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Replication-incompetent adenovirus (Ad) vectors have been widely used as gene delivery vehicles in
both gene therapy studies and basic studies for gene function analysis due to their highly advantageous
properties, which include high transduction efficiencies, relatively large capacities for transgenes, and
high titer production. In addition, Ad vectors induce moderate levels of innate immunity and have
relatively high thermostability, making them very attractive as potential vaccine vectors. Accordingly, it is
anticipated that Ad vectors will be used in vaccines for the prevention of infectious diseases, including
Ebola virus disease and acquired immune deficiency syndrome (AIDS). Much attention is currently
focused on the potential use of an Ad vector vaccine for coronavirus disease 2019 (COVID-19). In this
review, we describe the basic properties of an Ad vector, Ad vector-induced innate immunity and im-
mune responses to Ad vector-produced transgene products. Development of novel Ad vectors which can
overcome the drawbacks of conventional Ad vector vaccines and clinical application of Ad vector vac-
cines to several infectious diseases are also discussed.

© 2021 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Coronavirus disease 2019 (COVID-19) and the severe acute res-
piratory coronavirus 2 (SARS-CoV-2) which causes it have
reminded us that infectious diseases are still a major global threat
to human beings. Vaccines are a powerful tool to fight various types
of pathogens and to prevent infection and progression of infectious
diseases. Conventional vaccines are commonly composed of inac-
tivated or attenuated pathogens, and proteins derived from path-
ogens. Conventional vaccines mimic the infection with pathogens,
resulting in the induction of immune responses to pathogen-
derived proteins. Although conventional vaccines have been suc-
cessfully used to induce durable protective immunity against many
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infectious diseases, conventional vaccine development is not a
suitable approach to counter the outbreak of emerging infectious
diseases caused by largely unknown pathogens. The development
of conventional vaccines takes a long time, usually more than 10
years. To counter the outbreak of an emerging infectious disease,
efficient and rapid production of vaccines is indispensable. In
addition, mutant strains of pathogens which can escape from the
effects of vaccines are often generated. Live attenuated vaccines
possess a potential risk for reversion to virulence. Inactivated viral
vaccines do not always induce protective effects. Cultivation and
propagation of pathogens are indispensable for the production of
live attenuated or inactivated vaccines, but these processes are
often associated with numerous difficulties, including the re-
quirements of facilities with a high biosafety level and large scale
production. In order to circumvent these hurdles, novel approaches
or platforms for vaccines are highly anticipated.

Novel types of vaccines composed of DNA or mRNA encoding
pathogen proteins are expected to be increasingly used to counter
emerging infectious diseases, because DNA- and mRNA-based
vaccines for emerging pathogens can be rapidly produced by
replacing the pathogen protein-encoding DNA or mRNA in a pre-
existing platform when the outbreak of an emerging infection
vier Ltd. All rights reserved.
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disease occurs. DNA- and mRNA-based vaccines deliver the DNA or
mRNA encoding pathogen proteins to the cells following adminis-
tration, leading to production of pathogen proteins in the cells and
induction of corresponding immune responses to these proteins.
Since DNA and mRNA are very large and highly negatively charged
molecules, a drug delivery system (DDS) is required for efficient
vaccination. Among the various types of DDS used for vaccines, the
adenovirus (Ad) vector-based vaccines possess various properties-
such as high transduction efficiencies and high titer production-
that make them promising as potential vaccine vectors for
emerging infectious diseases. In this review, we describe the Ad
vector-based vaccines for emerging infectious diseases.
2. Basic properties of adenovirus vectors

