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Abstract
This study aims to construct a robust prognostic model for adult adrenocortical car-
cinoma (ACC) by large-scale multiomics analysis and real-world data. The RPPA data, 
gene expression profiles and clinical information of adult ACC patients were obtained 
from The Cancer Proteome Atlas (TCPA), Gene Expression Omnibus (GEO) and The 
Cancer Genome Atlas (TCGA). Integrated prognosis-related proteins (IPRPs) model 
was constructed. Immunohistochemistry was used to validate the prognostic value 
of the IPRPs model in Fudan University Shanghai Cancer Center (FUSCC) cohort. 76 
ACC cases from TCGA and 22 ACC cases from GSE10927 in NCBI’s GEO database 
with full data for clinical information and gene expression were utilized to validate the 
effectiveness of the IPRPs model. Higher FASN (P = .039), FIBRONECTIN (P < .001), 
TFRC (P < .001), TSC1 (P < .001) expression indicated significantly worse overall sur-
vival for adult ACC patients. Risk assessment suggested significantly a strong predic-
tive capacity of IPRPs model for poor overall survival (P < .05). IPRPs model showed 
a little stronger ability for predicting prognosis than Ki-67 protein in FUSCC cohort 
(P = .003, HR = 3.947; P = .005, HR = 3.787). In external validation of IPRPs model 
using gene expression data, IPRPs model showed strong ability for predicting prog-
nosis in TCGA cohort (P = .005, HR = 3.061) and it exhibited best ability for predict-
ing prognosis in GSE10927 cohort (P = .0898, HR = 2.318). This research constructed 
IPRPs model for predicting adult ACC patients’ prognosis using proteomic data, gene 
expression data and real-world data and this prognostic model showed stronger pre-
dictive value than other biomarkers (Ki-67, Beta-catenin, etc) in multi-cohorts.
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1  | INTRODUC TION

Adrenocortical carcinoma (ACC) is a rare and aggressive endo-
crine malignancy with high risk of relapse, poor survival and lim-
ited treatment options. The Surveillance, Epidemiology and End 
Results (SEER) database estimates that the annual incidence rate 
of ACC is approximately 0.72 per million cancer cases, resulting 
in 0.2% of all cancer deaths in the United States.1 However, ACC 
shows highly aggressive biological behaviour with less than 35% 
of patients surviving 5 years after initial diagnosis.2 Therefore, ap-
propriate treatment is extremely important. The current preferred 
treatment of ACC is based on surgical resection of the primary 
tumour that is usually the first and most effective therapeutic 
strategy.3-5 Currently, there are very few drugs to treat this dis-
ease and mitotane remains the only medication approved by the 
US Food and Drug Administration for ACC treatment.6 Thus, new 
treatment options and drug targets are urgently needed, espe-
cially for clinical management of patients with ACC who are resis-
tant to mitotane.

Proteomics is a powerful tool for detecting unknown protein 
species, exploring absolute quantified protein abundance, and iden-
tifying biomarkers for pathogenic process.7,8 Proteomics has been 
used widely to explore biomarkers for various diseases9 and the 
latest developments in proteomics have made it possible to con-
duct more comprehensive examinations of protein biomarkers in 
various cancers.10 For instance, Bouchal et al11 used transcriptome 
and proteomic analysis to identify potential biomarkers associated 
with metastatic breast cancer, and several proteomic studies have 
focused on identifying new diagnostic biomarkers in patients with 
prostate cancer.12,13 Thus far, very few studies have used a large-
scale sequencing proteomic approach to identify potential protein 
biomarkers for ACC.14

Bioinformatics studies have generated large amounts of complex 
biological data through combinations of computer science, informa-
tion technology and biology. For example, The Cancer Proteome 
Atlas (TCPA) database provides researchers with reverse-phase 
protein array (RPPA) data.15 The RPPA technique is a powerful pro-
teomic approach for economical, sensitive and high-throughput 
evaluation of sizable numbers of selected protein markers, which 
made it possible to explore protein biomarkers using bioinformat-
ics.16,17 Because there is a big difference between adult patients and 
child patients with ACC, in this study, we focused only on adult pa-
tients. This study constitutes the first large-scale proteomic analysis 
combined with transcriptome data to describe the protein landscape 
of ACC in adult patients.

To explore novel protein biomarkers of potential prognostic value 
and develop a protein-derived predictive model in adult patients 
with ACC, we analysed the survival of proteins and constructed an 
integrated prognosis-related proteins model on risk assessment. 
Gene expression profiles also were analysed to reveal the under-
lying biological interaction networks. The goal of this study was to 
provide potential novel therapeutic targets and a high performing 
prognostic predictive model for clinical management of adult ACC.

