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A tumor microenvironment-
related risk model for
predicting the prognosis
and tumor immunity of
breast cancer patients

Shengkai Geng †, Yipeng Fu †, Shaomei Fu and Kejin Wu*

The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
Background: This study aimed to construct a tumor microenvironment

(TME)-related risk model to predict the overall survival (OS) of patients with

breast cancer.

Methods: Gene expression data from The Cancer Genome Atlas was used as

the training set. Differentially expressed gene analysis, prognosis analysis,

weighted gene co-expression network analysis, Least Absolute Shrinkage and

Selection Operator regression analysis, andWald stepwise Cox regression were

performed to screen for the TME-related risk model. Three Gene Expression

Omnibus databases were used to validate the predictive efficiency of the

prognostic model. The TME-risk-related biological function was investigated

using the gene set enrichment analysis (GSEA) method. Tumor immune and

mutation signatures were analyzed between low- and high-TME-risk groups.

The patients’ response to chemotherapy and immunotherapy were evaluated

by the tumor immune dysfunction and exclusion (TIDE) score and

immunophenscore (IPS).

Results: Five TME-related genes were screened for constructing a prognostic

signature. Higher TME risk scores were significantly associated with worse

clinical outcomes in the training set and the validation set. Correlation and

stratification analyses also confirmed the predictive efficiency of the TME risk

model in different subtypes and stages of breast cancer. Furthermore, immune

checkpoint expression and immune cell infiltration were found to be

upregulated in the low-TME-risk group. Biological processes related to

immune response functions were proved to be enriched in the low-TME-risk

group through GSEA analysis. Tumor mutation analysis and TIDE and IPS

analyses showed that the high-TME-risk group had more tumor mutation

burden and responded better to immunotherapy.

Conclusion: The novel and robust TME-related risk model had a strong

implication for breast cancer patients in OS, immune response, and

therapeutic efficiency.
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Introduction

In recent years, breast cancer has become the most

frequently diagnosed cancer for women globally (1–3). In

China, breast cancer, with the highest incidence, is the leading

cause of cancer-related mortality in females (4, 5). With

increasing importance attached to individualized precision

therapy, the traditional tumor–node–metastasis (TNM) stage

system and molecular typing PAM50 had been challenged since

the prognosis or treatment response of patients at the same stage

or with the same molecular subtype could vary substantially due

to the heterogeneity of the tumor (6). Thus, the average

treatment benefits for unselected patients are low, motivating

tumor biology-based selection strategies via gene expression

assays (GEAs) including Oncotype DX (7), MammaPrint in

luminal early breast cancer (8–11), and Fudan University

Shanghai Cancer Center gene panel in metastatic triple-

negative breast cancer (TNBC) (12). However, the strategies

mentioned above were strictly refined to certain molecular

subtypes; this called for a universal method to stratify breast

cancer patients across different molecular subtypes.

The tumor microenvironment (TME) plays an essential role

in the occurrence and development of cancer (13–15), which is

reflected by the various immune cells, stromal cells, cytokines,

and extracel lular matrix molecules exist ing in the

microenvironment. Accumulating evidence had demonstrated

that immune cells, as components of TME, were significantly

associated with a breast cancer patient’s therapy efficiency and

prognosis (16, 17). In addition, research (18–20) revealed that

stromal cells recruited by cancer cells from nearby endogenous

host stroma were significantly associated with events such as

tumor angiogenesis, proliferation, invasion, and metastasis.

Furthermore, the extensive cross-talk between immune and

stromal cells had a profound influence on a breast cancer

patient’s prognosis (21). To date, TME was increasingly

considered as a target for combination therapy in patients

with breast cancer (21). Previous studies (22–27) had focused

on the involvement of TME in the combination with

conventional therapies to boost therapeutic responses and

prolong the survival of breast cancer patients. However, few

studies reported that TME could also be used as a prognostic

factor for breast cancer patients, let alone the significance of

TME in predicting tumor immunity and therapeutic efficiency

for breast cancer patients. Therefore, with proper evaluation, it is
02
reasonable to dig further into the predictive factor of TME in

breast cancer patients.

