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AR T I C L E
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Abstract

Cells cultured on micropatterns exhibit a chiral orientation, which may underlie the

development of left–right asymmetry in tissue microarchitectures. To investigate this

phenomenon, fluorescence staining of nuclei has been used to reveal such orientation.

However, for images with high cell density, analysis is difficult because of the overlapping

nuclei. Here, we report an image processing method that can acquire cell orientations

within dense cell populations. After initial separation based on Boolean addition of

binarized images using global and adaptive thresholds, the overlapping nucleus contours

in the binarized images were segmented by iteratively etching the outlines of nuclei,

which allowed the orientations of each cell to be extracted from densely packed cell

clusters. In applying this technique to cultured C2C12 myoblasts in micropatterned

stripes on different substrates, we found an enhanced chiral orientation on glass

substrate. More important, this enhanced chirality was consistently observed with

increased intercellular alignment and independent of cell–cell distance or cell density,

suggesting that intercellular alignment plays a role in determining the chiral orientation.

By segmenting single cells with intact orientation, this technique offers an automated

method for quantitative analysis with improved accuracy, providing an essential tool for

studying left–right asymmetry and other morphogenic dynamics in tissue formation.
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1 | INTRODUCTION

Differences in cell orientation are commonly observed in many tissue

microarchitectures, including the myocardium (Streeter, Spotnitz, Patel,

Ross, & Sonnenblick, 1969), vasculature (Chiu, Chen, Chen, Lee, & Lee,

2004), and connective tissue (Vunjak‐Novakovic, Altman, Horan, &

Kaplan, 2004). These geometric features are considered to be essential

in tissue and organ functioning. For example, contractility of muscular

tissue requires specific layer‐by‐layer orientations with different angles

(Streeter et al., 1969). In cardiac tissue, cell orientation guides the

anisotropic propagation of action potential (Kim et al., 2010), which

regulates electrophysiological signals and triggers mechanical actions. An

understanding of cell orientation is thus of vital importance.

Emerging evidence suggests that cells may exhibit a chirality when

cultured on a micropatterned substrate (Chen, Hsu, et al., 2012; Wan

et al., 2011). We previously reported that vascular mesenchymal cells

can orient at a specific chiral angle relative to the micropattern

boundaries. This intrinsic chirality can subsequently be amplified, leading

to a coherent chiral orientation throughout the rest of the culture.

Moreover, accompanying cell assembly, the chiral orientation later
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causes the formation of a tissue‐like structure with a specific, left–right

biased pattern (Chen, Hsu, et al., 2012; Chen, Zhu, et al., 2012).

Importantly, the chiral orientation is not only observed in vascular

mesenchymal cells but in other cell types (Zhu, Kwong, Bao, & Chen,

2017). As the formation of coherent cell orientation is driven by

autocatalytic feedback based on intercellular alignment (Junkin, Leung,

Whitman, Gregorio, & Wong, 2011), it is believed that intercellular

alignment may play a role in amplifying the cell chirality. However, direct

evidence to support this hypothesis has been lacking.

In conventional approaches, fluorescence‐stained nuclei are used to

reveal cellular orientation (Raymond, Ray, Kaur, Singh, & Wan, 2016),

and a global threshold is commonly used to binarize the images for

further analysis. Unfortunately, in a culture with high cell density,

densely packed cell cluster makes the contours of nuclei overlapping.

As a result, after image binarization, a cell cluster in a binary image may

be recognized as one bright region containing multiple cells, which

makes the orientation analysis inaccurate. Many methods have been

proposed to address this issue. Watershed methods (Beucher &

Lantuejoul, 1979; Cheng & Rajapakse, 2009; Meyer, 1994) have been

widely used in cell segmentation. The main drawback of the watershed

approach is oversegmentation and further processing is often needed.

In recent years, machine learning has become increasingly popular in

cell segmentation and analysis (Litjens et al., 2017; Ronneberger,

Fischer, & Brox, 2015), but the lack of training data, annotations, and

labelled images remain the key challenges.

