. While published LC-MS/MS
methods offer advantages over immunoassay sensitivity, specificity, and cost [14], these approaches
often require multi-step sample preparation methods (i.e., liquid extraction or online sample trapping),
are slower in sample throughput, and lack standardization across labs [14,15]. Similarly, GC-MS
approaches for the direct detection of cortisol are limited by the reduced volatility of steroid hormones
and thus require extensive sample pre-processing and derivatization, limiting clinical translation [16].
The application of this volatile metabolomic approach offers advantages over current analytical methods
because the identification of metabolites that correlate with cortisol synthesis can be used as putative
biomarkers for long-term stress prediction in a point-of-care setting.

Cortisol alone is an insufficient biomarker for the classification of mental health disorders, given
that many studies have associated the dysregulation of cortisol with depression, bipolar disorder,
schizophrenia, and post-traumatic stress disorder [7,17–19]. Despite the recent efforts to better
understand the pathophysiology of mental health and mood disorders, a limited number of studies
have considered how diurnal changes influence metabolism, and none predict cortisol for applications
in long-term, stress-related mental health monitoring [20]. System-level analysis has recently become
a promising area of research due to its broader implications for disease presence and progression of
highly-phenotypic mental illnesses [21]. Our study aims to elucidate underlying metabolic changes
related to stress using untargeted comprehensive two-dimensional gas chromatography coupled
with time-of-flight mass spectrometry (GC×GC-TOFMS) sampling of the healthy human urinary
volatile metabolome throughout the natural diurnal cortisol cycle. We hypothesize that an underlying
relationship between the urine metabolome and diurnal cortisol excretion can be identified by the
application of untargeted GC×GC-TOFMS sampling to healthy urine samples, collected across three
time points in a single day. The healthy diurnal cortisol rhythm provides an opportunity to measure
changes in the urinary metabolome in response to these predictable daily changes for the development
of prediction models, with mental health as the motivation for study. This study represents the first
attempt, to the best of the authors’ knowledge, at non-invasively predicting changes in cortisol across
time using a metabolomic approach for future applications in long-term mental health monitoring and
point-of-care diagnostics.

2. Results

2.1. Multiple Regression and Diagnostics

A volatile metabolomic approach complements clinical translation of mental health diagnostics in
a point-of-care setting. HS-SPME-GC×GC-TOFMS analysis allows for the detection of a wide range of
volatile organic compounds for use in predicting total free urinary cortisol in urine across the diurnal
rhythm. A total of 1551 unique features were initially detected after chromatographic alignment;
however, outliers, contaminants, and metabolites that were not present in at least 50% of all samples
were removed, resulting in a final dataset containing 512 volatile compounds across 178 healthy urine
samples. A bootstrapped elastic-net approach was used to further reduce the number of possible
model variables to three smaller datasets containing 25, 35, and 50 VOCs. The reported regression
model was identified from the 35-metabolite subset (log-log), utilizing the AICc and BIC metrics,
diagnostic plots, adjusted R2, and the total number of model terms for determination. Tables 1 and 2
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summarize the 14 volatile metabolites and 7 interaction terms (21 total) in the final multiple regression
model, respectively. Final model terms were selected using forward and backward stepwise variable
selection and minimization of the corrected AIC. Each model term in Tables 1 and 2 has a reported
linear-regression coefficient (β1,2,...,21) and 95% confidence interval. Regressor p-values were calculated
using a t-test, and not all terms were found to be statistically significant; however, manual removal of
model terms that were not statistically significant resulted in a decrease in the adjusted R2 and increase
in AICc and BIC metrics, validating the importance of all selected model terms. Regression coefficients
for the 14 volatile metabolites indicated that 7 were positively associated and the remaining 7 were
negatively associated with measured total urinary cortisol, given that the effects of all other metabolites
have been considered. The accompanying multiple regression equation for predicting total urinary
cortisol is included, with all metabolite abundances reported as log10 transformed and standardized:

Diagnostics [22] were performed to confirm the validity of the model, including: residual vs.
fitted plot, QQ plot, residual histogram, residual lag plot, drift plot, variance inflation factor (VIF),
added variable plots (Figure S1), and predicted vs. observed plots. The model homoskedasticity can
be inferred from the residual vs. fitted plot (Figure 1a). The normality of the standardized residuals
can be inferred from the QQ plot (Figure 1b). The normality of the error term distribution can be seen
in the residual histogram plot (Figure 1c). Error term independence can be inferred from the plots in
Figure S2a and S2b. Overall model performance is displayed as a predicted vs. observed plot, with
an adjusted R2 value equal to 0.521 (Figure 1d). The VIF was calculated for all terms in the multiple
regression model to assess the assumption of multicollinearity, and no terms were found to exceed the
established cutoff of 5 [22]. In addition, stepwise AICc minimization for the final model was plotted
(Figure S2c), but not included in the text.
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Figure 1. Finalized multiple regression results, using the top 35 variable subset and AICc-guided
backward and forward model selection. Both the explanatory and response variables are log10