In 2013, Yoshihara et al. constructed a new algorithm called

ESTIMATE algorithm (28) to infer the proportion of stromal and

immune cells in tumor samples. Previous studies had proved the

ESTIMATE algorithm to be an effective tool in predicting the

TME status (29). In this study, we used ESTIMATE algorithm

(28) to calculate the immune, stromal, and ESTIMATE scores and

to evaluate the TME status in breast cancer. Gene expression data

from The Cancer Genome Atlas (TCGA) were used to establish a

TME risk prognostic model based on TME-related genes. Gene

Expression Omnibus (GEO) databases were used to validate the

predictive efficiency of the prognostic model. Gene set enrichment

analysis (GSEA) method was used to explore the possible immune

function involved in the TME risk model. Furthermore, the

correlation between the TME risk model and tumor mutation

burden as well as immunotherapy efficiency was also investigated.
Materials and methods

Data collection

The RNA-normalized sequencing data (1,053 breast cancer

tissues and 111 matched normal tissues, fragment per kilobase per

million) and corresponding clinical information (including

clinical characteristics and tumor mutation status) of patients

with breast cancer were downloaded from the TCGA database (19

patients without corresponding clinical information were

excluded). Normalized gene expression data of GSE158309,

GSE17705, and GSE31448 were downloaded from the GEO

database. Genome-wide co-expression analysis was performed

to investigate potential TME- and prognosis-related genes based

on the TCGA database. The datasets from GEO database were

independently used for external validation. Immune score,

stromal score, and tumor purity were calculated using the

ESTIMATE algorithm (28) provided in the R package “estimate”.
Development of the TME-related
prognostic gene signature

Differentially expressed gene (DEG) analysis was performed

using the edgeR filtering method included in the “Limma” R
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package. TME-related DEGs were defined as genes whose false

discovery rate (FDR) value was <0.05 and log2 (fold change) was

>1. Weighted gene co-expression network analysis (WGCNA)

was performed to recognize gene modules related to the immune

and stromal scores. Gene modules with a correlation coefficient

>0.5 were considered as strong TME-correlated modules.

Univariate Cox regression analysis was used to recognize

prognostic genes (p < 0.05, two-tailed) for patients with breast

cancer in the TCGA dataset. The intersections of the immune-

and stromal-related genes screened by DEGs, WGCNA, and

univariate Cox regression analyses were all inputted in the Least

Absolute Shrinkage and Selection Operator (LASSO) regression

analysis to identify the hub genes. The combination of two hub

genes was inputted into the Wald stepwise Cox regression to

develop the TME risk model. In this process, the model with

minimal Akaike information criterion (AIC) value was

determined as the final mode. The signature was defined as

TME risk score = ∑coefficient-mRNAi × expression of mRNAi.

Receiver operating characteristic curve (ROC) analysis was used

to determine the optimal cutoff value for the high- and low-

TME-risk groups in SPSS version 25 (SPSS Inc.).
Survival and immune analysis for low-
and high-TME-risk groups

ROC analysis was used to determine the optimal cutoff value

of the TME risk score for patients’ overall survival (OS). After

the patients from the TCGA dataset were divided by the cutoff

value of the TME risk score, we used t-distributed stochastic

neighbor embedding (t-SNE) and principal component analysis

(PCA) to evaluate the discrimination of the model. The

association of clinicopathologic characteristics and stromal–

immune scores between low- and high-TME-risk groups was

analyzed using a two-sided chi-square test. The survival curves

were determined by the Kaplan–Meier analysis and compared

by the log-rank test. The Cox proportional hazards regression

model was used to perform univariate and multivariate analyses,

and P <0.05 (two-tailed) was considered statistically significant.