Here we report an image processing method that can segment

densely packed cell clusters into individual cells without mistaking

the orientation information. Boolean addition of binarized images

using global and adaptive thresholds was first used for initial

segmentation. To further segment the clusters into single cells, we

applied an algorithm we named the “outline‐etching method,” which

iteratively etches the outline of bright regions, enabling the

segmentation of single nuclei from a cluster without affecting the

cell orientation. We applied this method to study the culture of

C2C12 myoblasts, with a focus on the dependence of cell chirality on

the substrate material, cell density, and intercellular alignment. With

the advantages of simple implementation and accurate analysis, our

method provides a new approach for analyzing the development of

cell chirality, with implications for assessing cell–cell communication

in tissue morphogenesis and regeneration.

2 | MATERIALS AND METHODS

2.1 | Cell culture and fluorescence imaging

C2C12 mouse myoblasts (American Type Culture Collection, Manassas,

VA) were cultured in Dulbecco’s modified Eagle’s medium (4mM

L‐glutamine, 4,500mg/L glucose, 1mM sodium pyruvate, and 1.5 g/L

sodium bicarbonate; Life Technologies, Carlsbad, CA), supplemented

with 10% fetal bovine serum and 1% penicillin–streptomycin (Life

Technologies, Carlsbad, CA). The cells were passaged at a density of

2,200 cells/cm2 every 2 days, with passage number P8–P12 used in the

experiment. For experiments on micropatterns, cells were seeded on

cell‐adherent stripes with a density of 75,000 cells/cm2 for 30min and

kept at 37°C in a humidified incubator (5% CO2 and 95% air) for 12 hr.

To stain the nuclei, the cells were rinsed with Dulbecco’s phosphate

buffered saline, followed by application of 4% paraformaldehyde for

15min, 0.1% Triton X‐100 for 10min, and 4,6 diamidino‐2 phenylin-

done (300 nM, Thermo Fisher Scientific, Waltham, MA) staining for

5min. Fluorescence images were then acquired using an inverted

fluorescence microscope (Nikon, Minato, Tokyo, Japan).

2.2 | Microfabrication

Micropatterns were fabricated on glass or polydimethylsiloxane

(PDMS) substrate using a photolithography process. For the glass

substrate, a glass slide was cleaned with piranha solution (H2SO4:

H2O2 = 3:1). For the PDMS substrate, PDMS was spread on cleaned

glass, with overnight baking at 70°C for curing, followed by 2min

plasma treatment (800mTorr, 30W). Next, both substrates were

coated with hexamethyldisilazane (HMDS; Sigma-Aldrich, St. Louis,

MO; 5min by vapor deposition), followed by spin‐coating with 1.4 μm

AZ5214 photoresist (PR; AZ Electronic Materials, Luxembourg). UV

exposure and development (AZ400K; AZ Electronic Materials,

Luxembourg) was conducted to obtain micropatterned stripes (PR

removed, 1 cm × 200 μm). The substrate was then treated with 2min

plasma (800mTorr, 30W) and another HMDS coating (5min by

vapor deposition). After coating with fibronectin solution (20 μg/ml;

Life Technologies, Carlsbad, CA), the chip was washed with absolute

ethanol on an orbital shaker to remove the remaining PR. Before cell

seeding, the chip was incubated in 1–2% pluronic F127 (Sigma-

Aldrich, St. Louis, MO) in deionized water for 50min to cover the

exposed HMDS regions, creating cell‐repellent surfaces.

2.3 | Image binarization

The image analysis is summarized in Figure 1 (MATLAB source code

available in the Supporting Information). First, the gray‐scale raw

image obtained from the fluorescence microscopy (Step 1 in Figure 1)

was adjusted as follows: after rescaling to 8‐bit and application of a

Gaussian filter to reduce intensity variation and noise, the image was

binarized with a global threshold value obtained by Otsu’s method

(Otsu, 1979), which classifies foreground and background pixels by

minimizing intra‐class variance while maximizing interclass variance.

After iterative calculation by a discriminant criterion, the optimal

threshold was then used to binarize the foreground and background

pixels to 1 (white) and 0 (black), respectively (Step 2 in Figure 1).