2  | MATERIAL S AND METHODS

2.1 | Data downloading and processing

The RPPA data (level 4) of adult ACC were obtained from The Cancer 
Proteome Atlas (TCPA). The gene expression profiles and clinical in-
formation of patients with ACC were downloaded from The Cancer 
Genome Atlas (TCGA). Preprocessing and normalization of the raw 
biological data were performed using R software to remove noise 
and ensure the integrity of the data. By matching the sample IDs, we 
obtained 46 ACC cases with full data for clinical information, protein 
abundance and gene expression. We also obtained 76 ACC cases 
from TCGA (Table 1) and 22 ACC cases from GSE1092718 (Table 2) in 
NCBI’s GEO database with full data for clinical information and gene 
expression. All the cases were patients over 18 years old.

2.2 | Survival analysis of candidate proteins

Kaplan-Meier analysis was performed based on the median protein 
abundance value and univariate Cox regression was used to evalu-
ate the prognostic value of candidate proteins. For both statistics, 
P-values  <  .05 were considered significant. The volcano plot was 
obtained using the ggplot2 package in R software.19 Red indicates 
negative association between protein abundance and survival, green 
indicates positive association between protein abundance and sur-
vival, and black indicates no statistical significance. Survival curves 
were drawn using the survival package in R software. Red indicates 
high-risk group, and blue indicates low-risk group.20

2.3 | Screening of candidate proteins and 
construction of a predictive multivariate Cox model

Lasso Cox regression was used to further narrow the proteins with 
prognostic significance using the glmnet package in R software.21 
Multivariate analysis was performed using the Cox proportional haz-
ards regression model to identify candidate proteins and evaluate 
the risk score based on candidate protein abundance and survival 
rates. An integrated prognosis-related proteins (IPRPs) model was 
then constructed (Risk score = 2.743 × fibronectin abundance (ref. 
Low) + 0.781 × FASN abundance (ref. Low) + 1.091 × TFRC abun-
dance (ref. Low) + 3.043 × TSC1 abundance (ref. Low)). Median risk 
score of the predictive IPRPs model was used as the cut-off value 
and patients were classified into high-risk or low-risk groups.

2.4 | Assessing the prognostic significance of the 
IPRPs model in TCPA cohort

Besides the risk score of the IPRPs model for the patients with ACC, the 
covariables for the univariate and multivariate Cox regression models 
included age, gender, pTstage, pNstage, pMstage and pathologic stage. 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10927
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TA B L E  1   Clinicopathological characteristics 76 adult ACC 
patients (TCGA cohort)

Characteristics
Entire cohort 
(N = 76)

N (%)

Age

< 70 years 73(96.1)

≥ 70 years 3 (3.9)

Gender

Male 30 (39.5)

Female 46 (60.5)

Laterality

Left 42 (55.3)

Right 34 (44.7)

Stage

I-II 45 (59.2)

III-IV 29 (38.2)

Censored 2 (2.6)

T stagea 

T1 - T2 48 (63.2)

T3 - T4 26 (34.2)

Censored 2 (2.6)

N stagea 

N0 66 (86.8)

N1 8 (10.5)

Censored 2 (2.6)

M stagea 

M0 59 (77.6)

M1 15 (19.7)

Censored 2 (2.6)

Mitotic rate

> 5/50 HPF 39 (51.3)

≤ 5/50 HPF 28 (36.8)

Censored 9 (11.8)

Weiss score

≤ 4 22 (28.9)

> 4 36 (47.4)

Censored 18 (23.7)

Invasion of tumour capsule

Present 41 (53.9)

Absent 29 (38.2)

Censored 6 (7.9)

Necrosis

Present 40 (52.6)

Absent 32 (42.1)

Censored 4 (5.3)

aTNM scoring system: Tumour size, Lymph Nodes affected, Metastases. 
AJCC, American Joint Committee on Cancer. 