transformed. (a) The residual vs. fitted plot supporting the assumption of constant variation in error
terms; (b) the QQ plot supporting the assumption of error term normality; (c) histogram of residuals
showing normally distributed error terms; (d) predicted vs. observed total free cortisol (in µg) using the
multiple regression model with the 95% confidence interval shown in light blue, with values reported
as log10 transformed.
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Table 1. Results for individual terms in the multiple regression model. Metabolite information includes: compound name, Human Metabolome Database (HMDB) ID,
chemical classification, regression coefficient, confidence interval, t-test corrected p-value, 1st dimension retention time, 2nd dimension retention time, retention index,
and ID confidence level using the guidelines set by the Metabolomics Standards Initiative. Retention indices denoted with * have been extrapolated. Compounds
denoted with ** have assigned names other than the first spectral hit, using NIST non-polar RI database for confirmation. Compounds denoted with *** fell within 6%
of NIST reported non-polar RI.

Multiple Regression Model–Metabolite Term Breakdown

Model Variable Compound Name HMDB ID Chemical
Classification

Regression
Coefficient

95% Confidence
Interval

Benjamini-Hochberg
Adjusted p-Value

1tR(s) 2tR(s) RI ID

β0 Intercept NA NA 0.496 (0.446, 0.548) < 2 × 10−16 NA NA NA NA

x1 6-Methyl-5-hepten-2-one HMDB0035915 Ketone −0.116 (−0.174, −0.058) 2.93 × 10−6 1364 0.76 1031 1

x2 Ketone 1 - Ketone 0.170 (0.093, 0.247) 4.18 × 10−8 2056 0.75 1403 4

x3 Unknown 1 - - 0.035 (−0.048, 0.117) 2.16 × 10−8 1102 0.94 911 4

x4 Hydrocarbon 1 - Hydrocarbon −0.069 (−0.127, 0.012) 2.70 × 10−3 1926 0.57 1326 4

x5 Unknown 2 - - −0.112 (−0.169, −0.055) 4.57 × 10−3 1510 1.03 1102 4

x6 Unknown 3 - - 0.207 (0.105, 0.308) 4.79 × 10−3 2270 1.00 1538 4

x7 Unknown 4 - - −0.040 (−0.095, 0.014) 4.08 × 10−2 512 1.47 644 * 4

x8 Unknown 5 - - −0.115 (−0.173, −0.057) 6.37 × 10−2 918 0.64 830 4

x9 Unknown 6 - - −0.035 (−0.112, 0.042) 6.80 × 10−2 2038 0.52 1392 4

x10 Unknown 7 - - 0.004 (−0.095, 0.104) 1.57 × 10−2 2156 0.54 1456 4

x11 Pyrrole HMDB0035924 Heteroaromatic 0.070 (0.001, 0.139) 1.39 × 10−1 926 1.87 833 1

x12 1-Iodo-2-methylundecane ** HMDB0062727 Halogenated
Hydrocarbon −0.063 (−0.124, −0.003) 5.47 × 10−2 2322 0.59 1571 3

x13 Unknown 8 - - 0.070 (0.003, 0.137) 8.97 × 10−2 2304 1.07 1560 4

x14 4,6-Dimethyl-dodecane *** HMDB0062598 Hydrocarbon 0.081 (0.001, 0.161) 8.97 × 10−2 1784 0.56 1246 3



Metabolites 2020, 10, 194 5 of 18

Table 2. Interaction terms used in the model have the following information provided: compound
name, dummy variable, regression coefficient, confidence interval, and F-statistic corrected p-value.
Compounds denoted with *** fell within 6% of NIST reported non-polar RI.

Multiple Regression Model–Interaction Term Breakdown

Interaction Terms Compound Name Dummy
Term

Regression
Coefficient

95%
Confidence

Interval
Benjamini-Hochberg

Adjusted p-Value

x2 ×Male Ketone 1 Male −0.121 (−0.228, −0.013) 1.81 × 10−2

x9 ×Male Unknown 6 Male −0.100 (−0.203, 0.005) 3.18 × 10−2

x10 ×Male Unknown 7 Male 0.121 (0.004, 0.237) 7.41 × 10−3

x3 ×Morning Unknown 1 Morning 0.210 (0.076, 0.345) 6.82 × 10−2

x6 ×Morning Unknown 3 Morning −0.295 (−0.434, −0.155) 1.25 × 10−1

x14 ×Morning 4,6-Dimethyl-dodecane *** Morning −0.075 (−0.182, 0.031) 1.91 × 10−1

x6 × Afternoon Unknown 3 Afternoon −0.092 (−0.218, 0.035) 1.80 × 10−1

Figure S3 shows a comparison of model results for the 35 volatile metabolite subset with log10

