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Abstract: Based on finite time thermodynamics, an irreversible combined thermal Brownian heat
engine model is established in this paper. The model consists of two thermal Brownian heat engines
which are operating in tandem with thermal contact with three heat reservoirs. The rates of heat
transfer are finite between the heat engine and the reservoir. Considering the heat leakage and the
losses caused by kinetic energy change of particles, the formulas of steady current, power output and
efficiency are derived. The power output and efficiency of combined heat engine are smaller than
that of single heat engine operating between reservoirs with same temperatures. When the potential
filed is free from external load, the effects of asymmetry of the potential, barrier height and heat
leakage on the performance of the combined heat engine are analyzed. When the potential field is
free from external load, the effects of basic design parameters on the performance of the combined
heat engine are analyzed. The optimal power and efficiency are obtained by optimizing the barrier
heights of two heat engines. The optimal working regions are obtained. There is optimal temperature
ratio which maximize the overall power output or efficiency. When the potential filed is subjected to
external load, effect of external load is analyzed. The steady current decreases versus external load;
the power output and efficiency are monotonically increasing versus external load.

Keywords: finite time thermodynamics; thermal Brownian heat engine; combined cycle; power
output; efficiency; performance optimization

1. Introduction

Similar to macro motor, micro energy conversion devices can transfer energy in micro
field, such as Brownian motor and energy selective electron engine. Brownian motor is
a micro-nano device that can use micro-scale energy [1,2]. It realizes energy conversion
through the movement of microscopic particles in viscous medium (VM) with different
reservoirs. Many scholars studied the thermodynamic performance of such micro-motors
and drew a lot of meaningful conclusions [3].

Finite time thermodynamics (FTT) theory [4–7] can consider various losses in actual
processes and cycles and obtain more accurate results. In the studies of finite time thermo-
dynamics, there exist two kinds of pivotal problems. The first one is to search the extreme
of the optimization objective for a given cycle. Another one is to search the optimal path for
a preset objective. FTT theory has been applied for performance optimization of various
macro energy systems. The applications of FTT include many aspects and the two major
aspects are optimal configurations [8–24] and optimal performances [25–68] studies.

Although the operating principles of micro-nano motors are quite different from those
of macro motors, FTT theory is also applicable to the study of micro motors [1]. Thermal
Brownian motor is driven by temperature difference. The particles migrate directionally
and exchange energy with reservoirs. Research shows that the Brownian motor can work
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as a heat engine (HE) or refrigerator. Asfaw and Bekele [69] modeled a thermal Brownian
heat engine (TBHE) of a particle drifting in potential field. The heat flow expressions of
the system were given. They proved that it could also work as refrigerator. Asfaw and
Bekele [70] modeled a Brownian motor of a particle motioning in one-dimensional lattice.
The regions of the system as HE or refrigerator were determined. Asfaw and Bekele [71]
established a Brownian motor model. They obtained the parameters range of the system
working as HE or refrigerator. Van den Broeck and Kawai [72] studied a completely solvable
Brownian refrigerator model. The heat flow of the numerical calculation was compared
with the result of the molecular dynamics simulation. Similarly, the Brownian motor can
work as a heat pump. Ding et al. [73] modeled an irreversible thermal Brownian heat
pump. The effects of parameters on system were analyzed. The range of basic parameters
were obtained. Van den Broek et al. [74] analyzed a chiral Brownian heat pump model. The
above scholars studied the performance of Brownian motor under three conditions.

Some scholars noticed that some irreversible losses cannot be ignored. Zhang et al. [75]
studied a TBHE with kinetic energy loss. The curves of power and efficiency were loop-
shaped. Zhang et al. [76] studied a TBHE model considered kinetic and potential energy
loss under external load. They obtained the parameters of the system at maximum power
or efficiency. Ai et al. [77,78] analyzed the irreversible TBHE [79] and refrigerator [80] with
kinetic energy loss. The optimal characteristics of efficiency and coefficient of performance
were obtained. Asfaw [81] researched the effect of serrated potential on TBHE. He found
that the thermodynamic performance could be improved by subdividing the sawtooth
potential. Asfaw [79] analyzed the effect of thermal inhomogeneity of potential field on
TBHE. Some scholars studied Brownian motor by other methods. Gao et al. [80] analyzed
the effect of irreversible losses on Onsager coefficients. Gao and Chen [82] established an
equivalent TBHE model. They studied it with non-equilibrium thermodynamics theory
and obtained the Onsager coefficients at maximum power. The research mentioned above
mainly focused on the Brownian motors with two reservoirs. Different optimization
objective functions, from power, efficiency to ecological function in single-stage Brownian
motor have been studied widely [75,83–106]. The system models have been gradually
improved and more universal results have been obtained.