We used the time-dependent area under the receiver operating

characteristic curve (AUC) and C statistics to evaluate the

predictive power of TME risk for OS. Calibration plots were

used to evaluate the discriminative ability and accuracy of the

models. Stage- and subtype-stratified analyses of prognostic

significance of TME risk in patients with breast cancer were

performed. The HUMAN PROTEIN ATLAS (HPA) database

and Gene Expression Profiling Interactive Analysis (GEPIA)

were used to evaluate the immunohistochemical (IHC) staining

and the prognostic significance of the TME risk signature. The

expression of the human leukocyte antigen (HLA) gene family

and immune checkpoints (30, 31) was evaluated in both low-

and high-TME-risk groups. The population abundance of tissue-

infiltrating immune and stromal immune and stromal cells were
Frontiers in Immunology 03
calculated with different methods, including TIMER (32),

CIBERSORT (33), and Xcell (34) algorithms (available at

TIMER2.0 website, http://timer.comp-genomics.org/). The

correlation between the hub genes and different immune cell

infiltration was evaluated using the Wilcoxon test.
Function enrichment and tumor
mutation status analysis in the
low- and high-TME-risk groups

The biological function related to TME risk was investigated

using the GSEA method. FDR q-value <0.05 and |normalized

enriched score (NES)| >1 were considered significantly enriched.

Then, we evaluated the function enrichment of the identified

TME risk genes using Gene Ontology (GO) function analysis

(including biological process, cellular component, and molecular

function) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis. After downloading the breast cancer

patient’s tumor mutation information from the TCGA

database, different mutation types were evaluated in both the

high- and low-TME-risk groups. In addition, tumor mutational

burden (TMB) and mutation counts were calculated to find the

potential correlation between TME risk and tumor mutation

status. Stratified analysis was performed to investigate the tumor

mutation difference in different subtypes. The Spearman method

was used to calculate the correlation coefficient, and P <0.05

(two-tailed) was considered statistically significant.
Prediction of immune escape and
immunotherapy efficiency in patients
in groups with different TME risks

We used the pRRophetic algorithm in R language to evaluate

the 50% inhibiting concentration (IC50) value of the 88 drugs in

the low- and high-TME-risk groups. The potential response of

patients to immunotherapy was inferred by the immunophenscore

(IPS) (35) (downloaded from The Cancer Immune Group Atlas,

TCIA) and tumor immune dysfunction and exclusion

(TIDE) score.
Results

Correlation of the clinical
features of patients with breast
cancer with immune/stromal scores

A total of 1,164 samples (111 normal tissue samples and

1,053 breast cancer samples) in the TCGA database were

included in our study to calculate the immune and stromal

scores. The stromal scores of these patients ranged from -2,033.4
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to 2,083.4, and the immune scores ranged from -1,162.0 to

3,638.8. There were no significant differences between normal

and breast cancer tissues in relation to immune scores, while

normal tissue had higher stromal scores than breast cancer

samples. The correlation of the clinicopathological

characteristics in breast cancer patients between different

groups is presented in Supplementary Figure S1. In our study,

the immune and stromal scores had no significantly different

distribution in the old/young patients, T stage, N stage, and

TNM stage. In addition, the survival analysis showed that

patients with higher immune scores had a more favorable OS

than those with lower immune scores.
Development of a prognostic TME risk
signature with the TCGA cohort

Divided by the median value of immune/stromal scores, the

DEG analysis between the low- and high-immune/stromal score

groups was performed using the edgeR filtering method. In our

study, six was selected as the optimal soft threshold of WGCNA.

As shown in Figure 1, 19 co-expressed gene modules were

recognized in relation to immune/stromal scores. The green

and salmon had a strong correlation with the immune score,

whereas the gray and black were associated with the stromal

score. Univariate Cox regression analysis was used to recognize

the prognostic genes for the groups with different immune/

stromal scores. The Venn plot showed the intersection of DEGs,

TME-risk-correlated gene modules, and prognostic genes. After

the LASSO–Cox regression analysis, IGHA1, PIGR,

APOBEC3D, IGHD, KLRB1, and MATK were selected from

the immune score group, whereas MEOX1, COL12A1,

HSD11B1-AS1, TNN, SLIT3, TCN1, and CPXM1 were

selected from stromal score group. A combination of two

groups of screening genes was further inputted into Wald

stepwise regression analysis to develop the final model (the

result is presented in Supplementary Table S1). With the

minimal AIC (AIC = 1,546.21), the final model was as follows:

TME risk = SLIT3 * 0.329 - TNN * 0.11- TCN1 * 0.051 – IGHD *

0.075 - KLRB1 * 0.164.
Correlation and stratification analyses of
TME risk and validation of the prognostic
model