transformation of total urinary cortisol and the 25-metabolite subset without log10 transformation of
total urinary cortisol. Despite the two models using the same total number of terms (n = 22, including
the intercept) and a small difference in adjusted R2 values (0.036), the non-linear relationship between
explanatory and response variables result in the violation of regression assumptions, underscoring the
necessity of the response variable transformation. Additionally, a direct comparison of the six “best”
models (top 25, 35, and 50 metabolite sub-sets using raw or log10 cortisol values) developed during
statistical analysis can be found in Figure S4. It is worth noting that one of the six models (50 metabolite
subset with raw values for total free cortisol) was found to have an adjusted R2 equal to 0.691; however,
the model violated assumptions (i.e., linearity, error term normality and heteroskedasticity) and
contained 53 total terms, indicating overfitting.

2.2. Individual Subject Analysis

Total free urinary cortisol was predicted for each subject using Equation (1). Observed and
predicted values were plotted by time of day for all subjects (Figure S5). Representative plots for five
male and female subjects were presented in Figure 2a,b, respectively. The authors selected 10 subjects
among the 60 participants due to the fact that these plots were indicative of the major predictive trends.
It is worth noting that the regression model was able to modestly predict total free cortisol for some of
the subjects that did not exhibit typical diurnal shifts (i.e., synthesis of cortisol peaks in the morning
followed by a gradual decrease throughout the day), providing additional evidence for the validity of
the model, as seen in the plots for male subjects 15 and 20 and female subjects 5 and 20 in Figure 2.

log 10(Cortisol) = 0.496− 0.116 × 1 + 0.170 × 2 + 0.035 × 3− 0.069 × 4− 0.112 × 5 + 0.207 × 6
−0.040 × 7− 0.115 × 8− 0.035 × 9 + 0.004 × 10 + 0.070 × 11 − 0.063 × 12
+0.070 × 13 + 0.081 × 14− 0.121 (×2× Male) − 0.100 (×9× Male)
+0.121 (×10× Male) + 0.210 (×3× Morning) − 0.295 (×6×Morning)
−0.075 (×14×Morning) − 0.092 (×6×Afternoon)

(1)



Metabolites 2020, 10, 194 6 of 18
Metabolites 2020, 10, x  6 of 17 

 

 
Figure 2. Individual subject analysis by time of day. (a) Observed and predicted total free urinary 
cortisol for five male subjects; (b) observed and predicted total free urinary cortisol for five female 
subjects; (c) the boxplot of male subject standardized residuals by time of day; (d) the boxplot of 
female subject standardized residuals by time of day. 

2.2.1. Time of Day 

Boxplots of standardized residual values by time of day for male and female subjects are 
presented in Figure 2c–d, respectively. Both male and female subjects displayed similar trends in 
residuals by time of day, with predicted evening cortisol values being more accurate than morning 
cortisol values. 

For male subjects, morning residual values (total free urinary cortisol) ranged from -0.408 to 
0.650 (0.391 µg to 4.47 µg), with an average of 0.140 ± 0.072 (1.38 ± 1.18 µg). Afternoon residual values 
ranged from −0.803 to 0.557 (0.157 µg to 3.61 µg) with an average of −0.004 ± 0.093 (0.991 ± 1.24 µg). 
Evening residual values ranged from −0.528 to 0.681 (0.297 µg to 4.80 µg) with an average of −0.063 ± 
1.22 µg). 

For female subjects, morning residual values ranged from −0.401 to 0.637 (0.397 µg to 4.34 µg) 
with an average of 0.105 ± 0.086 (1.27 ± 1.22 µg). Afternoon residual values for female subjects ranged 
from −0.848 to 0.451 (0.142 µg to 2.82 µg) with an average of 0.029 ± 0.096 (1.07 ± 1.25 µg). Evening 
residual values ranged from −0.929 to 0.330 (0.118 ug to 2.14 µg) with an average of −0.202 ± 0.094 
(0.628 ± 1.24 µg). 

Figure 2. Individual subject analysis by time of day. (a) Observed and predicted total free urinary
cortisol for five male subjects; (b) observed and predicted total free urinary cortisol for five female
subjects; (c) the boxplot of male subject standardized residuals by time of day; (d) the boxplot of female
subject standardized residuals by time of day.

2.2.1. Time of Day

Boxplots of standardized residual values by time of day for male and female subjects are presented
in Figure 2c–d, respectively. Both male and female subjects displayed similar trends in residuals by
time of day, with predicted evening cortisol values being more accurate than morning cortisol values.

For male subjects, morning residual values (total free urinary cortisol) ranged from -0.408 to 0.650
(0.391 µg to 4.47 µg), with an average of 0.140 ± 0.072 (1.38 ± 1.18 µg). Afternoon residual values
ranged from −0.803 to 0.557 (0.157 µg to 3.61 µg) with an average of −0.004 ± 0.093 (0.991 ± 1.24 µg).
Evening residual values ranged from −0.528 to 0.681 (0.297 µg to 4.80 µg) with an average of −0.063 ±
1.22 µg).