For the one-stage HE, the heat in the cold reservoir (CR) is released into the environ-
ment directly and results in heat losses. To improve energy utilization efficiency, some
scholars try to utilize waste heat by connecting the HEs by using FTT theory. For macro
energy systems, Rubin and Andresen [107] modeled a three reservoirs endoreversible
combined Carnot HE engine model with one as intermediate heat reservoir. Wu [108]
optimized power of combined Carnot HE without intermediate heat reservoir. Chen [109]
introduced the irreversibility factor to combined Carnot HE model. Ghasemkhani et al. [65]
performed multiobjective optimization of combined Carnot HE. Some scholars [110–118]
have also studied performance characteristics of combined Carnot HEs with various loss
issues and different optimization objectives. For quantum energy systems, Meng et al. [119]
modeled a three reservoirs endoreversible combined quantum Carnot HE with one as
intermediate heat reservoir and Chen et al. [120] modeled irreversible two-stage combined
HE with quantum gases.

2. Modeling of Irreversible Combined Thermal Brownian Heat Engine

Figure 1 shows an irreversible combined TBHE model working with three reservoirs
with the temperatures TH , TC and TL. The model consists of two irreversibly TBHEs with
different barrier height and the two TBHEs are operating in tandem. The bottom TBHE
takes the CR of the topping TBHE as hot reservoir (HR). The lower TBHE absorbs heat
from the CR of the upper TBHE. The heat dissipated by the upper TBHE is reused by lower
TBHE. The intermediate reservoir TC is the CR of the topping TBHE and the HR of the
bottom TBHE. TH is the HR of the topping TBHE and TL is the CR of the bottom TBHE.
There are thermal resistances between reservoir and VM and heat transfer rate is finite. The
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operating temperatures of the topping TBHE are T1 and T2 and those for the bottom TBHE
are T3 and T4.
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Figure 1. Irreversible combined thermal Brownian heat engine model.

The combined TBHE model without an intermediate HR is also feasible in theory.
When the intermediate HR is not considered, the topping and bottom TBHEs transfer heat
directly through viscous medium. As a result, the temperature of CR T2 of the topping HE
and the HR T3 of the bottom HE is dynamic and the corresponding mathematical solution
process becomes very complicated. Therefore, this paper introduces an intermediate
reservoir to couple the topping and bottom HEs for determining the temperatures T2 and
T3, similar to that in Ref. [107], for macro combined HE, with which the subsequent solution
process is greatly simplified.

The method used in this paper can also be used to research the combined TBHE model
without the intermediate HR. Similar research work has been performed for macroscopic
combined Carnot HE models without the intermediate HR [108,109]. The performance
analysis and optimization of combined TBHE without the intermediate HR will be carried
out in future work.

Figure 2 is the schematic diagram of the combined TBHE. The particle moves in VM
with period sawtooth potential field and exchanges heat with the reservoirs through the
VM. The VM is an essential part of the present TBHE model without which the Brownian
motor cannot move and the entire system cannot operate normally. The potential is electric
potential field with different energy heights at different positions. When two TBHEs are
operating stably, the model works as a combined TBHE. The model of the micro combined
TBHE which can realize multi-stage utilization of energy is established. This research
provides a new idea to realize microscopic energy utilization at thermal Brownian motor.
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Figure 2. Schematic diagram of combined TBHE.

For the topping TBHE, the heat absorption rate is Q1; the heat releasing rate is Q2;
and the power output is P1. For the bottom TBHE, the heat absorption rate is Q3; the
heat releasing rate is Q4; and the power output is P2. For the combined TBHE, the total
power output is P. qL is bypass heat leakage rate between TH and TL. It is supposed
that the thermal conductivities between the reservoir and the VM are all constant and
the temperatures of the reservoirs and VM will not change with time when the system is
operating stably. Therefore, TH > T1 > T2 > TC > T3 > T4 > TL holds.