Adenoviruses (Ads) are non-enveloped viruses containing a
35e36 kb linear double-stranded DNA genome inside an icosahe-
dral virion of 70e90 nm in diameter (Fig. 1). Ads are isolated from a
variety of vertebrate hosts, including humans, mice, dogs, and
nonhuman primates. More than 70 types of human Ads have been
identified, and they are classified into 7 species (A-G) [1]. Infection
with Ads in humans causes cold-like symptoms, sore throat, diar-
rhea, and vomiting. A conventional Ad vector is composed of spe-
cies C Ad serotype 5 (Ad5). The E1A gene, which is located next to
the left inverted terminal repeat (ITR), is essential for virus repli-
cation because it is the first virus gene to be transcribed following
infection and because the E1A protein activates transcription of the
early genes of the virus. Hence, deletion of the E1A gene renders the
Ad vector replication-incompetent. In addition to the E1A gene, the
E3 gene is usually deleted from the virus genome to enlarge the
capacity for transgene insertion. The E3 gene is dispensable for
virus replication. A transgene expression cassette is inserted into
the E1-or E3-deleted region. An Ad vector can be propagated in
HEK293 cells, which stably express the Ad5 E1 gene proteins.

A conventional Ad vector recognizes coxsackievirus-adenovirus
receptor (CAR) [2], which is an immunoglobulin superfamily
Fig. 1. Schematic diagram of an Ad vector vaccine. I
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protein and mediates homotypic intercellular interactions for the
formation of tight junction [3], as an infection receptor by binding
of the fiber knob to CAR (Fig. 2). CAR is expressed on various types
of cells, including hepatocytes, epithelial cells, and heart muscle
cells. Subsequently, interaction between the Arg-Gly-Asp (RGD)
motif on the penton base and avb3-and avb5-integrins occurs,
followed by clathrin-mediated endocytosis [4]. Following inter-
nalization into cells, endosomal acidification triggers conforma-
tional changes of the capsid proteins, resulting in endosomal
escape into the cytosol. In the cytosol, the Ad virion undergoes
microtubule-mediated retrograde transport to the nuclear pore
complex [5]. The Ad vector genome is then released into the inte-
rior of the nucleus, leading to transgene expression.

In addition to CAR and av integrins, heparan sulfates have also
been demonstrated to be receptors for Ad vectors [6]. Blood coag-
ulation factor X (FX) specifically binds to the hypervariable regions
(HVRs) 5 and 7 of the hexon protein with high affinity [6]. FX also
binds to heparan sulfates on the cell surface. FX acts as a bridge
between an Ad vector and heparan sulfates. Especially when an Ad
vector is intravascularly administered, the interaction between Ad
hexon proteins, FX, and heparan sulfates plays a crucial role in liver
transduction. The liver is a major organ transduced by an Ad vector
following intravascular administration. More than 90% of the
injected dose is accumulated in the liver within 1 h following
intravascular administration [7].

Several other Ad serotypes that are distinct from Ad5, including
Ad serotypes 3, 11, 26, and 35, recognize CD46, desmoglein, and/or
sialic acid as an infection receptors [8e12]. Since the fiber knob
binds to these infection receptors, fiber-substituted Ad5 vectors
containing fiber proteins of these other Ad serotypes and Ad vec-
tors fully composed of the other Ad serotypes mediate transduction
by interacting with CD46, desmoglein, and/or sialic acid [13e17].
CD46, desmoglein, and sialic acid are widely expressed on various
types of cells. Such novel types of Ad vectors are a powerful tool for
gene delivery to CAR-negative target cells.
TR, inverted terminal repeat; pA, poly A signal.



Fig. 2. Transduction pathway of an Ad vector vaccine. CAR, coxsackievirus-adenovirus receptor; NPC, nuclear pore complex.

F. Sakurai, M. Tachibana and H. Mizuguchi Drug Metabolism and Pharmacokinetics 42 (2022) 100432
However, it remains to be fully understood whether interaction
with these infection receptors is crucial for Ad vector-induced
vaccination. Mature skeletal muscle cells, which are the main
target cells following intramuscular vaccination, poorly express
CAR [18]. CD46 expression levels in the skeletal muscles have been
shown to be lower than those in the other tissues [19,20]. In
addition, interaction with the infection receptors would not be
highly crucial for Ad vector-mediated vaccination following intra-
muscular administration. Intramuscular administration of an Ad
serotype 35 (Ad35)-based vector, which recognizes CD46 as an
infection receptor, mediated comparable levels of transgene
expression and vaccine effects between wild-type mice expressing
mouse CD46 only in the testis and human CD46-transgenic mice
ubiquitously expressing human CD46 in a pattern similar to that
observed in humans, when a high dose of an Ad35 vector was
intramuscularly administered [21]. As described above, since CAR is
mainly located on the basolateral surface, where it forms a tight
junction, it is difficult to access to CAR following intranasal or
intratracheal administration of an Ad vector [22]. CD46 is also a
basolateral protein [23]. Further investigation into the involvement
of infection receptors in Ad vector-mediated vaccination could
provide important clues for the improvement of Ad vector vaccines.
3