In our study, patients from TCGA were divided into low-

and high-TME-risk groups by the optimal cutoff value of TME

risk score (1.167) for breast cancer patient’s OS. The PCA and t-

SNE analyses demonstrated that patients with different TME risk

scores were well separated in two directions (shown in

Supplementary Figures S2A, B). The correlation between the

patients’ clinicopathological characteristics and TME risk scores
Frontiers in Immunology 04
is shown in Figure 2. In our study, we found that higher TME

risk scores were associated with higher age, higher T stage, and

higher TNM stage. The Kaplan–Meier (KM) analysis showed

that the low-TME-risk group of patients with breast cancer had a

more favorable clinical outcome (P < 0.001). The AUC (for

predicting the patients’ OS of 1, 3, and 5 years, this was 0.696,

0.708, and 0.689, respectively) and the calibration plot analyses

both confirmed the predictive ability of TME risk score (shown

in Figure 3A). The survival analysis showed a significantly

negative correlation between the TME risk score and patients’

OS. The ROC analysis showed that the C statistics of TME risk

was 0.64 (95%CI: 0.592–0.688, P = 0.024). Furthermore, the

stage-stratified analysis showed that the TME risk score was

identified as a prognostic factor for all breast cancer stages

(P =0.037 for stage I patients, P <0.001 for stage II patients,

and P <0.001 for stage III patients; shown in Supplementary

Figures S3A–C). In addition, the subtype-stratified analysis

showed that HR-positive and TNBC patients with lower TME

risk scores had a more favorable OS (P <0.001 and P =0.008,

respectively; shown in Supplementary Figures S3D–F). The

validation was performed on three GEO datasets (GSE 31448,

GSE158309, and GSE17705). The KM analysis in all datasets

confirmed the significant association between TME risk and

patients’ OS. As shown in Figure 3B, the GSE31448 dataset

proved the TME risk score prognostic ability in all subtypes of

breast cancer patients. The AUC for predicting the patients’ OS

of 1, 3, and 5 years was 0.689, 0.643, and 0.677, respectively. To

evaluate the long-term outcome prediction of TME risk score,

GSE17705 (ER-positive subtype breast cancer patients) and

GSE158309 (early breast cancer patients) datasets were

enrolled in our study. Both datasets confirmed the association

between the TME risk score and the patients’ OS. The AUC for

predicting the patients’ OS of 10, 12, and 15 years was 0.580,

0.675, and 0.652 in ER-positive breast cancer patients and that of

8, 10, and 12 years was 0.655, 0.619, and 0.634 in early breast

cancer patients, respectively. Similarly, good concordance was

observed between the model predicted and the actual

observations in three calibration curves. The C statistics of the

three datasets are presented in Figure 3, showing that TME risk

score had a good predictive effect (GSE31448—0.639, 95%CI:

0.565–0.713, P = 0.038; GSE17705—0.597, 95%CI: 0.51–0.663, P

= 0.039; GSE158309—0.609, 95%CI: 0.513–0.706, P = 0.049).

Furthermore, we used HPA database and GEPIA to evaluate the

IHC staining and the prognostic significance of the TME risk

signature. The KM analysis, along with the typical IHC staining

of SLIT3, TNN, IGHD, and KRRB1, showed that the expression

was significantly different between normal and breast cancer

tissues and confirmed the prognostic effect of the TME risk

signature. The UMAP results of single-cell sequencing (shown in

Supplementary Figure S5) showed that SLIT3 and TNN were

mainly expressed in stromal cells, while IGHD and KLRB1 were

mainly enriched in immune cells. In addition, TCN1 was found

to be expressed mainly in breast glandular cells. Taken together,
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our TME risk model integrated the stromal–immune signature,

further confirming that breast cancer prognosis was significantly

associated with the tumor microenvironment.
Analysis of immune and functional
enrichment studies between the low-
and high-TME-risk groups