The temperature of VM T(x) and the sawtooth potential U(x) are, respectively:

T(x) =


T1, 0 < x ≤ L1
T2, L1 < x ≤ L1 + L2
T3, L1 + L2 < x ≤ 2L1 + L2
T4, 2L1 + L2 < x ≤ 2(L1 + L2)

(1)

U(x) =


U0x/L1, 0 < x ≤ L1
U0(L1/L2 − x/L2 + 1), L1 < x ≤ L1 + L2
U1(x/L1 − L2/L1 − 1), L1 + L2 < x ≤ 2L1 + L2
U1(−x/L2 + 2L1/L2 + 2), 2L1 + L2 < x ≤ 2L1 + 2L2

(2)

where L1 and L2 are the lengths of potential field; U0 and U1 are barrier heights of potential
field and the total cycle length is 2L(L = L1 + L2). The sawtooth potential field represents
a class of actions which is linearly related to the external load. The barrier height of the
potential field is different under different operation conditions. Through the application
of a linear sawtooth potential, the mathematical analysis process of the TBHE with in-
homogeneous VM can be effectively simplified. Asfaw and Bekele [69] firstly simplified
the process of solving the dynamic equation greatly by introducing a sawtooth potential
field for the TBHE. The analytical results of Smoluchowski equation make it possible to
study the analytical model of a TBHE [69]. In addition, other different kinds of potential
fields can be also applied into the study of the TBHE model. Asfaw [81] studied the TBHE
with periodic rugged potential field. Asfaw and Bekele [70] and Asfaw [91] studied the
TBHE models with discrete ratchet potential. Cheng et al. [121] studied the TBHE with
periodic double-barrier sawtooth potential field. This paper studies the TBHE with linear
potential field on the bases of previous studies. The application of nonlinear potential field
in combined TBHE model will be considered in future research.

When the system works stably, the particle will drift in a directional manner. The
heat caused by the friction of Brownian particles through the VM can be expressed as γvL,
and γv is friction. The average drift velocity of the particle in a cycle length L (v = JL)
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is v, and J is the drift velocity of the particle at position z (0 < z < L). The expression
of J is very complicated; therefore, the self-defined parameters such as G, H and I are
introduced to simplify the analytical expression of J. Because of the different barrier heights
and operating temperatures of two TBHEs, the steady current is different. The steady
current J of upper or lower HE is closely related to the variables such as barrier height U,
external load F, the length of potential field L, temperature T, the position of particle z and
time t. The analytical expression of J is solved from the Smoluchowski equation for the
Brownian particle under specific position z and time t, which makes it possible to analyze
the performance of the Brownian motor with a solvable model. According to Refs. [70,75],
the steady currents J1 and J2 of topping and bottom TBHEs are

J1 = −I1/(G1G2 + H1 I1) (3)

J2 = −I2/(G3G4 + H2 I2) (4)

where the self-defined functions I1, I2, H1, H2, G1, G2, G3 and G4 are, respectively given by:

I1 = ea−b − 1, I2 = ec−d − 1 (5)

H1 = A1 + B1 + C1, H2 = A2 + B2 + C2 (6)

G1 = (L1/aT1)(1 − e−a) + (e−aL2/bT2)(eb − 1), G2 = (γL1/a)(ea − 1) + (γeaL2/b)(1 − e−b) (7)

G3 = (L1/cT3)(1 − e−c) + (e−cL2/bT4)(ed − 1), G4 = (γL1/c)(ec − 1) + (γecL2/d)(1 − e−d) (8)

where γ is the friction coefficient of particles and the self-defined functions A1, B1, C1,
A2, B2 and C2 are, respectively:

A1 = (γL2
1/a2T1)(e−a + a − 1), B1 = (γL1L2/abT2)(1 − e−a)(eb − 1), C1 = (γL2

2/b2T2)(eb − b − 1) (9)

A2 = (γL2
1/c2T3)(e−c + c − 1), B2 = (γL1L2/cdT4)(1 − e−c)(ed − 1), C2 = (γL2

2/d2T4)(ed − d − 1) (10)

a = (U0 + FL1)/T1, b = (U0 − FL2)/T2 (11)

c = (U1 + FL1)/T3, d = (U1 − FL2)/T4 (12)

where F is external load. The drift velocity v of particles is v = JL.
There are three kinds of heat flows for the TBHE. The first is the heat transfer rate

when a particle passes through the potential field. The particle absorbs energy to overcome
external load F and viscous forces γv. The heat absorption and releasing rates of the
topping and bottom TBHEs can be expressed as

Q1 = U0 + (F + γv1)L1 (13)

Q2 = U0 − (F + γv1)L2 (14)

Q3 = U1 + (F + γv2)L1 (15)

Q4 = U1 − (F + γv2)L2 (16)

The second is the energy due to kinetic energy change when a particle moves. The
heat flows can be expressed as [122,123]

qkin1 = kB(T1 − T2)/2 (17)

qkin2 = kB(T3 − T4)/2 (18)

where kB is Boltzmann constant, qkin1 and qkin2 are the energy losses of topping and bottom
TBHEs, respectively.
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The third is the bypass heat leakage rate qL between reservoirs, which can be expressed
as [124–126].

qL = Ci(TH − TL) (19)

where Ci is heat leakage coefficient.