For female subjects, morning residual values ranged from −0.401 to 0.637 (0.397 µg to 4.34 µg)
with an average of 0.105 ± 0.086 (1.27 ± 1.22 µg). Afternoon residual values for female subjects ranged
from −0.848 to 0.451 (0.142 µg to 2.82 µg) with an average of 0.029 ± 0.096 (1.07 ± 1.25 µg). Evening
residual values ranged from −0.929 to 0.330 (0.118 µg to 2.14 µg) with an average of −0.202 ± 0.094
(0.628 ± 1.24 µg).
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2.2.2. Male Versus Female

Overall analysis by subject sex revealed the model slightly outperformed for the female subgroup
compared to the male subgroup. The average residual value for all female samples was equal to
0.589 µg, whereas the average residual for all male samples was found to be 1.70 µg. In general,
the model demonstrates consistent predictive power across sample subgroups (i.e., sex and time of
day).

2.3. Review of Selected Metabolites

Volatile metabolites used in the multiple regression model were subject to further statistical
analysis using unpaired t-tests. A false discovery rate (FDR) of 0.10 was applied to control for type
I errors during multiple hypothesis testing, and five comparisons were found to retain significance.
The four metabolites with an ID level ≤ 3 were chosen for representation as boxplots in Figure 3.
The abundance of 6-methyl-5-hepten-2-one (sulcatone) was significantly elevated in females for the
afternoon subset, suggesting specific volatile metabolites are dependent on sex. Two of the remaining
metabolites shown in Figure 3, pyrrole and 4,6-dimethyl-dodecane, demonstrating a time-dependent
component to detectable urinary abundance for some metabolites. This relationship suggests that
normal, daily biological changes (i.e., diurnal rhythm) influence downstream metabolic pathways,
similar to reports from previous studies [23–26]. Analysis for all 14 volatile metabolites can be found
in Figure S6. Additionally, volatile metabolites in the multiple regression model with an ID confidence
level ≤ 3 were reviewed for biological context.
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3. Discussion

Dysregulation of metabolic pathways caused by disease can be detected as changes in metabolite
abundance using a variety of analytic techniques including but not limited to LC-MS, GC-MS, and
NMR. The ability to identify and quantify metabolites in a biological sample using chromatography
and mass spectrometry has generated interest in developing non-invasive and clinically-translatable
panels of biomarkers for use in psychiatric disorder phenotyping, early diagnosis, and treatment
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selection [27,28]. Studies applying volatile metabolomic approaches have demonstrated successes in
identifying novel markers of disease including cancer, diabetes, and mental illness [28–30].

In this study, urine samples were collected at three time points in a single day for 60 subjects in
an effort to probe the underlying temporal relationship between diurnal cortisol levels and excreted
metabolites. Using the multiple regression model that we developed, the average female residual
value across all samples was found to equal 0.589 µg, while the average residual for all male samples
was found to equal 1.70 µg. Through this work, we have shown that the model detailed in Equation (1)
can be applied to approximate total free urinary cortisol excretion across time in healthy individuals.
The selected multiple regression model includes 14 volatile metabolite terms and 7 interaction terms
using factors identified by the two-way ANOVA (i.e., sex and sample collection time). From a biological
standpoint, the interaction terms in the model account for variability in metabolite abundance due
to sample-specific characteristics (i.e., subject sex and sample collection time). Model diagnostics
shown in Figure 2 and Figures S1–S4 provide evidence that underlying regression assumptions of
linearity, normality of error terms, multicollinearity, heteroskedasticity, and autocorrelation are satisfied.
Diagnostics were included to demonstrate the validity in applying the multiple regression model to
approximate total urinary cortisol in the new sample population.

Elevated hydroxyhemopyrrolin-2-one (HPL) in urine has long been associated with psychiatric
disorders, first recorded in schizophrenic patients, with similar findings regarding bipolar disorder,
depression, hyperactivity disorder, Down Syndrome, and chronic fatigue syndrome [31,32]. Pyrrole
(Figure 3), a precursor to HPL, is known to play a role in some biological pathways, including
porphyrin synthesis for heme and cytochrome macromolecules. A relevant study by McGinnis et al.
suggested an altered heme biosynthesis pathway can produce HPL and other precursor molecules
(i.e., pyrrole) after interactions with the gut microbiome [33]. Furthermore, McGinnis et al. found
that administration of prednisone, a corticosteroid, caused a statistically significant increase of HPL
in urine due to stress-related changes in intestinal permeability, directly linking cortisol signaling
mechanisms and metabolite abundance in urine. Interactions with the microbiome may also explain
the detection of 6-methyl-5-hepten-2-one (Figure 3), with possible endogenous sources including:
(i) the geraniol and nerol degradation pathway for monoterpene metabolism in bacteria [34]; and
(ii) oxidative degradation of squalene in bacteria [35,36]. Although 6-methyl-5-hepten-2-one is not
a primary metabolite in humans and is used as a synthetic flavoring compound, previous studies
have shown that several gut microorganisms, including yeast (Candida parapsilosis, Candida boidinii)
and bacteria (Klebsiella oxytoca), utilize the geraniol and nerol degradation pathway as a carbon and
energy source [37–39]. Also, 1-Iodo-2-methylundecane (Figure 3) has been previously reported as a
putative estrogen-dependent chemo-signal in mice, with evidence presented for potential interactions
with GR signaling pathways [40,41]. While limited information is present regarding the synthesis of
4,6-dimethyl-dodecane, one study examining volatile metabolites in breath samples from head and
neck cancer patients identified 4,6-dimethyl-dodecane (Figure 3) in >80% of healthy subjects (n = 15),
supporting its use as a model regressor for applications in new healthy cohorts [29].