3. Adenovirus vector-induced innate immunity

Activation of innate immunity is highly important for activation
of adaptive immunity. Innate immunity-induced production of in-
flammatory cytokines and interferons (IFNs) leads to activation of
immune cells, including T cells and B cells, followed by activation of
adaptive immunity. Conventional vaccines often contain adjuvants
which can efficiently activate innate immunity via stimulation of
pattern recognition receptors (PPRs). An Ad vector moderately ac-
tivates innate immunity without adjuvants, because the compo-
nents of an Ad particle are recognized by various types of PRRs,
including toll-like receptors (TLRs), retinoic acid-inducible gene-I
(RIG-I)-like receptors, and cyclic guanine adenine synthase (cGAS)
[24], and serve as an adjuvant. On the other hand, an Ad vector does
not induce severe innate immune responses, such as cytokine
storm or severe damages in the transduced cells. Ad vector-
mediated innate immunity activation levels are appropriate to
activate adaptive immunity to transgene products without severe
side effects. The following PRR families have been demonstrated to
be involved in Ad vector-induced innate immunity.

Toll-like receptors. TLRs are a major PRR family consisting of 10
toll-like receptor (TLR) members in humans and 12 members in
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mice. Each TLR family member recognizes different ligands. Among
the TLR family members, TLR9, which is mainly located on the
endosomal membrane and recognizes unmethylated CpG-motif-
containing DNA, recognizes the Ad vector genome in the endo-
somes following internalization of Ad vector particles into cells,
leading to activation of the NF-kB signal and IFN regulatory factor
(IRF) signal [25e27]. TLR9 is mainly expressed on dendritic cells
(DCs), NK cells, and macrophages. In addition to TLR9, TLR2 and
TLR4 have also been shown to be involved in Ad vector-induced
innate immunity [28,29]. TLR2 is mainly expressed on DCs,
monocytes, and T cells and recognizes molecules with diacyl and
triacylglycerol moieties, proteins and polysaccharides. Ad vector-
mediated inductions of transgene product-specific IgM, IgG2,
IgG3, and IgA were down-regulated in TLR2-knockout (KO) mice
[28], although it is unclear which Ad vector components were
recognized by TLR2. TLR4 is mainly expressed on DCs, monocytes,
and T cells, and recognizes various damage-associated molecular
patterns (DAMPs). Lactoferrin, which is a ligand of TLR4, binds to
the capsids of Ad vectors, leading to activation of innate immunity
via TLR4 [30]. Transgene product-specific IgG3 levels were lower in
TLR4-KOmice thanwild-typemice after intravenous injection of Ad
vectors [29]. All TLR family members except for TLR3 require
MyD88, which is a crucial adaptor molecule for TLR signal trans-
duction. Both transgene product-specific antibody production and
cytotoxic T lymphocyte (CTL) inductionwere attenuated inMyD88-
KO mice following intramuscular vaccination with an Ad vector
vaccine [31], indicating that TLR-MyD88 signaling is highly
important for Ad vector-mediated vaccination.

cGAS. cGAS is a PRR located in the cytosol [32]. The Ad vector
genome binds to and activates cGAS in the cytosol following
endosomal escape into the cytosol [33]. cGAS is ubiquitously
expressed in a variety of cells. Binding of Ad vector genome to cGAS
results in activation of the NF-kB signal and IRF signal. Ad vector-
induced inflammatory cytokine production and expression levels
of activation markers on DCs were largely reduced in cGAS-KO
mice, but anti-Ad antibody production levels were comparable
between wild-type and cGAS-KO mice following Ad vector vacci-
nation [33].