3. Main Performance Parameters

According to Equations (13)–(19), the total heat absorption rate
.

Q1 and releasing rate
.

Q2 of the topping TBHE are

.
Q1 = Q1 + qkin1 + qL = U0 + (F + γv1)L1 + kB(T1 − T2)/2 + Ci(TH − TL) (20)

.
Q2 = Q2 + qkin1 = U0 − (F + γv1)L2 + kB(T1 − T2)/2 (21)

The power output P1 is

P1 =
.

Q1 −
.

Q2 = (F + γv1)L + Ci(TH − TL) (22)

The total heat absorption rate
.

Q3 and releasing rate
.

Q4 of the bottom TBHE are

.
Q3 = Q3 + qkin2 = U1 + (F + γv2)L1 + kB(T3 − T4)/2 (23)

.
Q4 = Q4 + qkin2 + qL = U1 − (F + γv2)L2 + kB(T3 − T4)/2 + Ci(TH − TL) (24)

The power output P2 is

P2 =
.

Q3 −
.

Q4 = (F + γv2)L − Ci(TH − TL) (25)

The total P and η of the combined TBHE are

P = P1 + P2 = (F + γv1)L + (F + γv2)L (26)

η =
P
.

Q1

=
(F + γv1)L + (F + γv2)L

U0 + (F + γv1)L1 + kB(T1 − T2)/2 + Ci(TH − TL)
(27)

In order to simplify calculation, some dimensionless parameters are defined: the asym-
metry of the potential µ = L1/L, the dimensionless barrier height U = U0/(kBTH), the
ratio of barrier height n = U0/U1, the dimensionless external load f = FL/(kBTH),
β = Ci/kB, τ = TL/TH , ω = TC/TH , k1 = TL/T4, k2 = T3/TC, k3 = TC/T2 and
k4 = T1/TH . It is future defined that a = kB(U + µ f )/k4, b = k3kB[U − (1 − µ) f ]/ω,
c = kB(U/n + µ f )/k2ω and d = k1kB[U/n − (1 − µ) f ]/τ. The dimensionless forms of J1,
J2, P and the efficiency η∗ can be rewritten as follows:

J∗1 =
J1γL2

kBTH
=

(1 − ea−b)/kB

x0 + (ea−b − 1)y0
(28)

J∗2 =
J2γL2

kBTH
=

(1 − ec−d)/kB

x1 + (ec−d − 1)y1
(29)

P∗ =
P

kBTH
= 2 f +

(1 − ea−b)/kB

x0 + (ea−b − 1)y0
+

(1 − ec−d)/kB

x1 + (ec−d − 1)y1
(30)

η∗ = η =
2 f + [(1 − ea−b)/kB]/[x0 + (ea−b − 1)y0] + [(1 − ec−d)/kB]/[x1 + (ec−d − 1)y1]

U + µ f + [µ(1 − ea−b)/kB]/[x0 + (ea−b − 1)y0] + (k4 − ω/k3)/2 + β(1 − τ)
(31)
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The self-defined functions x0, y0, x1 and y1 are introduced to simplify the writing
processes. These functions are defined as, respectively:

x0 = [
µ(1 − e−a)

ak4
+

k3e−a(1 − µ)(eb − 1)
bω

][
µ(ea − 1)

a
+

ea(1 − µ)(1 − e−b)

b
] (32)

y0 =
µ2(e−a + a − 1)

a2k4
+

µk3(1 − µ)(1 − e−a)(eb − 1)
abω

+
k3(1 − µ)2(eb − b − 1)

b2ω
(33)

x1 = [
µ(1 − e−c)

ck2ω
+

k1e−c(1 − µ)(ed − 1)
dτ

][
µ(ec − 1)

c
+

ec(1 − µ)(1 − e−d)

d
] (34)

y1 =
µ2(e−c + c − 1)

c2k2ω
+

µ(1 − µ)k1(1 − e−c)(ed − 1)
cdτ

+
k1(1 − µ)2(ed − d − 1)

d2τ
(35)

4. Optimal Performance Characteristics without External Load
4.1. Performance Analysis without External Load

When the combined TBHE is free from external load ( f = 0), the analytical expressions
of power (P∗) and efficiency (η∗) are

P∗ =
Pt

kBTH
=

(1 − ea−b) t/kB

x0 + (ea−b − 1)y0
+

(1 − ec−d) t/kB

x1 + (ec−d − 1)y1
(36)

η∗ =
[(1 − ea−b)/kB]/[x0 + (ea−b − 1)y0] + [(1 − ec−d)/kB]/[x1 + (ec−d − 1)y1]