Dallmann et al. previously demonstrated that the natural circadian rhythm has a direct effect on
multiple human metabolic pathways, shown to be independent of sleep and diet [23]. These results
provided the foundation for our model development to predict cortisol levels across time using
volatile urinary metabolites for future applications in long-term mental health monitoring. Of the
four volatiles with an ID level less than or equal to 3, pyrrole and 6-methyl-5-hepten-2-one were
concluded to have possible origins in secondary metabolic pathways and interactions with common gut
microbes [33,37]. Results from Vanuystel et al. support the hypothesized interaction between urinary
metabolite abundance, gastrointestinal permeability, and time-varying, psychologically-induced
stress (i.e., synthesis of CRH and cortisol) [42]. While evidence for the endogenous origin of these
compounds is presented, a limited number of studies have explored biosynthesis mechanisms for
volatile metabolites [43,44], lowering overall confidence in selected pathways.
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The human urinary metabolome has been previously characterized in many different studies,
yet few have considered the significant effects of temporal changes [23,24,26,45]. While Dallmann
et al. and Ang et al. have previously studied the salivary and plasma metabolome across the
circadian cycle, their analysis stops short of utilizing their circadian-dependent metabolites to predict
biological changes across time. Our development of a multiple regression model to predict cortisol,
and implicitly stress, improves upon the interpretation of diurnal cortisol influences on metabolism for
wider applications in psychiatric diagnostics and long-term monitoring. In addition, our application
of GC×GC-TOFMS instrumentation offers improvements in the overall resolution and identification
capabilities as compared to one-dimensional instrumentations [46], complementing an untargeted
approach for volatile urinary metabolomic analysis. Orthogonal separation using non-polar and
mid-polar columns helps to reduce co-elution of similar compounds resulting in a greater number
of detected and quantified metabolites. Future work will apply the multiple regression model for
use in mental health diagnostics; however, targeted analysis using a larger number of subjects must
be performed to further validate compound identities, prediction capability, and the accuracy of
the model.

4. Materials and Methods

4.1. Subject Recruitment

The volatile analysis performed in this study involved the collection of three different urine
samples from 60 healthy male and female subjects (30 male and 30 female), according to the approved
IRB. Subjects were recruited at random from Arizona State University, Tempe campus. A screening
survey was implemented to assess physical and mental health prior to recruitment. Subjects were
asked to self-report on their average and current stress levels, using a 0-10-point scale, with current
stress results shown in Table 3. A qualitative stress cutoff > 6 was set to exclude individuals that
recently experienced heightened levels of stress in an effort to target the healthy diurnal cortisol rhythm.
A score of 6 was selected based on patient comments accompanying their self-reported score. Scores of
≥ 7 were typically accompanied by comments indicating the participants were experiencing stressful
events not typically encountered with high frequency, such as multiple exams, difficult classes, and
job interviews. To avoid potential outlier cortisol observations, scores ≥ 7 were excluded. Interested
participants that had indicated they were currently taking medication were excluded from the study.
Women taking birth control were accepted into the study and comprised 13 of the 30 healthy female
subjects. Study subjects spanned 18 to 54 years old, averaging 22 years old, with no specific age range
established as a study criterion.This study was approved by the Institutional Review Board (IRB) at
Arizona State University (IRB 00006010). Written, informed consent was obtained from all individual
participants included in the study.
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Table 3. Demographics of healthy subjects. Included are subject age, ethnicity, height, weight, and qualitative stress score (at the time of subject consent). Women
taking birth control are denoted with *.