TA B L E  2   Clinicopathological characteristics of 22 adult ACC 
patients (GSE10927 cohort)

Characteristics Entire cohort (N = 22)

N (%)

Age

<70 years 20 (90.9)

≥70 years 2 (9.1)

Gender

Male 6 (27.3)

Female 16 (72.7)

Laterality

Left 10 (45.5)

Right 9 (40.9)

Unknown 3 (13.6)

Stage

I-II 12 (54.5)

III-IV 10 (45.5)

TA B L E  3   Clinicopathological characteristics of 39 adult ACC 
patients (Fudan University Shanghai Cancer Center cohort)

Characteristics

Entire 
cohort 
(N = 39)

N (%)

Age

<70 years 34 (87.2)

≥70 years 5 (12.8)

Gender

Male 19 (48.7)

Female 20 (51.3)

AJCC stage

I-II 14 (35.9)

III-IV 25 (64.1)

T Stagea 

T1 - T2 20 (51.3)

T3 - T4 19 (48.7)

N stagea 

N0 19 (48.7)

N1 20 (51.3)

M Stagea 

M0 21 (53.8)

M1 18 (46.2)

Necrosis

Present 25 (64.1)

Absent 14 (35.9)

aTNM scoring system: Tumour size, Lymph Nodes affected, Metastases. 
AJCC, American Joint Committee on Cancer. 
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A receiver operating characteristic (ROC) curve was constructed to an-
alyse the diagnostic accuracy of the logistic model and the area under 
curve (AUC) was calculated. Co-abundance analysis was performed 
using Pearson's test to identify proteins associated with the logistic 
model with 0.4 set as the correlation coefficient cut-off value. Survival 
curves and a scatter diagram were used to explore the correlation be-
tween risk score and patient's prognosis, and a heat map of candidate 
protein abundance in the high-risk and low-risk groups was drawn.

2.5 | Validation of the IPRPs model in a cohort 
from the Fudan University Shanghai Cancer Center 
(FUSCC) in China

Real-world data were collected to validate the prognostic value of the 
IPRPs model. The cohort included 39 adult patients with ACC (Table 3) 
from the FUSCC between 2013 and 2019, and tumour specimens were 
obtained with informed consent. Anti-Ki67 (ab16667, Abcam, USA) anti-
fatty acid synthase (ab128870, Abcam, USA), anti-fibronectin (ab2413, 
Abcam, USA), anti-TSC1 (ab217328, Abcam, USA), and anti-transferrin 
receptor (ab84036, Abcam, USA) antibodies were used to detect the 
abundance of the corresponding proteins by immunohistochemistry 
(IHC). Positive or negative staining of a certain protein in one FFPE 
slide was independently assessed by two experienced pathologists and 

determined as follows. The staining intensity level was graded from 0 to 
3. Samples with no staining, weak, median and strong staining denote to 
the level of 0, 1, 2 and 3. Based on the coverage percentage of immuno-
reactive tumour cells (0%, 1-25%, 26-50%, 51-75%, 76-100%), the stain-
ing extent was ranging from 0 to 4. The overall IHC score grading from 
0 to 12 was evaluated according to the multiply of the staining intensity 
and extent score. Negative staining represented grade 0 to 3 and posi-
tive staining from 4 to 12 for each sample. Risk score of each patient 
was calculated using the formula generated by the IPRPs model. The 
Kaplan-Meier method was applied to validate the prognostic value of 
the model, and the median of the risk score was set as the cut-off value.

2.6 | Comparing the IPRPs model with other 
biomarkers using gene expression data

The number of patients with proteomic data was low, and therefore 
we used the gene expression data for the prognostic validation. The 
IPRPs model was compared with other biomarkers in the TCGA co-
hort (76 cases) and GSE10927 (22 cases). Survival analyses were 
carried out using the Kaplan-Meier method and median of gene ex-
pression was set as the cut-off value. AUC, C-index and net reclassi-
fication improvement (NRI) were calculated to compare IPRPs model 
with other biomarkers.

F I G U R E  1   Survival analysis and screening of proteins. In the volcano plot (A), red and green separately represent high- and low-risk 
candidate protein biomarkers. 42 proteins with both P-value < .05 (Kaplan-Meier analysis and univariate Cox regression analysis) were 
selected and listed in Table 1. The model of Lasso cox regression (B-C)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10927
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2.7 | Gene set enrichment analysis (GSEA)

To explore potential associated signal pathways, the TCGA data-
sets of the high-risk and low-risk groups (according to risk score of 
the IPRPs model) were analysed using the GSEA software (version 
3.0) with the number of permutations set to 1000. False discovery-
adjusted P-values were obtained using the Benjamini and Hochberg 
method.22 Significant differential expression was defined as an ad-
justed P-value of < .01 and a false discovery rate of < 0.25.

