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Abstract
The fenchol-based P-H phosphonite BIFOP-H exeeds with 65% ee other monodentate ligands in
the Pd-catalyzed substitution of 1-phenyl-2-propenyl acetate with dimethylmalonate.

Introduction
Palladium catalyzed allylic substitutions provide valuable
tools for stereoselective C-C- and C-heteroatom connec-
tions.[1,2] The control of regio- and enantioselectivity is
challenging, especially with unsymmetrical substrates, e.g.
with monoaryl allyl units. According to computational
analyses of electronic effects,[3,4] regioselectivity in favor
of the branched product is supported at strong donor-sub-
stituted (e.g. alkyl, O-alkyl) allylic positions. Frequently
employed Pd-catalysts most often favor linear, nonchiral
products (Scheme 1).

Scheme 1: Pd-catalyzed allylic substitution with unsymmetrical 
substrates (Nu = dimethylmalonate, Nf = OAc).

Pfaltz et al. improved the yield of the chiral, branched
product by employing electron withdrawing substituents
on the P-donor atoms in P, N-oxazoline ligands[5]
(Scheme 2) [6]. Such phosphites were thought to favor a
more SN1-like addition at the substituted, allylic C-atom.

High regio- and enantioselectivities were also achieved
with biphenylphosphites by Pamies et al. (Scheme 2) [7].

Scheme 2: Bidentate P, N-ligands and a monodentate phosphor-
amidite for Pd-catalyzed allylic substitutions with unsymmetric 
substrates, cf. Scheme 1.

Besides bidentate P, N-ligands, monodentate ligands are
useful, as was demonstrated successfully by Hayashi et al.
with the MeO-MOP ligand, yielding 90% branched prod-
uct with 87% ee for a C-methylated malonate nucleophile
and the 4-methoxyphenylallyl substrate [8]. Van Leeu-
wen's bulky, monodentate TADDOL based phosphora-
midite gave rise to intriguing memory effects [28b] and
yielded 6% branched product with 25% ee (Scheme 2)
[9].

We have recently employed modular, chelating fenchola-
tes,[10-14] in enantioselective organozinc catalysts,[15-
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19] and in chiral n-butyllithium aggregates [20-24]. In Pd-
catalyzed allylic substitutions of diphenylallyl acetate,
fenchyl diphenylphosphinites (FENOPs) with phenyl or
anisyl groups favor the S-enantiomer, but with a 2-pyridyl
unit the R-enantiomer was preferred (Scheme 3) [25].
According to computational transition structure analyses,
these phenyl and anisyl phosphinites are not "monoden-
tate" but form chelate complexes via π-coordination.
Biphenyl-2,2'-bisfenchol (BIFOL) [13] was developed as
combination of a flexible biaryl axis (as in BINOL) and
sterically crowded hydroxy groups (as in TADDOLs).
BIFOL based phosphanes (BIFOPs) are sterically highly
hindered and were employed in copper-catalyzed 1,4-
additions of diethylzinc to 2-cyclohexenone [26].

Scheme 3: Fenchole-based phosphorus ligands (i.e. FEENOPs and 
BIFOPs) for Pd-catalyzed allylic substitutions. Pd-p arene or Pd-
N coordinations give rise to different enantioselectivitites.

Here we use a selection of fenchol-based bidentate pyrid-
ine FENOP- and monodentate BIFOP-ligands in Pd-cata-
lysts to study allylic substitutions of the challenging 1-
phenyl-2-propenyl acetate (Scheme 1, R=Ph) [27].

Results and discussion
Fenchylphosphinites (FENOPs) and biphenylbisfenchol
based phosphorus ligands are all suitable for Pd-catalyzed
allylic alkylations of 1-phenyl-2-propenyl acetate
(Scheme 4, Table 1, see additional file 1 for full experi-
mental data).

Scheme 4: Allylic alkylation of 1-phenyl-2-propenyl acetate by 
sodium dimethylmalonate (BSA-method) with Pd-FENOP- or 
Pd-BIFOP- catalysts.