A total of 24 HLA-related genes and 39 immune checkpoints

between the low- and high-TME-risk groups were investigated

in our study. As shown in Figures 2C, D, all HLA family genes

and 34 immune checkpoints were significantly different between

the low- and high-TME-risk groups as evaluated by the

Wilcoxon test. Compared with the high-TME-risk group, most
Frontiers in Immunology 05
of the immune-related genes in the low-TME-risk group were

upregulated, except the TNFSF4 and NRP1 immune

checkpoints. To further explore the possible mechanisms

underlying the differential expression of immune-associated

genes between the low- and high-TME-risk groups, we

performed the GSEA analysis with annotations based on the

GO and KEGG gene databases. In total, 50 of the most

significant enrichment results (|NES| >1 and FDR value <0.05)

are presented in Supplementary Figure S4. We found that many

biological processes related to immune response functions,

including proliferation, migration, and infiltration of immune

cells, inflammatory responses, chemokine activities, cellular

defense responses, and leukocyte migration, were significantly

associated with the low-TME-risk group. In addition, a clear

inverse correlation was found between the TME risk score and
A B

C

FIGURE 1

Screening for TME-related genes. Gene modules identified by WGCNA (A). Correlation between gene modules and immune/stromal scores (B).
Venn plot showing the number of intersection genes among DEG analysis, prognosis, and WGCNA analysis in immune/stromal scores (C). These
genes were further inputted into LASSO analysis, respectively. The genes selected at minimum error values of lambda were used for analysis.
Combinations of two groups of screening genes were inputted further into Wald stepwise regression. The final calculation result is displayed in
the output table. TME, tumor microenvironment; WGCNA, weighted gene co-expression network analysis; DEG, differentially expressed gene;
LASSO, Least Absolute Shrinkage and Selection Operator.
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A

B DC

FIGURE 2

Difference analysis of TME risk scores in age (age over 40 years old was defined as the old group, and age up to 40 years was defined as the
young group), T stage, N stage, and TNM stage (A). Kaplan–Meier analysis between low- and high-TME-risk groups (B) (the low- and high-TME-
risk groups were divided by the optimal cutoff value). Difference analysis for the expression of HLA family (C) and immunecheckpoint genes (D)
between low- and high-TME-risk groups. TME, tumor microenvironment. The statistical difference was compared by pairwise comparisons
using Wilcoxon test. Significance: *P < 0.05; **P < 0.01; ***P < 0.001. ns, not significant.
A

B

D

C

FIGURE 3

AUC analysis, calibration analysis, Kaplan–Meier analysis, correlation between TME risk scores, and patients’ OS and ROC analysis in the training
set (A), validation set [GSE31448, all subtypes of breast cancer patients (B)], HR-positive breast cancer patients [GSE17705 (C)], and early-stage
breast cancer patients [GSE158309 (D)]. AUC, area under the curve; TME, tumor microenvironment; OS, overall survival; ROC, receiver operating
characteristic curve; HR, hormone receptor; Her-2, human epidermal growth factor receptor 2.
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the immune/stromal score (shown in Supplementary Figures

S5A, B), while the tumor purity score was in accordance with the

TME risk tendency (shown in Supplementary Figure S5C). The

hub genes’ expression had a significantly distinct distribution

between the low- and high-TME-risk groups (shown in

Supplementary Figures S5D–H).

We then investigated the distribution of infiltrating

immune cells as inferred by TIMER, CIBERSORT, and xCell

between the low- and high-TME-risk groups (shown in

Figure 4). Our study revealed that most of the immune and

stromal cells, including B cells, T cells CD4+, T cells CD8+, and

myeloid dendritic cells, increased in the low-TME-risk group.

However, macrophages (especially macrophage II) infiltrated

more in the high-TME-risk group, while there was no uniform

result in terms of neutrophils. Meanwhile, we did not find

significant differences in T cells CD4+ Th1/Th2 and NK cells

between the two groups.
Frontiers in Immunology 07
The correlation between TME risk and
tumor mutation status