U + [µ(1 − ea−b)/kB]/[x0 + (ea−b − 1)y0] + (k4 − ω/k3)/2 + β(1 − τ)
(37)

where a = kBU/k4, b = k3kBU/ω, c = kBU/nk2ω and d = k1kBU/nτ.
The performance parameters P∗ and η∗ are the functions of variables such as U, n,

µ, ki(i = 1, 2, 3, 4), ω and τ. When the temperature of reservoirs TH and TL are fixed,
the temperature ratio τ = TL/TH is fixed. The temperature of intermediate reservoir is
TC. The parameter ω (ω = TC/TH) is defined as the temperature ratio of intermediate
reservoir to the HR. Due to TL < TC < TH , one has 0 < τ < ω < 1. The dimensionless
barrier height U (U = U0/(kBTH)) is taken as a major control variable of the system. The
ratio of barrier height is defined as n = U0/U1 and one has n > 0. The asymmetry of
the potential is defined as µ = L1/L and one has 0 < µ < 1. These variables will affect
the performance directly. Therefore, it is necessary to analyze their effects emphatically.
The performance of the combined TBHE without external load is analyzed by numerical
calculation. To simplify the analyses, it is supposed that the thermal conductivities are
equal between reservoir and vicious medium and k = k1 = k2 = k3 = k4. The combined
TBHE is operating between reservoirs with fixed temperature TH and TL, and τ is fixed.

Figure 3 shows P∗ and η∗ characteristics about U and µ with τ = 0.1, ω = 0.4, k = 0.95,
n = 2 and Ci = 2. The P∗ and η∗ performance characteristics are similar. When µ is fixed,
P∗ and η∗ have maximums about U. This is because the barrier height affects the motion
and the heat exchange of particle. The steady current increases with the increase of barrier
height and the P∗ and η∗ increase; as the barrier height gets higher and higher, the steady
current decreases but the absorbed rate increases from HR TH and the P∗ and η∗ decrease.
when U is fixed, P∗ and η∗ are monotonous about µ. The maximum power (P∗

max) and
maximum efficiency (η∗

max) decrease first and then increase versus µ. The heat absorption
of the particle for overcoming friction is influenced by the parameter µ.
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Figure 4 show P∗ and η∗ characteristics about U and ω with τ = 0.1, µ = 0.4, k = 0.95,
n = 2 and Ci = 2. It is shown that the performance of the combined TBHE is closely
related to the temperature ratio ω. When τ and U are fixed, P∗ and η∗ have peaks about
ω. That means that when TH and TL are fixed, there is an optimal temperature TC for the
intermediate reservoir to maximize P∗ or η∗. Figures 3 and 4 research the characteristics of
the P∗ and η∗ about µ or ω with different parameters. Although the shapes of the figures
are similar, the values of the corresponding parameters are different when the power and
efficiency are maximized. This section studies the performance characteristics of the system
operating at maximum power or efficiency and explains the operating principle. Therefore,
Figures 3 and 4 show the above shapes.
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Figure 5 shows the curves of P∗−η∗ about Ci. The curve is parabolic one if qL and qkin
are ignored as shown by curve 1; and it is loop-shaped one if qL and qkin are considered.
The effects of heat leakage and the heat flow due to the change of kinetic energy on the
system performance are similar to the effect of heat leakage on the macro thermodynamic
systems. Therefore, the curve of power output and efficiency presents a loop-shaped
characteristic similar to macro heat engine. When Ci increases, the area of the loop-shaped
curve decreases; the power P∗

max remains constant whereas the efficiency ηmax decreases.
The optimal working regions are P∗

η∗max
< P∗ < P∗

max and η∗
P∗max < η∗ < η∗

max, where
both P∗ and η∗ can be maintained as large.
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Figure 5. The curves of P∗ − η∗ about Ci.

Figure 6 shows the characteristics of P∗ and η∗ versus k with τ = 0.1, µ = 0.4 , n = 2,
ω = 0.4 and Ci = 2. P∗ and η∗ monotonically increase about k. It indicates that the higher
the thermal conductivities between the vicious medium and reservoir, the better P∗ and
η∗ of the combined TBHE. Enhancing the heat transfer between reservoir and TBHE can
improve P∗ and η∗ of the system.
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According to above analyses, one can find that the barrier height U has obvious impact
on the system performance. When the upper heat engine works normally, the performance
of lower heat engine can be optimized by adjusting the barrier height of the lower engine
and the performance of the combined system can be optimized. Therefore, the relationship
between barrier heights U0 and U1 of the two-stage combined TBHE is studied in detail.
Figure 7 shows the P∗ and η∗ characteristics about U and n without external load with
τ = 0.1, Ci = 2, ω = 0.4, µ = 0.4 and k = 0.95. It can be seen that P∗ and η∗ have peaks
about U and n. There are appropriate U and n which maximize P∗ or η∗, respectively.
When the topping HE operating is stable, the barrier height of bottom HE can be adjusted
to make the combined TBHE operating at optimal performance. It is of great significance
for the analysis and parameter design of combined TBHE.
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4.2. Optimal Performance without External Load