All three P, N-bidentate FENOP ligands, FENOP, FENOP-
Me and FENOP-NMe2, favor branched alkylation prod-
ucts (Table 1). This tendency towards formation of chiral,
branched products is even apparent from X-ray crystal
structure analyses of corresponding Pd-phenylallyl inter-
mediates. All three Pd-allyl complexes, Pd-FENOP, Pd-
FENOP-Me and Pd-FENOP-NMe2 (Figures 1, 2 and 3)

exhibit the allylic phenyl group trans situated relative to
phosphorus. Rather long C3-Pd distances (2.30 Å, 2.30 Å
and 2.25 Å) are apparent for these trans position in com-
parison to the shorter C1-Pd bond distances (2.13 Å, 2.08
Å and 2.13 Å, cf. Figures 1, 2 and 3). This differentiation
agrees with the "trans to phosphorus" rule, [1,28,29]
which predicts the attack of the nucleophile
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X-ray crystal structure of the cationic complex Pd-FENOP (CCDC 299944), the perchlorate counterion and hydrogen atoms are omittedFigure 1
X-ray crystal structure of the cationic complex Pd-FENOP 
(CCDC 299944), the perchlorate counterion and hydrogen 
atoms are omitted. The allylic phenyl groups is positioned trans 
to phosphorus. In agreement with the the "trans rule", C3-Pd is 
longer then C1-Pd. The nucleophile (i.e. malonate) is expected 
to attack at C3 yielding the branched product. Distances are 
given in Angstroms.
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Table 1: FENOP- and BIFOP-Pd-catalysts in enantioselective 
allylic substitutions of phenylallyacetate by dimethylmalonate.a)

Ligand Linear / branched b) % ee (major 
enantiomer) c)

% yield b)

FENOP 42 / 58 19 (R) 54
FENOP-Me 39 / 61 31 (R) 43
FENOP-NMe2 44 / 56 37 (R) 50

BIFOP-Cl 89 / 11 39 (S) 60
BIFOP-Br 85 / 15 37 (S) 56
BIFOP-H 80 / 20 65 (S) 68
BIFOP-Et 85 / 15 8 (S) 70
BIFOP-nBu 65 / 35 5 (S) 75
BIFOP-Oph 68 / 32 29 (S) 58
BIFOP-NEt2 52 / 48 10 (S) 52

a) All catalyses were performed in THF, 12 h at -78°C then 24 
h at RT with 0.0055 mmol of the ligand, 0.0055 mmol of 
[Pd(allyl)Cl]2 (1 mol% catalyst) and 0.57 mol of 1-
phenylallylacetate substrate.
b) Linear / branched ratios as well as yields were determined 
by integration of 1H-NMR spectra.
c) Enantiomeric excesses (%ee) of the branched products were 
determined by HPLC (Daicel-OD-H, hexanes / i-PrOH = 99/1, 
0.55 mi /min., l= 220 nm, tR= 16.7 min. (R), 17.7 min. (S).
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(i.e. malonate) at the weakest (longest) C3-Pd bond,
yielding preferably the chiral, branched product.

Monodentate BIFOP ligands yield more of the linear
alkylation product (Table 1), despite their huge steric
demand. Surprisingly, the chloro- and bromophosphites,
BIFOP-Cl and BIFOP-Br, are stable ligands under these
reaction conditions: no conversion with nucleophiles
(e.g. malonate), as was observed previously with diethyl-
zinc, [26] was found. The ligands were recovered after
catalysis. Apparently, the absence of strongly Lewis-acidic
electrophiles (Na+ vs. Zn2+) and the huge steric shielding
prevents halide substitutions and BIFOP-Cl(Br) decom-
positions.

With regard to enantioselectivities, some monodentate
BIFOPs are even superior to the pyridine-phosphinites
(FENOPs). While FENOPs favor the R-enantiomeric prod-
uct, the S-enantiomer is preferred by all BIFOP ligands.
Enantioselectivities increase from FENOP with 19% ee to
FENOP-Me with 31% ee and to FENOP-NMe2 with 37%
ee, reflecting the effect of steric demanding and electron
donating pyridine groups on enantioselectivity.

The surprisingly stable halogen phosphites BIFOP-Cl and
BIFOP-Br yield even higher enantioselectivities (39% and
37% ee) than the corresponding phosphite BIFOP-OPh
or the phosphoramidite BIFOP-NEt2 (10% and 29% ee,

Table 1). To our knowledge, this is the first successful
application of halogen phosphites as ligands in enantiose-
lective catalysis [26]. The highest enantioselectivity how-
ever is achieved with the P-H phosphonite BIFOP-H
(65% ee, Table 1). As in copper-catalyzed 1,4-additions of
diethylzinc to cyclohexenone,[26] the small steric hin-
drance of the hydrido-substituent and the shielding by the
chiral bis-fenchane cavity provide the best combination
among the tested BIFOPs for the P-H phosphonite BIFOP-
H.