2.8 | Identification of differentially expressed genes 
(DEGs) related to risk score of the IPRPs model

The DEGs (adjusted P-value  <  0.01; fold change at least 2×) be-
tween the high-risk and low-risk groups were identified using the 
Limma package.23 A heat map was drawn according to the expres-
sion matrix of the samples to show the differences in gene expres-
sion between the two groups. The Search Tool for the Retrieval of 
Interacting Genes (STRING; http://string-db.org) (version 10.0)24 
online database was used to predict protein-protein interaction (PPI) 
networks of the DEGs. Cytoscape (version 3.5)25 is an open-source 
bioinformatics software platform for visualizing molecular interac-
tion networks. We used MCODE (version 1.4.2),26 a Cytoscape plug-
in, to find the most significant hub genes with MCODE Score ≥ 20. 
Functional enrichment analysis of the hub genes was completed 
using the ClusterProfiler package.27

3  | RESULTS

In this work, we aimed to explore new prognostic biomarkers for 
adult patients with ACC using proteomics and transcriptomics data. 
A flow chart of the methods used in this study is given in Figure S1.

3.1 | Selection for candidate proteins with 
significant prognostic value

From the volcano plot (Figure 1A), 42 candidate protein biomarkers 
with P-values < 0.05 in both the Kaplan-Meier analysis and univari-
ate Cox regression analysis were selected and are listed in Table 4. 
The Lasso Cox regression results for the selected proteins are shown 
in Figure 1B, C.

TA B L E  4   Kaplan-Meier analysis and univariate Cox regression 
analysis of proteins (both P-value < .05)

Protein
P value 
(KM)

P value 
(unicox) HR

P27_pT157 .004 .000 0 (0-0.001)

ERALPHA_pS118 .007 .001 0 (0-0.007)

NRAS .002 .002 0 (0-0.041)

X1433BETA .018 .022 0.001 (0-0.34)

CMET .001 .001 0.003 (0-0.077)

SNAIL .020 .002 0.009 (0-0.183)

CD31 .039 .004 0.01 (0-0.23)

ARAF_pS299 .001 .003 0.02 (0.002-0.254)

PRDX1 .004 .002 0.021 (0.002-0.238)

XBP1 .006 .003 0.026 (0.002-0.291)

P70S6K_pT389 .003 .004 0.027 (0.002-0.311)

PKCDELTA_
pS664

.023 .003 0.036 (0.004-0.324)

PARPCLEAVED .044 .034 0.039 (0.002-0.781)

CIAP .007 .010 0.055 (0.006-0.498)

P53 .012 .025 0.071 (0.007-0.713)

RAB25 .006 .010 0.075 (0.01-0.542)

JAB1 .007 .001 0.08 (0.018-0.347)

ECADHERIN .006 .004 0.133 (0.033-0.527)

INPP4B .002 .019 0.137 (0.026-0.722)

ERALPHA .004 .050 0.164 (0.027-0.999)

SMAC .003 .002 0.188 (0.065-0.543)

PKCALPHA_
pS657

.024 .001 0.281 (0.133-0.594)

EPPK1 .027 .011 0.343 (0.151-0.779)

FASN .039 .015 1.943 (1.139-3.316)

CYCLINB1 .000 .001 2.198 (1.407-3.434)

PEA15 .028 .033 2.209 (1.066-4.577)

TFRC .001 .000 2.771 (1.681-4.567)

YAP_pS127 .014 .030 2.984 (1.109-8.031)

PARP1 .002 .002 3.23 (1.553-6.72)

ERK2 .000 .000 5.629 (2.168-14.618)

RBM15 .008 .008 6.531 (1.64-26.011)

FIBRONECTIN .001 .000 7.007 (2.517-19.511)

DVL3 .002 .010 10.978 (1.754-68.72)

IGF1R_
pY1135Y1136

.012 .047 14.431 (1.033-201.583)

TSC1 .001 .001 16.639 (2.965-93.39)

JAK2 .042 .043 18.739 (1.098-319.658)

BCL2A1 .003 .005 20.533 (2.432-173.352)

CASPASE3 .042 .006 51.697 (3.028-882.701)

CABL .007 .008 68.124 
(2.962-1566.613)

BID .038 .010 77.659 
(2.787-2164.284)

(Continues)

Protein
P value 
(KM)

P value 
(unicox) HR

RAD50 .005 .019 158.062 
(2.325-10744.279)

TAZ .013 .003 768.971 
(10.143-58295.167)

TA B L E  4   (Continued)

http://string-db.org
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3.2 | Construction of the IPRPs model

In the univariate Cox regression analysis (Figure 2A), the pathologi-
cal stage (P < .001), pTstage (P < .001), pMstage (P = .001) and risk 
score of the IPRPs model (P  <  .01) were associated with shorter 
overall survival. However, in the multivariate Cox regression analy-
sis, only risk score (P < .05) was significantly correlated with worse 
outcome (Figure 2B). C-index (0.939, 95% CI:0.916-0.962) and NRI 
(0.235, 95% CI:0-0.597) indicated that our model is stable. These 
results indicate that our IPRPs model has independent prognostic 
significance. The risk score with AUC of 0.933 indicates the diag-
nostic accuracy and consistent predictive ability of our IPRPs model 
(Figure 2C).