RIG-I-like receptors. RIG-I-like receptors, including RIG-I and
melanoma differentiation association gene-5 (MDA5), are also
located in the cytosol [34]. RIG-I and MDA5, which are expressed in
a wide variety of cells, mainly recognize pathogen-derived double-
stranded RNAs, leading to activation of NF-KB and IRF signals.
Virus-associated RNAs (VA-RNAs) were shown to be recognized by
RIG-I-like receptors [35,36]. VA-RNAs are approximately 160-nt
long non-coding RNAs transcribed from not only the wild-type
Ad genome but also the replication-incompetent Ad vector
genome [35]. Ad vector-mediated activation of innate immunity in
primary mouse cells genetically lacking mitochondrial antiviral-
signaling (MAVS) (also called IFN-b promoter stimulator 1 (IPS-
1)), which is a signal adaptor protein downstream of RIG-I and
MDA5, was significantly lower than that inwild-type cells [35]. CTL
induction was attenuated in the mucosal compartment of MAVS-
KO mice following Ad vector vaccination [37], although transgene
product-specific antibody production levels were comparable be-
tween wild-type and MAVS-KO mice following immunization with
a modified Ad vector displaying the antigen epitopes [38]. These
results suggested that a RIG-I-like receptor pathway is crucial for
Ad vector vaccine-mediated CTL induction in the mucosal
compartment.

In addition to the PRRs described above, the other PRRs,
including absent in melanoma 2 (AIM2) and NALP3, have been
reported to be involved in Ad vector-induced innate immunity
[39,40]. As described above, the involvement of PRRs in the effects
of Ad vector-mediated vaccines are highly complex and highly
4

dependent on the administration routes, types of antigens, injected
doses, and types of Ad vectors (most of the studies described above
were performed by using an Ad5 vector). Further examination is
necessary to fully understand the involvement of PRRs in Ad vector-
mediated vaccination.

4. Immune responses to Ad vector-produced transgene
products

Ad vectors can induce transgene product-specific immune
responses-that is, induction of not only antibody production, but
also CTLs. Ad vector-expressing transgene products are recognized
as non-self and are eliminated by the immune system. Following
administration of Ad vectors, transgenes are expressed in non-
immune cells (e.g., muscle cells, fibroblasts) and/or immune cells
(e.g., DCs, macrophages). When Ad vector vaccines mediate trans-
gene expression in non-immune cells, transgene products are
released from the cells, followed by uptake of transgene products
by antigen-presenting cells (APCs), leading to mainly production of
transgene product-specific antibodies. Ad vector vaccines elicit
various isotypes and subclasses of transgene product-specific an-
tibodies following administration. In addition, intramuscular
administration of Ad vector vaccines leads to induction of not only
systemic humoral immunity but also certain levels of mucosal
humoral immunity, although mucosal administration of an Ad
vector vaccine has been shown to induce mucosal immunity more
efficiently than intramuscular administration [41e43].

When the transgenes are expressed in immune cells, antigen
presentation occurs in immune cells, leading to mainly CTL in-
duction. Transgene expression in monocytes/macrophages and
several DC subsets, such as CD8aþ DCs, langerinþ dermal DCs
(dDCs), plasmacytoid DCs (pDCs), and inflammatory DCs (inf DCs)
was found following intravenous, intramuscular, and intranasal
administration [44e46]. Induction of CTLs is highly important to
eliminate pathogen-infected cells. Moreover, an Ad vector vaccine
induced CD8þ T cells showing polyfunctional phenotypes following
intramuscular administration [47,48]. Ad vector vaccines also
mediate antigen cross-presentation, a phenomenon in which
exogenous antigens are presented on MHC class I molecules on
APCs, leading to CTL induction. Quinn et al. demonstrated that Ad
vector-mediated induction of systemic CTLs was diminished in
basic leucine zipper ATF-like transcription factor 3 (BATF3)-KO
mice [45]. BATF3-KO mice are lacking in CD8aþ DCs and langerinþ
dermal DCs (dDCs), which are critical for cross-presentation of
antigens to CD8þ T cells. These data indicate that cross-
presentation of transgene products is crucial for Ad vector-
mediated induction of systemic CTLs.