2.4 | Cluster identification

After the initial binarization, the processed image contained bright

regions of single cells and cell clusters (Step 2 in Figure 1). The

orientation of single cells can be determined based on the shapes of

these regions. However, the contours of nuclei in cell clusters overlap, so

additional image segmentation is necessary to determine the orientation

of each cell in a cluster. To distinguish between single cells and cell
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clusters, we introduced solidity, defined as the ratio between a region’s

area and the area of the minimum convex hull surrounding that region.

For regions representing a single nucleus, the convex hulls tightly wrap

around the cell regions, yielding a solidity value close to 1. For cell

clusters consisting of concave regions at the cell connecting sites, the

solidity value is lower. In our case, regions with solidity lower than 0.85

were identified as clusters (Step 3 in Figure 1).

2.5 | Adaptive thresholding

The positions of all identified clusters in the binary image (Step 3 in

Figure 1) were used to crop the original gray‐scale image (Step 4 in

Figure 1). Next, an open process was applied to the subimages to remove

small objects from the foreground. In brief, open process refers to a

process of morphological erosion followed by dilation with a structuring

element. As such, it enables morphological noise removal while keeping

the cell region intact. After the open process, background noise is

suppressed and the regions containing the nuclei are preserved.

Next, for the subimages after the open process (denoted as Io),

adaptive thresholding was conducted. Different from the global

threshold that is applied to all pixels, adaptive thresholding adjusts

the threshold value locally to accommodate the uneven lighting

conditions during image acquisition. Mathematically, adaptive thresh-

olding assumes that smaller image regions are more likely to have

approximately uniform illumination. Thus, an individual threshold for

each pixel was assigned based on the range of intensity values in its

neighborhood. The algorithm convolves the image patch Io with a

25 × 25 averaging kernel So to obtain the mean of the local intensity

distribution, as summarized below:

∬= = ′ ′ − ′ − ′ ′ ′⁎I I S I Sx y x y x y x x y y dx dy( , ) ( , ) ( , ) ( , ) ,oc o o o (1)

Afterwards, the final processed image was calculated as

= − −I I I 5at c o . As shown (Step 5 in Figure 1), in a cluster, the concavity

between each nucleus was highlighted and the contour of clusters

became clear. We then combined the information from both global and

adaptive thresholding by a simple Boolean addition to merge the binary

images of Steps 3 and 5 in Figure 1. A combined image was then obtained

with enhanced concave regions (Step 6 in Figure 1) in which the cluster

was broken down into individual nuclei and smaller clusters.

2.6 | Outline‐etching

Following another open process to remove noise and small pieces,

some single cells could be segregated from their original clusters.

However, a number of clusters still needed further segmentation.

After using the aforementioned solidity for identifying these remaining

clusters, we then used an erosion‐based iterative algorithm, named

“outline‐etching,” to decompose the clusters into smaller regions with

preserved orientation information of each cell (Step 7 in Figure 1). In

each iteration in the outline‐etching, the outermost layer of white

pixels of a cluster was eroded. As a result, the cavities at the

conjunction between cells expanded, leading to a cleavage between

nuclei. Single cells segmented from the clusters with high solidity

would then escape the next iteration, whereas clusters with lower

solidity would proceed iteratively through the outline‐etching process

until all clusters were decomposed into single nuclei.

2.7 | Angle analysis

After image segmentation, the orientation of each identified nucleus

was obtained based on the long axis of its surrounding ellipse (Step 8

in Figure 1). The orientation angle was defined as the acute angle θ

between the long axis of the cell nucleus relative to the horizontally

F IGURE 1 Flow chart of image analysis
pipeline. The original fluorescence image

was first adjusted, followed by Boolean
addition of binarized images using global
and adaptive threshold (upper half). The

identified cluster was then processed using
the “outline‐etching” method to further
segment single cells from a cluster for
determination of cell orientations (lower

half) [Color figure can be viewed at
wileyonlinelibrary.com]
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aligned micropattern boundaries (Figure 2a,b). The angle θ is defined