3.3 | Survival analysis of the IPRPs model in the 
TCPA cohort

Kaplan-Meier survival curves (Figure 3A) revealed that high abun-
dances of fatty acid synthase (FASN) (P  =  .039), fibronectin (FN) 
(P < .001), transferrin receptor (TFRC) (P < .001) and tuberous scle-
rosis 1 (TSC1) (P <  .001) indicated a worse outcome. The formula 
used to predict overall survival was generated by multivariate Cox 

regression models as integrated risk score = 2.743 × FN abundance 
(ref. Low) + 0.781  ×  FASN abundance (ref. Low) + 1.091  ×  TFRC 
abundance (ref. Low) + 3.043 × TSC1 abundance (ref. Low). The heat 
map shows that the abundances of FASN, FN, TFRC and TSC1 in the 
high-risk group were higher than they were in the low-risk group 
(Figure 3B). The survival time of the high-risk group was significantly 
shorter than that of the low-risk group (P < .001), and the increased 
risk score corresponded to shorter survival (Figure 3C–E).

3.4 | Validation of the prognostic value of the IPRPs 
model in the FUSCC cohort

Representative IHC plots for the ACC samples are displayed in 
Figure 4A–E (Abundances of A: Ki-67, B: Fatty acid synthase (FASN), 
C: Fibronectin (FN), D: Tuberous sclerosis 1 (TSC1) and E: Transferrin 
receptor (TFRC)). The Ki-67 protein abundance and high-risk (HR) 
score (Figure  4F, G) were both significantly correlated with worse 
outcome for patients in the FUSCC cohort (P =  .005, HR = 3.787; 
P  =  .003, HR  =  3.947). The IPRPs model predicted the prognosis 
better than the Ki-67 protein in the FUSCC cohort. A high-risk score 
was significantly correlated with higher Stage, T stage and N stage 
(Figure 4H, I).

F I G U R E  2   Construction of IPRPs model. In univariate Cox regression analysis (A), pathological stage (P < .001), pTstage (P < .001), 
pMstage (P = .001), risk score of IPRPs model (P < .01) were associated with shorter OS. However, only risk score (P < .05) was still 
significantly correlated with worse outcome in multivariate Cox regression and C-index (0.939, 95% CI:0.916-0.962), NRI (0.235, 95% 
CI:0-0.597) indicated that our model is stable. (B). This means that our IPRPs model has independent prognostic significance. The red line 
represents risk score with AUC of 0.933, indicating the diagnostic accuracy and consistent predictive ability (C). Various types of proteins (D) 
may be associated with the candidate proteins
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3.5 | External validation of the IPRPs model and 
comparison with other biomarkers using gene 
expression data

In the TCGA cohort (Figure 5A–F), the IPRPs model showed stronger 
ability for predicting prognosis than the expression levels of CTNNB1 
(beta-catenin gene), IGF2 and TP53 (P = .005, HR = 3.061; P = .012, 
HR = 2.768; P = .162, HR = 0.574; P = .033, HR = 2.336), whereas 
the MKI67 (Ki-67 protein gene) and NR5A1 (SF-1 protein gene) ex-
pression levels had stronger predictive ability than the IPRPs model 
(P <  .0001, HR = 9.238; P =  .003, HR = 4.084). In the GSE10927 
cohort (Figure 5G–K), which lacked IGF2 expression data, the IPRPs 
model showed better ability for predicting prognosis than the ex-
pression levels of TP53, CTNNB1, NR5A1 and MKI67 (P  =  .0898, 
HR  =  2.318; P  =  .73, HR  =  1.187; P  =  .16, HR  =  1.983; P  =  .36, 
HR = 1.57; P = .22, HR = 1.824). AUC, C-index and NRI of various 
biomarkers were listed in Table 5, and it indicated that IPRPs model 
may act better than other biomarkers in RPPA data and IHC.

3.6 | Significantly involved pathways of the IPRPs

The top 100 genes that were most significant positively and neg-
atively correlated with the risk score are depicted in a heat map 
(Figure 6A). Besides an ACC progressive phenotype, the GSEA in-
dicated that significant alteration of the IPRPs model involved chro-
mosome separation, metaphase-anaphase transition of the cell cycle 
and protein modification by small protein removal. Hub genes with 
prognostic implications associated with the IPRPs were involved 
mainly in regulation of cell-cycle pathways (Figure 6B–D).