Ad vector vaccines induce strong CTL responses in not only the
systemic compartment in but also the mucosal compartment
[37,49,50]. This is an attractive advantage of an Ad vector vaccines,
because pathogens often infect and invade from the mucosal
compartment. Hemmi et al. suggested the following mechanism of
Ad vector vaccine-mediated mucosal CTL induction following
intramuscular administration as follows [49]. First, inflammatory
monocytes are recruited to the muscle after intramuscular
administration of Ad vectors. Then, the monocytes take up the
transgene products, leading to differentiation to inf DCs. inf DCs
migrate to the draining LNs (dLNs), followed by induction of T
helper 17 (Th17) cells. Th17 cells migrate to the gut-mucosa,
resulting in the proliferation of antigen-specific CTLs in the
mucosal compartment. In addition, a chimpanzee Ad-based vector,
ChAdOx1, which is used as a platform of SARS-CoV-2 vaccine, has
been shown to efficiently activate mucosal-associated invariant T
(MAIT) cells, which are the innate lymphoid cells in the mucosal
compartment and play an important role in mucosal immunity, via
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the followingmechanism [46]. First, ChAdOx1 infects pDCs, leading
to IFN-a production in pDCs. Then, the IFN-a produced in pDCs
activates the monocytes. Finally, the activated monocytes produce
interleukin (IL)-18 and tumor necrosis factor (TNF)-a, leading to
activation of MAIT cells and induction of antigen-specific CTLs. On
the other hand, the same study found that a conventional Ad5
vector failed to infect pDCs. TNF-a production from peripheral
blood mononuclear cells (PBMCs) following treatment with an Ad5
vector was lower than that with ChAdOx1.

5. Neutralizing anti-Ad5 antibodies ethe biggest hurdle for
conventional Ad vector vaccines-

High seroprevalence to Ad5 in adults due to the natural infection
with an Ad5 has been reported in many studies [51e55]. Indeed,
more than 80% of adults possess anti-Ad5 antibodies. Neutralizing
anti-Ad5 antibodies significantly inhibit the transduction with an
Ad vector both by inhibiting the binding of the Ad vector to the
infection receptors and by promoting the proteosomal degradation
of the Ad vector, leading to a low level of vaccine effects, evenwhen
the Ad vector is locally (e.g., intramuscular) administered
[52,55e57]. Neutralizing anti-Ad5 antibodies mainly recognize the
hexon and fiber proteins, although neutralizing anti-Ad5 antibodies
against penton base have also been detected [52,58,59]. In order to
circumvent the neutralizing anti-Ad5 antibody-mediated inhibi-
tion, an Ad vector composed of rare Ad serotypes with low sero-
prevalences in adults, including Ad serotypes 11, 26, 35, and 48, and
hexon-chimeric Ad vectors containing the hexon HVRs derived
from rare Ad serotypes have been developed [14,51,54,60,61].
Hexon HVRs contain the epitopes of neutralizing anti-Ad5 anti-
bodies [60]. Ad vectors based on non-human Ads, including
chimpanzee, gorilla, and canine Ads, have also been developed
[62e64]. Although non-human Ad vectors often have a problem in
realizing high titer production, high titer production of Ad vectors
in HEK293 cells was achieved by substituting the E4 gene with the
Ad5 E4 gene in several non-human Ad vectors [65,66]. These novel
Ad vectors not only can circumvent the neutralizing anti-Ad5 an-
tibodies which are produced by Ad5 vector administration, but also
are unlikely to be inhibited by pre-existing neutralizing antibodies
at the prime vaccination.