When (∂P∗/∂U)n = 0 and (∂P∗/∂n)U = 0, according to Equations (36) and (37),
P∗

max and the corresponding efficiency (η∗
P∗) can be obtained. Similarly, when η∗ is

maximized, η∗
max and the corresponding power (P∗

η∗ ) can be obtained by the method of
evaluation extreme value. The performance analysis and optimization work performed
for the combined two-stage thermal Brownian heat engine belongs to the first type of
research problem of finite time thermodynamics. Due to its special working mechanism,
the expressions of performance parameters such as power and efficiency respect to its
design parameters are highly non-linear. It is very difficult to obtain the analytical solution.
Therefore, numerical methods are applied for intensive analyses.

Figure 8 shows the performance of dimensionless power output (P∗
max,P∗

η∗ ) and effi-
ciency (η∗

max, η∗
P∗ ) versus ω with the optimal barrier height. The variation ranges of P∗

max
and η∗

max are small, but the variation ranges of P∗
η∗ and η∗

P∗ are large. After optimizing the
barrier heights U0 and n, η∗

max is monotonically increasing versus ω. This is different from
the results shown by Figure 5, where the η∗

max increases firstly, and then decreases. The
P∗

max and η∗
max cannot be satisfied simultaneously. Different optimization objectives can be

chosen under different design requirement.
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5. The Performance Characteristics with External Load

The barrier height will change when the potential field is influenced by external load,
which will affect the movement of the particle. Therefore, the performance of the system
needs to be further analyzed.

Figure 9 shows the characteristics J∗1 and J∗2 about U and f with ω = 0.4, τ = 0.2,
µ = 0.4, k = 0.8, n = 2 and Ci= 2. The steady current decreases monotonically with
external load. This indicates that the velocity of the particles decreases when the sawtooth
potential is acted upon by external load. When external load f increases further, J∗1 or
J∗2 is less than zero. This means that the particle moves in the opposite direction and
the Brownian motor works as a refrigerator. If the combined TBHE works normally, the
particles are moving to the right for the topping and bottom TBHEs. The external load f
should satisfy J∗1 > 0 and J∗2 > 0.



Entropy 2021, 23, 419 13 of 22Entropy 2021, 23, x FOR PEER REVIEW 14 of 24 
 

 

 
(a) The characteristic of 

*
1J  about U  and f . 

 
(b) The characteristic of 

*
2J  about U  and f . 

Figure 9. The characteristics of 
*
1J  and 

*
2J  about U  and f . 

Figure 10 shows the characteristics of *P  and 
*η  about U  and f  with 0.4ω = , 

0.2τ = , 0.4μ = , 0.8k = , 2n =  and =2iC . Figure 11 shows the characteristics of *P  

and 
*η  about f  and μ  with 0.4ω = , 0.2τ = , 2U = , 0.8k = , 2n =  and =2iC . 

*P  and 
*η  are monotonically increasing versus f . The reason is that the particle needs 

to absorb heat in order to overcome external load. *P  and 
*η  increase first and then de-

creasing versus U  when f  is small; but *P  and 
*η  are monotonically decreasing ver-

sus U  when f  is large. The surfaces are truncated as shown by Figure 10. This is be-

cause when the barrier height 0U  and 1U  are fixed, the external loaf f  can’t be too 

large if the combined TBHE is to work normally. When f  is fixed, μ  has little impact 

on *P  and 
*η . However, 

*
maxP  and 

*
maxη  are monotonically increasing versus μ  as 

shown by Figure 11. The heat absorption of the particle for overcoming external load is 
influenced by the parameter μ . 

Figure 9. The characteristics of J∗1 and J∗2 about U and f .

Figure 10 shows the characteristics of P∗ and η∗ about U and f with ω = 0.4, τ = 0.2,
µ = 0.4, k = 0.8, n = 2 and Ci= 2. Figure 11 shows the characteristics of P∗ and η∗

about f and µ with ω = 0.4, τ = 0.2, U = 2, k = 0.8, n = 2 and Ci= 2. P∗ and η∗ are
monotonically increasing versus f . The reason is that the particle needs to absorb heat in
order to overcome external load. P∗ and η∗ increase first and then decreasing versus U
when f is small; but P∗ and η∗ are monotonically decreasing versus U when f is large. The
surfaces are truncated as shown by Figure 10. This is because when the barrier height U0
and U1 are fixed, the external loaf f can’t be too large if the combined TBHE is to work
normally. When f is fixed, µ has little impact on P∗ and η∗. However, P∗

max and η∗
max

are monotonically increasing versus µ as shown by Figure 11. The heat absorption of the
particle for overcoming external load is influenced by the parameter µ.