3.7 | Identification of DEGs associated 
with the IPRPs

A significant difference was detected between the gene expression 
in high-risk and low-risk groups as shown in the heat map (Figure 7A). 
A PPI network of the DEGs was constructed and the identified hub 

F I G U R E  3   IPRPs model showed strong ability for predicting prognosis in TCPA cohort. Kaplan-Meier survival curves (A) revealed that 
higher FASN (P = .039), FIBRONECTIN (P < .001), TFRC (P < .001), TSC1 (P < .001) expression indicated worse outcome. The formula for 
predict OS was generated by multivariate Cox regression models: Integrated risk score = 2.743 × FIBRONECTIN expression (ref. Low) + 
0.781 × FASN expression (ref. Low) + 1.091 × TFRC expression (ref. Low) + 3.043 × TSC1 expression (ref. Low). It can be seen from the heat 
map that the expression of FASN, FIBRONECTIN, TFRC, TSC1 in high-risk group is higher than that of low-risk groups (B). The survival time 
of high-risk group is significantly shorter than the low-risk group (P < .001) and the increased risk score corresponds to shorter survival (C-E)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10927
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genes were CENPM, NDC80, DLGAP5, SPC25, CENPF, ZWILCH, AURKB, 
CENPA, CDC20, CCNA2, KIF4A, BUB1B, CCNB2, UBE2C, AURKA, PLK1, 
CASC5, RANGAP1, BIRC5, CEP55, NEK2, SGOL2, KIF18A, CCNB1, SKA1, 
RRM2, ASPM, SGOL1, KIF2C, CDCA8, CENPI, KIF11, BUB1, CDCA5, 
CDK1, SPC24, SPAG5 and NUF2 (Figure 7B,C). The functional enrich-
ment analyses indicated the hub genes were enriched mainly in cell 
cycle, mitotic nuclear division, chromosome, centromeric region and 
microtubule binding (Table 6 and Figure 7D, E).

3.8 | Correlation analysis between the IPRPs and 
other potential signatures

Various types of proteins may be associated with the candidate 
proteins as shown in Figure 2D. The analysis detected 27 kinds of 
proteins (correlation coefficients from − 0.64 to 0.66, P < .001) that 
were correlated with FN abundance; among them, BID abundance 
was highly positively correlated (correlation coefficient = 0.66) with 
FN abundance (Figure S2A). Twenty-one kinds of proteins (correla-
tion coefficients from − 0.597 to 0.742) were correlated with TSC1 
abundance; among them, PARP1 abundance was highly positively 

correlated with TSC1 abundance (correlation coefficient  =  0.742) 
(Figure S2B). Seven kinds of proteins (correlation coefficients 
from  −  0.534 to 0.581) were correlated with FASN abundance; 
among them, EEF2 abundance was highly positively correlated with 
FASN abundance (correlation coefficient  =  0.0.581) (Figure S2C). 
Four kinds of proteins (correlation coefficients from − 0.52 to 0.607) 
were correlated with the TFRC abundance; among them, CYCLINB1 
abundance was highly positively correlated with TFRC abundance 
(correlation coefficient = 0.607) (Figure S2D).

4  | DISCUSSION

The prognosis of ACC is poor because most patients with ACC have 
locally advanced or metastatic diseases and cannot be treated by 
surgery. Approximately 66% of patients with localized diseases ex-
perience recurrence and usually require systematic treatment.28,29 
Although there are diagnostic and prognostic molecular detection 
methods for ACC, including IGF2, p53, and the Wnt/β-catenin and 
PI3K signalling pathways, they have not been well applied in mor-
phological evaluation, auxiliary diagnosis, or prognostic modelling 

F I G U R E  4   IPRPs model showed a little stronger ability for predicting prognosis than Ki-67 protein in FUSCC cohort. Representative 
plots of IHC in ACC samples were displayed in (A-E) (A: Ki-67 protein expression, B: FASN protein expression, C: FIBRONECTIN protein 
expression, D: TSC1 protein expression, E: TFRC protein expression). Both Ki-67 protein expression and high-risk score (F-G) were 
significantly correlated with worse patients’ outcome in FUSCC cohort (P = .005, HR = 3.787; P = .003, HR = 3.947). IPRPs model showed 
a little stronger ability for predicting prognosis than Ki-67 protein in FUSCC cohort. And high-risk score was significantly correlated with 
higher Stage, T stage and N stage (H-I)
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of ACC.30 Early diagnosis and appropriate treatment play key roles 
in the management of ACC; thus, effective biomarkers are urgently 
needed.31 Proteomics has unique advantages and our study is the 
first large-scale proteomic analysis of ACC with RPPA data. We 
found that FASN, FN, TFRC and TSC1 abundance levels were of 
high prognostic value. To explore the underlying biological mecha-
nism, we performed a GSEA of high-risk and low-risk groups and the 
results indicated that the most significant pathways associated with 
candidate proteins included chromosome separation, metaphase-
anaphase transition of cell cycle and protein modification by small 
protein removal. These pathways are worth further study.