as positively oriented when the acute angle θ is within [0, 90] and

negatively oriented when θ is within [−90, 0]. Thus, the percentages

of positively and negatively aligned cells within one micropatterned

stripe can be calculated. The chirality can then be determined by the

significant difference between these two percentages collected from

multiple stripes. To calculate cell density, we used total cell counts

divided by the stripe area in the image. To study intercellular

alignment, we used |Δθ|, the absolute value of the acute angle

difference between a chosen cell and its neighbors with cell–cell

distance of less than 55 µm (120 pixels). Note that the range of cell–

cell distances less than 55 µm include pairs of direct neighbors, pairs

of indirect neighbors, and pairs of cells with many other cells

between them. Next, the |Δθ| values of all of the cells were collected

and averaged to plot a histogram against cell–cell distance.

2.8 | Analysis of cell–cell distance of direct
neighbors

A Voronoi diagram was used to investigate the cell–cell distance

between pairs of direct neighbors (Aurenhammer, 1991). After

identifying individual nuclei, their centroids were taken as set points

to build a Voronoi diagram, which partitions the two‐dimensional

plane into regions of convex polygons. Based on the distance

between set points, perpendicular bisectors were inserted to

comprise a corresponding convex polygon. For a selected nucleus,

the cell–cell distances between direct neighbors were identified and

calculated based on shared Voronoi vertices or edges within the

Voronoi diagram.

2.9 | Statistical analysis

Student’s t test was applied to compare the difference between the

percentages of cells with negative and positive orientations. The

confidence level was set to 0.05 for all statistical tests. Statistical

significance was indicated by ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01),

*** (p ≤ 0.001), or **** (p ≤ 0.0001).

3 | RESULTS

3.1 | Accuracy of cell orientation determination

We first evaluated the improved accuracy resulting from the

outline‐etching method. To demonstrate the ability to segment

F IGURE 2 Accuracy of cell orientation determination improved by the outline‐etching method. (a) The original fluorescence microscopic image
with high cell density (scale bar: 300 µm). (b) The nucleus orientation θ defined by the acute angle between the long axis of the cell nucleus relative

to the horizontally aligned micropattern boundary. (c) The obtained cell orientation from clusters with or without the outline‐etching method.
Red lines mark the long axis of the nucleus. (d) The histogram of cell orientation of (c) [Color figure can be viewed at wileyonlinelibrary.com]
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cell nuclei with overlapping contours, we measured the cell

orientation angles from an original fluorescence image with high

cell density (Figure 2a,b). The result showed that, using the

outline‐etching method, large clusters can be successfully seg-

mented into single nuclei with accurate cell orientations even

when cells are very close (Figure 2c). In contrast, when only a

global threshold was applied, some clusters were wrongly

classified as single nuclei, which misrepresented the cell orienta-

tion (Figure 2c). In addition, the outline‐etching method also

increased the number of nuclei available for statistical analysis

(from 274 to 397; Figure 2d). Thus, with effective segmentation,

the cell orientation distribution can be revealed with improved

cell number and accuracy, which allows the correct measurement

of chirality in cell orientation (Figure 2d).

3.2 | Unchanged nucleus orientation after
processing

To confirm that the outline‐etching method can separate cell

nuclei without affecting the orientation information, we compared

the measured cell orientation with and without the outline‐
etching using an original fluorescence image with low cell density,

in which the orientation of well‐separated single cells without

the outline‐etching method served as the ground truth

(Figure 3a,b). By collecting nucleus orientations after seven

iterations of the outline‐etching process, a comparison map was

obtained (Figure 3c). The corresponding angles between these

two sets (without/with outline‐etching) regress as a line with a

slope close to 1 (the regression equation is shown in Figure 3c).

The R2 is 0.9984, suggesting a very small variance between

the data and the linear regression. Thus, the analysis

confirmed that, while the size of the nucleus decreased, the

orientation angle was unchanged when using the outline‐etching
method.