Computational transition structure analyses of allylic sub-
stitutions with ammonia mimicking the malonate nucle-
ophile help to understand origins of enantioselectivities,
[30-33] as we have shown recently for Pd-FENOP catalysts
with the diphenyl allyl substrate [25]. For the P, N-biden-
tate pyridyl FENOP system, an exo allyl arrangement and
a trans to phosphorus addition of the nukleophile is
slightly preferred (cf. the two most stable transition state
in Figure 4). This favored Si-addition of the nucleophile
explains the experimentally observed formation of the R-
alkylation product (Table 1). Systematic conformational
analyses of transition structures with BIFOP-H in allylic
substitutions yields BIFOP-H-Re as the most stable transi-
tion structure. Its Re-addition of the NH3-nucleophile is
slightly more favored than the Si-addition in the compet-
ing transition structure BIFOP-H-Si (Figure 5). This agrees
with the experimentally observed formation of the S-
alkylation product with BIFOP-ligands (Table 1).          

X-ray crystal structure of the cationic complex Pd-FENOP-NMe2 (CCDC 600370), the perchlorate counterion and hydrogen atoms are omittedFigure 3
X-ray crystal structure of the cationic complex Pd-FENOP-NMe2 
(CCDC 600370), the perchlorate counterion and hydrogen 
atoms are omitted. The allylic phenyl groups is positioned trans 
to phosphorus. In agreement with the the "trans rule", C3-Pd is 
longer then C1-Pd. The nucleophile (i.e. malonate) is expected 
to attack at C3 yielding the branched product. The mean values 
of two independent complexes are given, distances are given in 
Angstroms.
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X-ray crystal structure of the cationic complex Pd-FENOP-Me (CCDC 600369), the perchlorate counterion and hydrogen atoms are omittedFigure 2
X-ray crystal structure of the cationic complex Pd-FENOP-Me 
(CCDC 600369), the perchlorate counterion and hydrogen 
atoms are omitted. The allylic phenyl groups is positioned trans 
to phosphorus. In agreement with the "trans rule", C3-Pd is 
longer then C1-Pd. The nucleophile (i.e. malonate) is expected 
to attack at C3 yielding the branched product. Distances are 
given in Angstroms.
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Conclusion
Besides P, N-bidentate FENOP ligands, monodentate
BIFOP ligands can be employed successfully in Pd-cata-
lyzed allylic substitution of 1-phenyl-2-propenyl acetate
with dimethylmalonate. Surprisingly, the halogen phos-
phites BIFOP-Cl and BIFOP-Br are stable towards nucle-
ophiles under catalysis conditions, apparently due to
absence of strongly Lewis-acidic cations and the large
steric shielding of the phosphorus-halogen functions.
With respect to enantioselectivities, the P-H phosphonite
BIFOP-H is clearly superior and reaches 65% ee, a rather
high selectivity for a monodentate ligand.

Additional material

Additional File 1
contains all experimental data
Click here for file
[http://www.biomedcentral.com/content/supplementary/1860-
5397-2-7-S1.pdf]

The two most stable ONIOM(B3LYP/SDD(+ECP) (Pd) /6-31G* (C, H, O, N, P) : UFF) optimized transition structures with BIFOP-H, due to systematic conformational analysis (60° rota-tions at P-Pd)Figure 5
The two most stable ONIOM(B3LYP/SDD(+ECP) (Pd) /6-31G* 
(C, H, O, N, P) : UFF) optimized transition structures with 
BIFOP-H, due to systematic conformational analysis (60° rota-
tions at P-Pd). ZPE (unscaled) corrected total extrapolated 
energies: BIFOP-H-re: -1025.01553 H, BIFOP-H-si: -1025.01466 
H. The by 0.5 kcal mol-1 slightly preferred re-addition of the NH3 
model nucleophile corresponds to the experimental S-alkylation 
product.
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The two most stable ONIOM(B3LYP/SDD(+ECP) (Pd) /6-31G* 
(C, H, O, N, P) : UFF) optimized transition structures with 
FENOP. ZPE (unscaled) corrected total extrapolated energies: 
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1236.56221 H. The by 0.2 kcal mol-1 slightly preferred si-addition 
of the NH3 model nucleophile corresponds to the experimental 
R-alkylation product.
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