We downloaded the breast cancer patient’s tumor mutation

information from the TCGA database to evaluate its correlation

with the TME risk score. As shown in Figure 5, more somatic

mutations were presented in the high-TME-risk group, while the

maftools analysis results showed no significant differences

between the low- and high-TME-risk groups in terms of the

mutation frequencies of specific genes. Furthermore, the KM

analysis revealed that the combination of TMB and TME risk

had profound effects on patients’ prognosis, and patients with

high TME risk and high TMB tended to have the worst clinical

outcome. What is more, the subtype-stratified analysis showed a

clear positive association between TME risk score and TMB in

ER-positive and TNBC breast cancer patients, which might

partly reflect the connection with patients’ prognosis.
A B

C

FIGURE 4

Landscape of immune and stromal cell infiltrations between the low- and high-TME-risk groups (A). Difference analysis of immune and stromal
cell infiltrations (analyzed by TIMER, Xcell, and CIBERSORT methods) between the low- and high-TME-risk groups (B). Correlation analysis
between five screening prognostic genes and immune/stromal cell infiltration analyzed by TIMER, Xcell, and CIBERSORT methods (C). The
statistical difference was compared using Wilcoxon test. Significance: *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant. TME, tumor
microenvironment.
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Immune escape and immunotherapy
efficiency between low- and high-TME-
risk groups

In our study, we used the IC50 value of the 88 drugs to

evaluate the TME risk score as a predictive factor for the

response of breast cancer patients to therapies (including

chemotherapy, targeted therapy, and immunotherapy). Several

commonly used clinical drugs are presented in Figure 6. We

found that patients with a higher TME risk score had lower

TIDE scores and higher IPS scores. These results suggested that

patients in the high-TME-risk group were more likely to respond

better to immunotherapy. In accordance with the TIDE score,

immune dysfunction and exclusion analysis also showed that
Frontiers in Immunology 08
patients with higher TME risk scores might benefit more from

immunotherapy. In addition, the IC50 analysis showed that

patients in the high-TME-risk group might be more sensitive to

imatinib and lapatinib, while patients in the low-TME-risk

group might be more sensitive to palbociclib, paclitaxel,

cisplatin, veliparib, etc.
Discussion

In our study, we constructed a novel, easy-to-use, and

effective TME risk score system based on immune and stromal

scores for the prediction of breast cancer patient’s OS. First, our

results showed that the TME risk was an independent prognostic
A

B

D E FC

FIGURE 5

Landscape of TMB and tumor mutation status in low- and high-TME-risk groups (A). Kaplan–Meier analysis between low- and high-TME-risk
groups combined with low- and high-TMB groups (B). Association between breast cancer patient’s TMB [(C) all patients, (D) HR-positive breast
cancer patients, (E) Her-2 positive breast cancer patients, and (F) TNBC patients] and distribution in groups with different TME risks. TMB, tumor
mutation burden; TME, tumor microenvironment; HR, hormone receptor; Her-2, human epidermal growth factor receptor 2; TNBC, triplenegative
breast cancer. The statistical difference was compared by pairwise comparisons using Wilcoxon test. Significance: *P < 0.05; **P < 0.01; ***P < 0.001.
ns, not significant.
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factor for all breast cancer patients. With the stratified analysis

and external validation of GEO datasets, we confirmed the

predictive efficiency of TME risk in all stages of breast cancer

patients, especially in early stage, TNBC, and HR-positive breast

cancer patients. In addition, our study showed that patients in

the low-TME-risk group presented higher levels of immune and

stromal cell infiltration, higher immunogenicity, lower tumor

purity, and lower somatic mutation status than patients in the

high-TME-risk group. Furthermore, a positive association was

found between TME risk and TMB status, the combination of

which might have a significant prognostic value for breast cancer

patients. Finally, the TIDE and IPS score analyses demonstrated

that TME risk could be a potential biomarker for predicting

immunotherapeutic response for breast cancer patients.

The TME risk score was constructed based on the immune

and stromal scores calculated by the ESTIMATE algorithm.

Previous studies had demonstrated the prognostic value of this

algorithm in many diseases, such as gastric adenocarcinoma (36,

37), colon cancer (38), lung adenocarcinoma (39), clear cell renal

cell carcinoma (40), etc. The effect of tumor-infiltrating

lymphocytes on breast cancer patients’ clinical outcomes was

well established in previous research (41, 42). In accordance with

the previous studies, we found that patients with better

prognosis had higher immune scores, while no significant

overall association of clinical characteristics of breast cancer

with stromal score alone was observed. However, the TME risk

score, calculated based on the combination of immune and
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stromal scores, was identified to be significantly associated

with breast cancer patients’ T stage, TNM stage, and OS,

indicating that we should not separately look at the impact of

immune and stroma on the prognosis of breast cancer. In

addition, the stratified analysis revealed that the TME risk was

an independent prognostic factor for patients in different TNM

stages. For HR-positive patients and TNBC, the high TME risk

was significantly associated with worse clinical outcomes.