Entropy 2021, 23, 419 14 of 22

Entropy 2021, 23, x FOR PEER REVIEW 15 of 24 
 

 

Figure 12 shows the characteristics of *P  and 
*η  versus n  with different f . Ex-

ternal load makes *P  and 
*η  increased significantly. When U  is fixed, there is an op-

timal *P
n  (or 

*nη ) to maximize *P  (or 
*η ). When the upper HE works normally, the 

performance of lower HE can be optimized by adjusting the barrier height of the lower 
engine and the performance of the combined TBHE can be improved. If the ratio of barrier 

height is set properly, *P  or 
*η  will increase. These characteristics are consistent with 

Figure 7. 

 

(a) 
*P  characteristic about U  and f . 

 
(b) 

*η  characteristic about U  and f . 

Figure 10. and 
*η  characteristics about U  and f . 

 

 

 

 

 

Figure 10. P∗ and η∗ characteristics about U and f .
Entropy 2021, 23, x FOR PEER REVIEW 16 of 24 
 

 

 
(a) 

*P  characteristic about f  and μ . 

 
(b) 

*η  characteristic about f  and μ . 

Figure 11. and 
*η  characteristics about f  and μ . 

 

 
(a) The curves of 

*P  versus n . 

Figure 11. P∗ and η∗ characteristics about f and µ.



Entropy 2021, 23, 419 15 of 22

Figure 12 shows the characteristics of P∗ and η∗ versus n with different f . External
load makes P∗ and η∗ increased significantly. When U is fixed, there is an optimal nP∗

(or nη∗ ) to maximize P∗ (or η∗). When the upper HE works normally, the performance of
lower HE can be optimized by adjusting the barrier height of the lower engine and the
performance of the combined TBHE can be improved. If the ratio of barrier height is set
properly, P∗ or η∗ will increase. These characteristics are consistent with Figure 7.
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6. Performance Comparison with Single Cycle

The combined TBHE can improve power output and efficiency effectively by expand-
ing the temperature range. In order to explore the differences between the micro and
macro combined HEs, this section compares the performance characteristics with macro
combined HE. For the irreversible single TBHE operating between reservoirs TH and TL, it
is supposed that the temperatures of VM remains at T1 and T4, the power output P∗

1 and
efficiency η∗

1 are [75]:

P∗
3 = f +

(1 − ea1−b1)/kB

x2 + (ea1−b1 − 1)y2
(38)

η∗
3 =

f + [(1 − ea1−b1)/kB]/[x2 + (ea1−b1 − 1)y2]

U + µ f + [µ(1 − ea1−b1)/kB]/[x2 + (ea1−b1 − 1)y2] + (k4 − τ/k1)/2 + β(1 − τ)
(39)

where the self-defined functions a1, b1, x2 and y2 are, respectively:

a1 = kB(U + µ f )/k4, b1 = k1kB[U − (1 − µ) f ]/τ (40)

x2 = [
µ(1 − e−a1)

a1k4
+

k1e−a1(1 − µ)(eb1 − 1)
b1τ

][
µ(ea1 − 1)

a1
+

ea1(1 − µ)(1 − e−b1)

b1
] (41)

y2 =
µ2(e−a1 + a1 − 1)

a1
2k4

+
µk1(1 − µ)(1 − e−a1)(eb1 − 1)

a1b1τ
+

k1(1 − µ)2(eb1 − b1 − 1)
b1

2τ
(42)

The performance comparison is illustrated by numerical calculation. The parameters
are set as ω = 0.5, τ = 0.2, µ = 0.4, k = 0.8, n = 1 and Ci = 2. Figure 13 shows the
P∗ and η∗ versus U curves of the irreversible single TBHE (curves 1–3) and irreversible
combined TBHE (curves 4–6), respectively. Tables 1 and 2 list the power output and
efficiency performance comparison between single and combined TBHE with U = 1.5.
It shows that the values of P∗ and η∗ for the irreversible single TBHE are higher than
those of the combined TBHE. That is because there exist thermal resistances between the
reservoir and the VM. The results about power output are consistent with the analyses of
Refs. [107–109] for conventional macroscopic energy conversion systems, but the reasons
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are different. The power of macro heat engine decreases due to the total thermal resistance
increases, there are three reasons for the power reduction of the combined TBHE:

1. The irreversible combined TBHE is connected by intermediate reservoir, which leads
to the increased overall heat resistance increase.