3.3 | Chiral orientation enhanced by intercellular
alignment

We next applied this imaging technique to investigate the depen-

dence of the chiral orientation of C2C12 myoblasts on the substrate

material, cell density, and intercellular alignment. Previously we

reported that cell chirality is enhanced on glass substrate but not on

PDMS substrate (Zhu et al., 2017), as indicated by more cells

oriented with negative angles (Figure 4). While we previously

concluded that the difference in substrate rigidity is the primary

reason for this finding, how substrate rigidity can enhance cell

chirality remained unclear.

To explore this question, we applied the outline‐etching method to

analyze the experimental results. We first compared cell density on

glass and PDMS substrates and found that the cell density was indeed

slightly lower on PDMS substrate than that on glass substrate (Figure

5a), suggesting a possible involvement of cell density in the enhanced

chirality. To clarify this point, we extracted images with high cell

density (>180,000 cells/cm2) and low cell density (<50,000 cells/cm2)

on both glass and PDMS substrates (Figure 5b). Interestingly, for

images with high or low cell density, we found that the chirality was

always enhanced on glass substrate, that is, more cells oriented

negatively with statistical significance (Figure 5c). Thus, while cell

density was slightly different on these two substrates, it does not seem

to play a role in regulating the expression of cell chirality.

We next investigated the role of intercellular alignment. Auto-

catalytic cell–cell alignment has been shown to be important for

myogenesis (Junkin et al., 2011). Similarly, local (Edelstein‐Keshet &
Ermentrout, 1990; Wang et al., 2015) and global (Wan et al., 2011)

alignment have both been revealed in regular and conditional culture

at the multicellular level. To study it, we analyzed the absolute value

of acute angle difference |Δθ| between one cell and its neighbors at a

cell–cell distance of less than 55 µm (120 pixels). Cells within this

distance include pairs of direct neighbors, pairs of indirect neighbors,

and pairs of cells that are separated by many other cells. After

F IGURE 3 Unchanged nucleus orientation after using the outline‐etching method. (a,b) Using an image with low cell density, the processed

image with (a) or without (b) the outline‐etching method. (c) Comparison of the cell orientations obtained from image analysis with and without
the outline‐etching method [Color figure can be viewed at wileyonlinelibrary.com]
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collecting data from all of the cells and their neighbors, the |Δθ|

values were averaged and plotted against the cell–cell distance. For

images with low cell density (Figure 6a), we found that the |Δθ| was

reduced with shorter cell–cell distance, indicating an improved

intercellular alignment with a shorter cell–cell distance. Notably,

the |Δθ| was always less for cells on glass substrate than for those on

PDMS substrate. For images with high cell density, a decrease in |Δθ|

was again observed with shorter cell–cell distance but |Δθ| reached a

plateau when the cell–cell distance was greater than 20 µm

(Figure 6b). Again, the |Δθ| was always less on glass substrate for

the entire range of cell–cell distances, including the plateau value.

Thus, the evenly reduced |Δθ| on glass substrate regardless of cell

density suggests that improved intercellular alignment over a wide

range of cell–cell distances could be the origin of enhanced chirality.

Interestingly, for the culture with high cell density, the |Δθ| reduced

with short cell–cell distance but increased sharply towards a plateau

when the cell–cell distance was greater than 20µm (Figure 6b). As a

comparison, in the culture with low cell density, we observed a gradual,

smooth increase of |Δθ| with the increase of cell–cell distance, and no

plateau was observed even when cell–cell distance reached 50µm

(Figure 6a). By analyzing the images using the Voronoi diagram (Figure

6c), we found that the average distance between direct neighbors

decreased significantly with increasing cell density (Figure 6d). In

particular, for images of cell densities higher than 180,000 cells/cm2

and lower than 50,000 cells/cm2, the average cell–cell distances of direct

neighbors were 22–23 and 50µm, respectively (Figure 6d). These

distances between direct neighbors are consistent with the range of

cell–cell distances with reduced |Δθ| before reaching the plateau (Figure

6a,b). Thus, the results suggest that the locally decreased |Δθ| before the

plateau should be due to the local alignment between pairs of direct

neighbors. More important, increased cell density does not seem to

improve the intercellular alignment. Instead, it only reduces the distance

between direct neighbors, leading to a shorter range of cell–cell distance

with reduced |Δθ| before reaching the plateau. When cultured on glass

substrate, other factors, such as substrate rigidity, can reduce the

|Δθ| in a greater range of cell–cell distances, thereby improving the

intercellular alignment with broader range and leading to an overall

enhancement of chiral orientation.