Male
Subject

Age
(years) Ethnicity Height

(cm)
Weight

(kg)
Stress Score

(0–10)
Female
Subject

Age
(years) Ethnicity Height

(cm)
Weight

(kg)
Stress Score

(0–10)

1 18 Caucasian 180 64 3 1 26 Latino 163 56 0
2 18 Caucasian 168 59 3 2 18 Asian 165 51 4
3 28 Asian 178 62 5 3 * 20 Latino 157 43 4
4 19 African American 185 95 3 4 23 Caucasian 163 59 2
5 26 Asian 178 50 4 5 18 Asian 163 45 6
6 18 Caucasian 183 79 0 6 19 Caucasian 178 64 5
7 21 Asian 180 75 0 7 * 21 Caucasian 163 54 4
8 22 Caucasian 179 74 0 8 * 32 African American 160 75 4
9 20 Caucasian 170 70 2 9 18 Latino 165 54 3

10 20 Asian 152 50 4 10* 25 Latino 170 63 3
11 20 Asian 173 52 1 11 28 Caucasian 170 67 3
12 19 Latino 170 82 0 12 44 Asian 165 58 2
13 20 Latino 183 73 6 13 30 Latino 163 51 2
14 21 Caucasian 180 84 2 14 18 Caucasian/ Latino 170 82 3
15 18 Latino 160 61 2 15 * 20 Caucasian 170 66 5
16 22 Asian 179 70 0 16 * 19 Latino 173 75 6
17 18 Caucasian 180 68 3 17 * 25 African American 168 70 4
18 20 Caucasian 183 86 2 18 23 African American 165 53 2
19 18 Caucasian 183 68 6 19 22 Caucasian/ Asian 157 61 6
20 21 Caucasian 178 68 4 20 54 Caucasian 157 51 0
21 23 Caucasian 193 77 4 21 20 African American 165 62 0
22 18 Asian 173 73 4 22 21 Caucasian 170 73 6
23 26 Indian 170 70 6 23 18 Latino 157 48 4
24 20 Asian 178 77 6 24 * 18 Caucasian/ Asian 165 59 6
25 19 Latino 178 77 4 25 * 21 Caucasian 168 64 6
26 22 Asian 183 84 3 26 * 19 Caucasian 157 68 3
27 22 Caucasian 183 77 0 27 * 23 African American 157 52 2
28 20 Asian 175 79 0 28 23 African 158 55 5
29 18 Asian 170 61 4 29 * 18 Caucasian 160 64 5
30 18 Asian 185 77 5 30 * 21 Latino 160 52 4
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4.2. Sample Collection

Subjects accepted into the study provided unique samples in the morning, afternoon, and evening,
at similarly-spaced intervals across a single day (5–7 h between collection periods depending on lunch
timing; 12 h separated morning and evening samples). Subjects were asked to withhold from food and
liquid consumption 2 h and 20 min prior to sample collection, respectively. The food consumption
restriction was established based on a foundational study analyzing gastric emptying-time using
51Cr release [47]. Results from this study indicated that a time period of 90 minutes was sufficient for
gastric emptying in healthy patients. Subjects were given 90 minutes post-waking to provided their first
sample, a restriction implemented to target morning first pass urine. Afternoon samples were collected
directly before lunch. Evening samples were collected 2 h before dinner (with at least 5 h since the prior
sample collection) or 2 h after dinner. Prior to all sample collection, subjects were screened using a
self-reported survey to ensure adherence to study criteria (i.e., food, drink, and medication). Collection
containers were gently agitated for 10 s, then four 10 mL samples were aliquoted into cryovials and
stored at −80 ◦C until testing. Volatile analysis was completed within three months of the first sample
collection date. Urine samples were sent for LC-MS/MS analysis at a commercial lab to quantify total
free urinary cortisol (LabXpress, Phoenix AZ), with all values reported in micrograms (µg).

4.3. Volatile Extraction (HS-SPME)

Cryovials containing 10 mL of subject urine were thawed at room temperature for 1 h Vials
were then inverted five times to promote a homogeneous mixture. Five mL of the urine sample
was aliquoted into a 10 mL heat-treated glass vial (Sigma-Aldrich, St. Louis, MO, USA). Screw-tight
PTFE/silicone septa (Sigma-Aldrich) were used to seal the sample and generate a sampling headspace.

Volatiles were extracted from the headspace of biological samples using solid-phase microextraction
(HS-SPME; 1 cm, divinylbenzene/carboxen/polydimethylsiloxane, 50/30 µm; Sigma-Aldrich).
This SPME fiber coating biases towards low molecular weight volatiles; however, the fiber has
been previously identified as the most effective coating to maximize urinary volatile headspace
extraction [48]. Headspace equilibrium was promoted by agitating the samples at 250 rpm for 5 min at
50 ◦C prior to inserting the SPME fiber. The literature suggests an agitation time of 4–5 min is sufficient
to reach equilibrium for volatile metabolites [49]. Sampling was performed by exposing the SPME
fiber to the urine headspace for 45 min during agitation at 250 rpm and heating at 50 ◦C. SPME fibers
were heated for 5 min at 270 ◦C between samples to minimize analyte carryover. SPME fibers were
replaced every 60 injections to improve sample reproducibility.