2. The TBHE exchange energy through particle moves, which is different from macro
heat engine. The energy releasing from upper heat engine can’t be absorbed com-
pletely by lower heat engine and as a result the efficiency decreases.

3. Because the intermediate reservoir is considered, the temperature of the reservoirs of
upper heat engine changes and the velocity of particle motion changes. The upper
heat engine absorbs less energy from the hot reservoir TH . As a result, the total power
output decreases.
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Table 1. The power output performance comparisons between single and combined TBHE with
U = 1.5.

External Load f=0 f=0.5 f=1

Single TBHE P∗ 0.768 0.812 0.857
Combined TBHE P∗ 0.408 0.513 0.62
Increasement of P∗ −46.9% −36.8% −27.7%



Entropy 2021, 23, 419 17 of 22

Table 2. The efficiency performance comparisons between single and combined TBHE with U = 1.5.

External Load f=0 f=0.5 f=1

Single TBHE η∗ 0.208 0.219 0.23
Combined TBHE η∗ 0.122 0.154 0.186
Increasement of η∗ −41.3% −29.7% −19.1%

It is supposed that the single or combined HE is operating between two heat reservoirs
with fixed temperatures. For the one-stage TBHE, there are two heat transfer processes
between two reservoirs. For the two-stage combined TBHE, the bottom HE has two heat
transfer processes and there are four heat transfer processes in total. As a result, the
overall heat resistance increases and the power and efficiency decrease. For the three-stage
combined TBHE, two heat transfer processes are added, there are six heat transfer processes.
As a result, the power and efficiency decrease continually. Therefore, as the number of
HEs operating in tandem increases, the overall heat resistance increases and the power and
efficiency decrease. Some scholars have studied the macro combined Carnot HE model and
systematically expounded the effect of heat resistance on the performance of multi-stage
combined Carnot HE [99,109].

One can find from the present analyses that, when the bottom TBHE is placed below
the topping TBHE, the entire power output and efficiency can be greatly improved due to
the expended working temperature of the entire system. The results can be applied to the
performance optimization of the combined energy conversion systems with multiple HRs.

7. Conclusions

In this paper, an irreversible combined thermal Brownian heat engine model is estab-
lished by FTT theory. The effects of basic parameters on the performance of the combined
thermal Brownian heat engine are analyzed with or without external load. The optimal
thermodynamic performance of the combined thermal Brownian heat engine is further
studied. The main conclusions are:

1. When the temperature ratio τ is fixed, there is a specific optimal temperature ratio
ω which maximize power or efficiency. Reducing the heat leakage coefficient and
enhancing the heat transfer between the thermal Brownian heat engines and reservoir
can improve the performance. There are suitable barrier height and the ratio of barrier
height to make the combined thermal Brownian heat engine work at optimum power
and efficiency whether the potential field is affected by the external load or not.

2. When the potential field is free from external load, considering heat leakage and
kinetic energy loss, the curves of P∗− η are loop-shaped ones and the optimal working
regions are P∗

η∗max
< P∗ < P∗

max and η∗
P∗max < η∗ < η∗

max. The maximum power and
efficiency decrease first and then increase versus asymmetry of the potential.

3. When the potential field is influenced by external load, the steady current decreases
with the increase of external load. The maximum power and efficiency monotoni-
cally increase versus the asymmetry of the potential. The power and efficiency are
monotonically increasing versus external load.

4. The overall heat resistance of combined thermal Brownian heat engine is bigger
than that of single thermal Brownian heat engine, the power or efficiency of com-
bined thermal Brownian heat engine are lower than that of single thermal Brownian
heat engine.
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Nomenclature

A self-defined function
a self-defined function
B self-defined function
b self-defined function
C self-defined function
Ci heat leakage coefficient (J/K)
c self-defined function
F external load
f dimensionless external load
G H, I some defined functions
J steady current
k temperature ratio
kB Boltzmann constant (J/K)
L length of potential field (m)
n the ratio of barrier height
P power output (W)
Q heat flow rate (W)
qkin kinetic energy (W)
qL heat leakage rate (W)
T temperature ( K)
U barrier height (J)
v drift velocity of particle
x, y self-defined functions
z the position of particle
Greek symbols
γ friction coefficient
η efficiency
µ asymmetry of the potential
ω, τ temperature ratio
β dimensionless heat leakage coefficient
Abbreviations
CR cold reservoir
FTT Finite time thermodynamics
HE heat engine
HR hot reservoir
TBHE thermal Brownian heat engine
VM viscous medium
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