Furthermore, the robust performance of the TME risk model

for long-term prognosis in HR-positive and early breast cancer

patients was confirmed by the AUC analyses in three

independent GEO datasets. The calibration curves and

correlation analysis also showed good concordance between

the model predicted and the actual observations. Additionally,

the analysis of drug sensitivity revealed that the TME risk model

influenced the patients’ drug response to chemotherapy and

targeted therapy. The IC50 analysis showed that patients in the

high-TME-risk group might be more sensitive to imatinib and

lapatinib, while patients in the low-TME-risk group might be

more sensitive to palbociclib, paclitaxel, cisplatin, veliparib, etc.

Taken together, our results revealed that the TME risk

prognostic model might aid physicians in making clinical

therapy decisions and guiding the long-term follow-up to let

breast cancer patients gain survival benefits.

Maintaining a good predictive value, our finial prognostic

model included only five genes selected based on the stromal and

immune scores, which could reduce the patients’ unnecessary
A B D

E

C

FIGURE 6

TIDE analysis (A), IPS analysis (B), immune dysfunction analysis (C), and immune exclusion analysis (D) between low- and high-TME-risk group.
Difference analysiss (E) of commonly used clinical drugs’ chemotherapeutic responses including doxorubicin, bleomycin, veliparib, gefitinib,
palbociclib, gemcitabine, cisplatin, imatinib, lestaurtinib, lapatinib, paclitaxel, and IGF-1R inhibitor between low- and high-TME-risk groups.
Statistical difference was compared using Wilcoxon test. Significance: *P < 0.05; **P < 0.01; ***P < 0.001. ns, not significant; TIDE, tumor
immune dysfunction and exclusion; IPS, immunophenscore; TME, tumor microenvironment.
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waste. TNN, known as Tenascin-N or -W, was involved in

neurite outgrowth and cell migration in hippocampal explants.

In tumors, it stimulates angiogenesis by the elongation,

migration, and sprouting of endothelial cells (43). In terms of

breast cancer, it was significantly downregulated in tumor

samples and might facilitate tumorigenesis by supporting the

migratory behavior of breast cancer cells (44). SLIT3 was

involved in the final model, and previous researches had

demonstrated that the suppression of SLIT3 might induce

tumor proliferation and invasion in many solid tumors such

as ovarian cancer (45), hepatocellular carcinoma (46), thyroid

cancer (47), and gastric cancer (48). TCN1 (Transcobalamin I,

vitamin B12 binding protein, R binder family) encodes a

member of the vitamin B12-binding protein family. This

family of proteins, alternatively referred to as R binders, is

expressed in various tissues and secretions. Previous research

had shown that a high expression of TCN1 was a negative

prognostic factor in colon cancer and might correlate with the

patients’ chemosensitivity (49–51). The TME risk prognostic

model also included immune-related genes (KLRB1 and IGHD).

Proteins coded by these genes were associated with the immune

microenvironment (52) and immune cell infiltration (53) (such

as natural killer cells and T cells). In our study, the low-TME-

risk group upregulated in many immune checkpoints and

increased in most of the immune and stromal cells, including

B cells, T cells CD4+, T cells CD8+, and myeloid dendritic cells.

In addition, the function analyses (GO and KEGG) revealed that

many biological processes related to immune response functions

were significantly associated with the low-TME-risk group.

Taken together, these might be why patients in the low-TME-

risk group had a better prognosis.