FASN is a key enzyme in mammals that is needed for ab initio 
palmitic acid synthesis. In most normal non-adipose tissues, the 
abundance and activity of FASN are largely inhibited by adequate di-
etary fat, but in many human cancers, FASN abundance and activity 
are abnormally increased and are associated with poor prognosis.32 
The increased abundance of FASN potentially confers tumour cells 
an advantage in survival and growth.33 For instance, Ueda et al34 
found that FASN expression promoted cell survival and growth of 
tumour cells in gestational trophoblastic neoplasms, and Nguyen 
et al35 found that increased intratumoral FASN expression led to 
more aggressive prostate cancers. In this study, we found that a high 

F I G U R E  5   IPRPs model showed stable predictive ability in external validation and comparing with other biomarkers using gene 
expression data. In TCGA cohort (A-F), IPRPs model showed stronger ability for predicting prognosis than gene expression of CTNNB1 
(Beta-Catenin), IGF2 and TP53 (P = .005, HR = 3.061; P = .012, HR = 2.768; P = .162, HR = 0.574; P = .033, HR = 2.336). While MKI67 (Ki-67 
protein) and NR5A1 (SF-1 protein) showed stronger predictive ability (P < .0001, HR = 9.238; P = .003, HR = 4.084). In GSE10927 cohort (G-
K), apart from lacking IGF2 gene expression, IPRPs model showed better ability for predicting prognosis than TP53, CTNNB1, NR5A1, MKI67 
(P = .0898, HR = 2.318; P = .73, HR = 1.187; P = .16, HR = 1.983; P = .36, HR = 1.57; P = .22, HR = 1.824)

TA B L E  5   Evaluating biomarkers of ACC in multiple cohorts

Biomarker 
evaluation AUC C-index NRI

Cohorts
TCGA 
(RPPA)

TCGA 
(RNAseq)

GSE10927 
(RNA seq)

FUSCC 
IHC)

TCGA 
(RPPA)

TCGA 
(RNAseq)

GSE10927 
(RNAseq)

FUSCC 
(IHC)

TCGA 
(RPPA)

TCGA 
(RNAseq)

GSE10927 
(RNAseq)

FUSCC 
(IHC)

CTNNB1 0.4 0.704 0.732 - 0.564 0.659 0.657 - ns -0.02 0.06 -

IGF2 - 0.313 - - - 0.575 - - - ns - -

TP53 0.489 0.87 0.571 - 0.676 0.659 0.551 - -0.02 ns ns -

MKI67 - 0.862 0.786 0.621 - 0.853 0.671 0.694 - 0.37 ns ns

SF-1 - 0.71 - - - 0.665 - - - -0.07 ns -

Risk Score 0.933 0.885 0.705 0.649 0.939 0.789 0.657 0.72 - - - -

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10927
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10927
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10927
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10927
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F I G U R E  6   IPRPs model was strongly correlated with chromosome separation, metaphase-anaphase transition of cell cycle. Top 100 most 
significant genes positively and negatively correlate with risk score were depicted in heat map (A). Besides ACC progressive phenotype, 
GSEA indicated that significant alteration of IPRPs model involved in chromosome separation, metaphase-anaphase transition of cell cycle 
and protein modification by small protein removal. Hub genes with prognostic implications associated with IPRPs model mostly involved in 
regulation of cell-cycle pathways. (B-D)
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abundance of FASN also was significantly correlated with worse 
prognosis of ACC. Previous studies have established the anti-tumour 
effects of the first-generation FASN inhibitors.36,37 Thus, FASN may 
be a potential therapeutic target in ACC.

FN is a large extracellular matrix protein in bones, which can 
combine with itself and collagen to form a network.38 Studies have 
shown that the abundance of FN in breast cancer is higher than in 
normal tissues and FN abundance is significantly related to the in-
vasiveness of the disease.39 Knowles et al40 found that FN matrix 
formation was associated with kidney tumour cell spreading. Besides 
the prognostic value of FN in ACC, we also found that the abun-
dances of JAB1, SCD1 and PRDX1 were negatively correlated with 
FN abundance, whereas the abundances of HEREGULIN, TIGAR and 
BID were positively correlated with FN abundance. Thus, FN is also 
a candidate target for new therapeutic drugs.