4.4. GC×GC-TOFMS Analysis

Volatile analysis was performed using GC×GC-TOFMS (Pegasus 4D, Leco Corp., St. Joseph,
MI, USA). The first-dimension column consisted of a Rxi-624Sil MS (60 m × 25 µm × 1.4 µm (length
× internal diameter × film- thickness); Restek, Bellefonte, PA) and the second-dimension column
consisted of Stabilwax (100% polyethylene glycol; 1 m × 25 µm × 0.5 µm); Restek). Detection and data
acquisition parameters were controlled using ChromaTOF® software, Version 4.60.8.0 (Leco Corp.,
St. Joseph, MI, USA). Columns were heated independently using two separate ovens. The primary
oven was initiated at 50 ◦C and held for 2 min, then increased at 5 ◦C/min until reaching 230 ◦C and
held for 10 min. The secondary oven was maintained at 5 ◦C above the primary oven. A quad jet
modulator was used with a 2 second modulation period. Each modulation period consisted of an
alternating 0.5 s hot pulse and 0.5 s cold pulse. The modulator was maintained at a temperature
offset of 15 ◦C relative to the secondary oven. UHP Helium (99.999%) was used as the carrier gas to
maintain a flow rate of 1 mL/min. A split injection ratio of 50:1 was used. The inlet and transfer line
temperatures were held at 250 ◦C.

Mass spectra were collected at a rate of 100 Hz over a mass range of 40–500 with an ionization
energy of −70 eV. Samples were randomized and urinary volatile metabolite data were collected over
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three continuous weeks of GC×GC-TOFMS analysis. A perfluorotributylamine (PFTBA) standard was
run at the start of each day to tune the MS. Blanks (empty vials) were run daily prior to clinical samples
to monitor for system contamination. Alkane standard mix (C8-C20; Sigma-Aldrich) was sampled at
the beginning, middle, and end of the sample set for calculating retention indices.

Instrument methodology was optimized (volume and degradation) for volatile analysis using
our previously established approach [50]. In brief, SPME extraction was tested in triplicate for urine
volumes of 0.5 mL, 1.0 mL, 2.5 mL, and 5.0 mL, and a maximum number of features identified at 5.0 mL
sample volume with statistical significance (α = 0.01). Sample degradation was analyzed using a 4 ◦C
temperature-controlled sampling tray. Thirty aliquots (5 mL) of the same urine sample were analyzed
by GC×GC-TOFMS, resulting in less than 5% relative standard deviation in the number of detected
VOCs. From this preliminary analysis, it was determined that urine samples remained viable for up to
39 hours in the temperature-controlled sampling tray, prior to testing.

4.5. Data Processing

Volatile profiles were processed and aligned using the Statistical Compare package within the
ChromaTOF software. The baseline signal was drawn through the middle of the noise. S/N used
in peak selection was set at 50:1 for a minimum of two apexing masses. Subpeaks in the second
dimension were required to meet a S/N ≥ 6, mass spectral match ≥ 600, and a retention time shift ≤
to 0.2 s to be combined within an individual chromatogram. For chromatographic alignment, peaks
had to have ≤ 2 second retention time shift in the first dimension and ≤ 0.2 second retention time
shift in the second dimension. Additionally, a minimum spectral similarity score of 600 (60%) was
required prior to alignment. A secondary round of peak picking was performed during alignment
using a S/N threshold of 5. Peaks eluting prior to 358 s, as well as peaks identified in blank samples,
were excluded from statistical analysis. Compound abundance was obtained by integrating the areas
of aligned peaks using the unique ion mass. The resulting aligned peaks were then compared to the
National Institute of Standards and Technology (NIST) 2011 Mass Spectral Library. Tentative peak
names were assigned to mass spectra with similarity scores ≥ 600. Analytes with a spectral similarity
score <600 were labeled “unknown”. However, tentative names from the instrument library search
provide a foundation for targeted method development.

Putative metabolic biomarkers identified by the statistical analysis were assigned ID confidence
levels, ranging from 1–4 (1 being most confident), using previously published guidelines established by
the Metabolomics Standards Initiative [51]. Compounds that were verified with an ≥80% mass spectral
match on a forward search in the NIST 2011 library and with linear retention index (RI) data consistent
with the mid-polar Rxi-624Sil stationary phase received a confidence level of 2. Volatile metabolites
included in the predictive model with an ID level of 2 were verified by analytical grade standards ≥98%
pure (pyrrole, 6-methyl-5-hepten-2-one; Sigma Aldrich) to reduce the confidence level to 1. RIs were
calculated using the following equation, with a 5–35% cutoff used for level 2 classification [52]:

Mean RIs for non-polar and polar columns were obtained from the NIST 2011 RI database and
published studies [53,54]. Peaks with a spectral match ≥80% but without confirmatory RI (Equation (2))
or homologous series information were assigned an ID confidence level of 3, using NIST non-polar RIs
as supporting evidence for naming. Compounds that could not be validated against RI or homologous
series data with a spectral match less than or equal to 80% received an ID confidence level of 4.
Tentative names assigned to level 4 compounds by the software were replaced with functional group
identifiers if second-dimension elution time provided sufficient evidence [55]. Otherwise, level 4
volatile metabolites in Tables 1 and 2 were reported as “unknown”.