Immunotherapy, as an emerging novel treatment modality,

is increasingly applied in the treatment of cancer patients (54–

56). However, the optimal patient selection who may benefit

from immunotherapy remains a great challenge. Recent studies

had proved TMB as an emerging biomarker of response to

immunotherapy for many cancers (57–59). As shown in

Figure 5, more somatic mutations were presented in the

high-TME-risk group. In addition, the stratified analysis

showed a positive correlation between TME risk and TMB,

especially in ER-positive and TNBC patients. What is more, the

combination of TMB and TME risk had a profound

implication for prognosis. Patients with higher TME risk

scores and higher TMB tended to have the worse clinical

outcome. Our study revealed that the high-TME-risk group

might respond better to immunotherapy using TIDE and IPS

score analysis, which was in accordance with the tumor

mutation status and previous research. In addition, patients

in the high-TME-risk group tended to have lower immune cell

infiltration and downregulation of HLA and immune

checkpoint expressions. It should be noted that the TNFSF4
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and NRP1 immune checkpoints were upregulated in the high-

TME-risk group. Previous studies had proved that VEGF-A/

NRP1 signaling might be associated with breast cancer

metastasis (60, 61). The study (62) by Kai Li et al. also

revealed the oncogenic features of TNFSF4 and specifically

demonstrated the potential effects of applying TNFSF4

blockade-based immunotherapies in breast carcinomas.

Taken together, our results might suggest potential

therapeutic targets and provide novel clinical applications

for immunotherapies.

There were several limitations in our studies. Firstly, due to

the lack of clinical details of breast cancer patients in public

databases (such as menopause status and chemotherapy

regimens), we cannot perform a more in-depth stratification

analysis between the low- and high-TME-risk groups. Secondly,

database information on immune infiltration and stroma status

was inferred by TIMER, CIBERSORT, and xCell between the

low- and high-TME-risk groups only using the expression data

of immune-associated genes.
Conclusion

In conclusion, our study successfully constructed and

validated a novel and robust TME-related prognostic model

for breast cancer patients. Furthermore, our predictive model

could seek the possibility to find selected patients who would

benefit more from anticancer immunotherapy and adjuvant

chemotherapy, which would reduce the risk of complications

and give the patients better individual treatment guidance.
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SUPPLEMENTARY FIGURE 1

Difference analysis of immune scores (A) and stromal scores (B) in

normal/tumor, age (age over 40 years old was defined as the old group,
age up to 40 years was defined as the young group), T stage, N stage, TNM

stage. Statistical difference was compared by pairwise comparisons using
Wilcoxon test. Significance: *P < 0.05; **P < 0.01; ***P < 0.001; ns, not

significant. Kaplan-Meier analysis between low and high immune group
(C)/stromal group (D) (low and high immune/stromal group was divided

by the average value).

SUPPLEMENTARY FIGURE 2

The PCA (A) and t-SNE (B) analysis between low and high TME-risk group.
PCA, principal-component analysis; t-SNE, t-distributed stochastic

neighbor embedding.

SUPPLEMENTARY FIGURE 3

Kaplan-Meier analysis between low and high TME-risk group in stage I (A),
stage II (B), stage III (C), HR positive breast cancer patients (D), Her-2

positive breast cancer patients (E) and TNBC patients (F). TME, tumor
microenvironment; HR, hormone receptor; Her-2, human epidermal

growth factor receptor 2; TNBC, triple negative breast cancer.

SUPPLEMENTARY FIGURE 4

Kaplan-Meier analysis and Immunohistochemical staining of the TME-risk
signature, including SLIT3 (A), TNN (B), IGHD (C), KLRB1 (D), and TCN1 (E).
TME; tumor microenvironment.

SUPPLEMENTARY FIGURE 5

The UMAP results of single cell sequencing of the TME-risk signature,

including SLIT3 (A), TNN (B), IGHD (C), KLRB1 (D), and TCN1 (E). TME,

tumor microenvironment.

SUPPLEMENTARY FIGURE 6

GSEA analysis (including GO and KEGG analysis) between low and high

TME-risk groups (top 50 listed biological function in BP (A), CC (B), MF (C)
and KEGG (D), (FDR q-value <0.05 and |NES| > 1)). GSEA, gene set

enrichment analysis; GO, gene ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes.

SUPPLEMENTARY FIGURE 7

Association between immune scores (A), stromal scores (B), tumor purity

(C), and TME-risk scores and their distribution in the low and high TME-
risk groups. Association between 5 screening genes (SLIT3 (D), TNN (E),
IGHD (F), KLRB1 (G), TCN1 (H)) and TME-risk scores and their distribution

in the low and high TME-risk groups. TME, tumor microenvironment.
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