Iron is a basic trace element involved in cell metabolism, division 
and proliferation, and iron also has been considered as an important 
factor in the development of cancer.41 TFRC is a cell surface receptor 
that is responsible for transferrin-mediated iron uptake; thus, TFRC 
may play a key role in the energy supply of cancer cells.42 Shpyleva 

et al43 found a high abundance of TFRC in breast cancer, and TFRC 
antibodies have been used to inhibit tumour growth.44 We found mu-
tual inhibition between TFRC and SMAC, and that the abundances 
of X1433ZETA, ERK2 and CYCLINB1 were positively correlated with 
TFRC abundance. Modulation of PPIs is a promising new idea in drug 
development45,46; thus, the design of TFRC inhibitors based on the 
interaction modes may create new therapeutic drugs.

TSC1, in a complex with tuberous sclerosis 2, inhibits the nutrient-
mediated or growth factor-stimulated phosphorylation of S6K1 and 
EIF4EBP1 by negative regulation of mTORC1 signal transduction.47,48 
We also found interactions between various types of proteins and 
TSC1. Among them, PARP1 abundance showed the highest correla-
tion with TSC1 (correlation coefficient = 0.742) and it attracted our 
attention because of its key role in DNA repair.49 Maintaining the 
integrity of the genome is the basis of cell survival, and PARP inhibi-
tors kill tumours mainly by inhibiting DNA repair and destroying the 
genomes of tumour cells.50 Inhibiting PARP1 also may inhibit TSC1, 
suggesting a potential strategy for the treatment of ACC.

Moon et al also established a model for predicting prognosis using 
RPPA data. They focused on the patients with distant metastasis. But 

F I G U R E  7   Identification of differentially expressed genes (DEGs) associated with IPRPs model. As shown in the heat map, there is a 
significant difference between the gene expression of high-risk and low-risk groups (A). Protein-protein interaction network of DEGs was 
constructed and the selected hub genes are CENPM, NDC80, DLGAP5, SPC25, CENPF, ZWILCH, AURKB, CENPA, CDC20, CCNA2, KIF4A, 
BUB1B, CCNB2, UBE2C, AURKA, PLK1, CASC5, RANGAP1, BIRC5, CEP55, NEK2, SGOL2, KIF18A, CCNB1, SKA1, RRM2, ASPM, SGOL1, KIF2C, 
CDCA8, CENPI, KIF11, BUB1, CDCA5, CDK1, SPC24, SPAG5 and NUF2 (B-C). Hub genes are mostly enriched in cell cycle, mitotic nuclear 
division, chromosome, centromeric region and microtubule binding (D-E)
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the C-index of their model (maximum:0.86) is much lower than ours 
(0.939). Guo J et al identified 9 hub genes (CCNB1, CDK1, TOP2A, 
CCNA2, CDKN3, MAD2L1, RACGAP1, BUB1 and CCNB2) with prog-
nostic value. But the data they used were different from our research. 
They only focused on gene expression data, which is usually consid-
ered unstable than protein data. And they just identified 9 hub genes 
with prognostic value without any further validation. In our study, we 
used protein data to establish a model for predicting prognosis and 
validate its value successfully in multiple cohorts. The main strength 
of this study lies in the first attempt to explore the prognostic role of 
protein biomarkers based on quantitative proteomic analysis of ACC 
in adult patients. An IPRPs model was constructed with AUC values 
equal to 0.933 and our results show that it distinguished itself from 
previous prognostic predictive models of ACC.

This study had several limitations. The validation of IRPPs model 
in the transcriptome dataset may lead some bias as the model derived 
from the proteomic data. The nature of retrospective research limits 
the clinical value of this work. Further validation cohorts in multicentre 
or prospective studies are needed to verify the findings. And the more 
advanced ACC patients in FUSCC cohort may lead to unbalanced 
baseline. However, it is difficult to conduct randomized controlled tri-
als for ACC because of the rarity of these tumours. There is also an 
urgent need for in vitro and in vivo experiments to explore potential 
effective functions of IPRPs and reveal the underlying mechanisms.

5  | CONCLUSION

We constructed an IPRPs model for predicting the prognosis of adult 
patients with ACC using proteomic data, gene expression data and 

real-world data. The prognostic model showed a stronger predic-
tive value for prognosis than other biomarkers (eg Ki-67 and beta-
catenin) in multi-cohorts. Our results distinguished FASN, FN, TFRC 
and TSC1 from previously identified tumour promoters and revealed 
novel prediction model IPRPs that outperformed the currently es-
tablished prognostic parameters for anticipating disease course and 
better clinical management of adult ACC.
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