RIexperimental −RInon−polar

RIpolar −RInon−polar
∗ 100 = 5− 35% (2)
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4.6. Statisical Analysis

4.6.1. Post-Processing

Raw metabolite abundances were normalized using Probabilistic Quotient Normalization
(PQN) [56]. Abundance values were then log10 transformed, centered, and scaled using R, Version 3.3.2
(The R Foundation for Statistical Computing, Vienna, Austria). Compounds that were not present in at
least half of all samples were removed (MATLAB 2018b; Mathworks Inc., Natick, MA, USA) in an effort
to improve the translatability of the results. Two outliers (male subject 6 morning, 44.3 µg; male subject
29 afternoon, 97 µg) were removed from all post-processing and subsequent statistical analysis, given
that the adult reference range for total free urinary cortisol in 24 h is roughly 3.5–45 µg [57]. A two-way
ANOVA with replication was performed to determine if sex (p = 0.013) and time of day (p = 0.034)
were statistically significant sources of variation for use as interaction term factors in the multiple
regression model. Given that our dataset contains far more variables than observations, the two-way
ANOVA and elastic-net were used in an exploratory manner to reduce the total number of variables
used in the regression.

4.6.2. Variable Selection

Model variables were selected by applying elastic-net using R package glmnet, Version 2.0-5 [58,59]
and bootstrapping to the sample set using 80% of subjects (n = 48) as training and the remaining 20%
as the test. An alpha = 0.5 was selected as the weight of the lasso (L1) vs. ridge (L2) optimization.
Three subsets of volatile metabolites, containing the top 25, 35, and 50 compounds, were generated
using a frequency of selection by elastic-net over 250 iterations using minimization of the mean squared
error to guide variable selection. Each subset of metabolites was used to develop a multiple regression
model with sex and time of day included as interaction terms. Sex was defined as a binary dummy
variable where all male subjects received a 1 and female subjects received a 0, for all time points.
The time of day interaction term was split into two dummy variables, in which:

(i) morning samples received a 1 and all other samples received a 0
(ii) afternoon samples received a 1 and all other samples received a 0.

4.6.3. Multiple Regression

Initial models for each subset of volatile metabolites (top 25, 35, and 50) contained all possible
variables and interaction terms. Model selection was performed using forward and/or reverse stepwise
minimization of Akaike and Bayesian Information Criterion (AIC and BIC, respectively) for each of the
three metabolite subsets using the MASS R package, Version 7.3-45 [22,60]. A model was selected for
each subset using the smallest corrected AIC (AICc) as an initial metric, and the smallest BIC to select
between multiple models with similar AICc values, if necessary. Regression diagnostics were then
performed to check for model adherence to underlying assumptions. After reviewing the selected
models, it was determined that a log10 transformation of the response variable (total free cortisol)
was necessary. A second round of model development was performed for the top 25, 35, and 50
metabolite subsets yielding the final regression model reported in Equation (2) p-values, for model terms
were calculated using a t-test and subsequently corrected using the Benjamini-Hochberg adjustment
procedure [61]. The applied workflow has been summarized in Figure 4.
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5. Conclusions

Diagnostics for psychiatric disorders remain qualitative and lack biomarkers due to complex,
multi-level system interactions and widely varying phenotypes. This study aims to improve long-term
mental health monitoring through the ability to track and predict changes in stress across time. Multiple
regression modeling was performed on 60 healthy subjects, resulting in the development of a linear
model, with 21 total terms, to predict total excreted cortisol in urine. Through our review of selected
metabolites, biosynthesis pathways were identified for compounds with confirmatory chromatographic
and mass spectral information. Furthermore, related studies have reported a correlation between
pyrrole and diurnal cortisol levels, thus supporting our identification of pyrrole as a potential stress
marker in future targeted studies. Results from this study support the potential for developing
non-invasive methods to monitor stress across time, using downstream metabolites as predictors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/5/194/s1,
Figure S1: Add variable plots for terms in the finalized multiple regression model. Figure S2: Additional
diagnostics plots including the residual lag plot, drift plot, and a plot of stepwise AIC-minimization. Figure S3:
Secondary regression analysis to verify the need for response variable transformation. Figure S4: Top 6 regression
models constructed during statistical analysis, used to justify final model selection. Figure S5: Individual subject
predictions using the predictive regression model. Figure S6: Boxplots of metabolite abundance values used in the
model, including pairwise t-testing for significance by sex and time of day.
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