In order to circumvent neutralizing anti-Ad5 antibody-mediated
inhibition, other approaches have been reported. An Ad vector
coated with polyethylene glycol (PEG) can escape from neutralizing
anti-Ad5 antibody-mediated inhibition by blocking the binding of
anti-Ad5 antibodies to the virion [67e69]. Liposome-encapsulated
Ad vectors have also been demonstrated to escape from neutral-
izing anti-Ad5 antibodies [70e72]. Both cationic and anionic lipo-
somes have been used for encapsulation of an Ad vector. In
particular, because Ad vectors have a negative surface charge, they
can be easily encapsulated by cationic liposomes simply by mixing
the Ad vectors and cationic liposomes together [71]. Furthermore,
recently, extracellular vesicles, such as exosomes, containing an Ad
particle have recently been reported, although it remains unclear
whether extracellular vesicles containing an Ad vector can
circumvent the neutralizing anti-Ad5 antibodies [73e75]. Both the
PEG-modified and vesicle-encapsulated Ad vectors have the
advantage that they can be repeatedly administered.

6. Clinical applications of Ad vector vaccines

Human immunodeficiency virus (HIV) vaccine. Since no effective
vaccines for HIV have been developed to date, Ad vector vaccines
for HIV have been eagerly pursued. Ad5 vector vaccines expressing
HIV-1 gag/pol/nef (a 1:1:1 mixture of Ad vectors expressing each
HIV-1 antigen) were tested in a double-blinded, randomized,
5

placebo-controlled clinical trial [76,77]. Although these Ad vector
vaccines induced HIV-1-specific CD8þ and CD4þ cell responses, the
vaccine group tended to exhibit higher incidence of HIV-1 infection
than the control group was found. In addition, risk factors for HIV
acquisition would include pre-existing immunity to Ad5 in the
vaccinated group [78]. In order to circumvent such pre-existing
anti-Ad5 immunity, Ad vector vaccines based on Ad serotype 26
and chimpanzee Ad for HIV-1 have been tested in clinical trials
[79,80].

Zika virus vaccine. Since the outbreak of Zika virus in Brazil in
2015 [81], developmental research of Zika virus vaccines has been
actively ongoing. For vaccination against Zika virus infection, genes
encoding the membrane protein and envelop protein were incor-
porated into the Ad vector genome [82,83]. An Ad serotype 26-
based vector vaccine elicited high levels of neutralizing anti-Zika
virus antibodies without severe side effects in a clinical trial [84].

Influenza virus vaccine. Although conventional influenza virus
vaccines, which include attenuated live virus vaccines, inactivated
virus vaccines, and split virus vaccines, are widely available, the
immunization efficiencies of these vaccines are relatively low [85].
In addition, conventional influenza virus vaccines are strain-
specific and have a very narrow range of coverage. Since there is
a global concern that emerging influenza viruses, including avian
influenza virus, have the potential to cause a pandemic, a novel
platform of influenza virus vaccines is being developed. A
replication-incompetent Ad5 vector expressing hemagglutinin
(HA) and chimpanzee Ad-based vector (ChAdOx1) expressing
nucleoprotein (NP) and matrix protein-1 (M1) have been tested in
clinical trials [86,87]. Furthermore, a replication-competent Ad
serotype 4 (Ad4) containing the HA protein expression cassette in
the E3 region showed prolonged systemic and mucosal immunity
[88]. Replicating Ad4 has been orally administered to more than 10
million people as a vaccine against Ad4 respiratory disease and has
shown no severe side effects [89]. Not only replication-
incompetent but also replication-competent Ads would be a
promising platform for Ad vector vaccines.

Ebola virus vaccine. Ebola virus disease causes severe symptoms,
including high fever, headache, and diarrhea, with high mortality
[90]. Ebola virus was first discovered in 1976 [91], and since its
discovery, there have been several outbreaks of Ebola virus infec-
tion in Africa. Because few anti-Ebola virus agents have been
approved (an exception is Inmazeb, a mixture of three monoclonal
antibodies, which was approved by the Food and Drug Adminis-
tration (FDA) as an anti-Ebola virus agent in 2020), much effort has
been expended on vaccines against Ebola virus. An Ad serotype 26
(Ad26)-based vector expressing the glycoprotein of Ebola virus
(Ad26.ZEBOV) has been approved in the European Union [92]. The
corresponding regimen includes Ad26.ZEBOV as the prime vaccine,
and the vaccinia virus encoding glycoproteins from Ebola, Sudan,
Marburg, and Tai Forest viruses nucleoprotein (MVA-BN-Filo) as
the booster vaccine. In addition, a chimpanzee Ad type 3 vector
vaccine and Ad5 vector vaccine expressing the glycoprotein of
Ebola virus were demonstrated to efficiently induce anti-Ebola vi-
rus immunity [93,94].

SARS-CoV-2 vaccine. COVID-19 is the greatest ongoing global
pandemic since the influenza pandemic in 1918 (Spanish flu). Since
the identification of SARS-CoV-2 in December 2019 [95], the
development of vaccines against SARS-CoV-2 has progressed
quickly. Four types of Ad vector vaccines for SARS-CoV-2 have been
approved (Table 1): ChAdOx1 nCoV-19 (VAXZEVRIA, AZD1222)
(AstraZeneca/University of Oxford, UK), Sputnik V (Gamaleya
Research Institute, Russia), Ad26.COV2-S (Johnson & Johnson,
Europe) and Ad5-nCOV (CanSino Biologics Inc., China). ChAdOX1
nCoV-19, Sputnik V, and Ad5-nCOV express the full-length spike
protein of SARS-CoV-2, while Ad26.COV2-S expresses a pre-fusion



Table 1
Clinically approved Ad vector vaccines for COVID-19.

Ad vector vaccine Developer Type of Ads Antigens References

ChAdOx1 nCoV-19 (VAXZEVRIA, AZD1222) AstraZeneca
/University of Oxford (UK)

Chimpanzee Ad Spike protein [96,103]

Ad26.COV2-S Johnson & Johnson (Europe) Ad serotype 26 Spike protein [98,104]
Sputnik V Gamaleya Research

Institute (Russia)
Ad serotype 26 (prime)
Ad serotype 5 (boost)

Spike protein [97,105]

Ad5-nCOV CanSino Biologics Inc. (China) Ad serotype 5 Spike protein [99,106]
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stabilized spike protein. ChAdOX1 nCoV-19 and Ad26.COV2-S are
composed of a chimpanzee Ad type Y25, and a human Ad serotype
26, respectively, to escape from anti-Ad5 antibody-mediated inhi-
bition. Sputnik V uses an Ad26 vector vaccine as a booster and an
Ad5 vector vaccine as a prime. Ad5-nCOV is based on an Ad sero-
type 5. These Ad vector vaccines efficiently elicited immune re-
sponses, including induction of anti-spike protein antibodies and
CD8þ T cell response, to SARS-CoV-2 following intramuscular
administration. Clinical trial studies reported that AZD1222 and
Sputnik V mediated high vaccine efficacies (AZD1222, 70.4%;
Sputnik V, 91.6%) in the randomized controlled clinical trials
[96,97]. Ad26.COV2-S also showed efficient vaccine efficacy (66.1%)
[98]. More than 90% seroconversion rates were reported in the
randomized controlled clinical trial of Ad5-nCOV [99]. However,
ChAdOx1 nCoV-19 and Ad26.COV2-S have been reported to carry a
potential risk of inducing thrombotic thrombocytopenia and
disseminated intravascular coagulation, particularly in young
adults, although the incident rates for these complications are very
low [100e102]. Currently, further examination is actively underway
to circumvent these side reactions.

7. Conclusions

Much of human history has been a battle against infectious
diseases. Even now, there are concerns about emerging and re-
emerging infectious diseases and bioterrorism, and therefore the
development of a novel vaccine platform is crucial. Several Ad
vector vaccines for COVID-19 have been approved and used
worldwide. Worldwide use of Ad vector vaccines has revealed the
large potential of Ad vectors as a vaccine platform for emerging and
re-emerging infectious diseases. Moreover, recombinant Ads have
been widely used as a gene delivery vehicle and oncolytic virus in
clinical studies. Data obtained in clinical studies of gene therapy
using Ad vectors and virotherapy using oncolytic Ads would pro-
vide important information for the improvement of Ad vector
vaccines.
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