4 | DISCUSSION AND CONCLUSIONS

In this study, we propose an outline‐etching image segmentation for

analyzing cell chirality (MATLAB source code available in the

Supporting Information). We successfully extracted single cell’s

orientation from densely packed cell clusters with improved accuracy.

As opposed to the use of conventional global thresholds, which is only

suitable when there is clear background or foreground contrast over

the entire image, the use of an adaptive threshold enables the analysis

of fluorescence images with nonuniform illumination, providing the

possibility to analyze the entire image without missing local informa-

tion. Moreover, by implementing the outline‐etching method, densely

packed cell clusters can be successfully segmented into single cells

without losing or mistaking the cell orientation. As such, our framework

F IGURE 4 Chiral orientation of cells on different substrates. (a) Phase contrast microscopic images of cells in micropatterned stripes on
glass or polydimethylsiloxane (PDMS) substrate. (b,c) Histogram of cell orientations on (b) glass and (c) PDMS substrates. The percentage of
positively and negatively oriented cells in each stripe was averaged for multiple stripes, and the chirality was determined based on the

statistically significant difference between these two percentages [Color figure can be viewed at wileyonlinelibrary.com]

2600 | HUANG ET AL.



is capable of improving accuracy and allowing the automatic generation

of massive and enriched cellular information.

Note that the proposed outline‐etching cell segmentation method

is tailored for cell orientation analysis. For other applications of cell

segmentation, it may not be suitable, as the bright region shrinks

during the etching process. To solve this issue, it may be necessary to

regrow the etched region or use a watershed approach to obtain the

full cell area.

Based on the ability to isolate single cells from a dense cell

population, our study of cell chirality revealed that intercellular

alignment may underlie the enhancement of chiral orientation.

Coherent chiral orientation has been reported previously (Chen,

Hsu, et al., 2012), and cadherin‐mediated cell–cell contact in

response to cell migration may be required (Worley, Shieh, & Wan,

2015). We found that on glass substrate, |Δθ| was generally reduced

not only between direct neighbors but also across a wider range of

cell–cell distances. We speculate that the properties of glass

substrate, such as rigidity, may upregulate the formation of

cadherin‐mediated cell–cell contacts, subsequently enhancing inter-

cellular alignment as well as the formation of chiral orientation.

Further studies are needed to fully investigate this possibility.

In summary, we here propose a novel framework of image

segmentation for the investigation of cell chirality. This automated

method allows for the objective and quantitative analysis of cell

orientation, enabling the accurate acquisition of alignment angle

between closely neighboring cells. Based on the enriched informa-

tion, intercellular alignment was found to be important in enhancing

cells’ chiral orientation, suggesting a potential mechanism underlying

the development of left–right asymmetry in tissue microarchitecture.

We anticipate that by providing greater insight, this method will

contribute to studies of cell alignment and chiral orientation, which

are important for tissue morphogenesis and regeneration.

F IGURE 5 Chiral orientation of cells with different cell densities. (a) Cell density distribution within micropatterned stripes on glass and
polydimethylsiloxane (PDMS) substrates. (b) Representative images of fluorescence‐stained nuclei with high cell density (>180,000 cells/cm2) and low
cell density (<50,000 cells/cm2) on glass and PDMS substrates. (c) Histogram of cell orientation on glass substrate with low cell density (upper‐left),
glass substrate with high cell density (upper‐right), PDMS substrate with low cell density (lower‐left), and PDMS substrate with high cell density
(lower‐right). The percentages of positively and negatively oriented cells in each stripe were averaged for multiple stripes, and the chirality was
determined based on the statistically significant difference between these two percentages [Color figure can be viewed at wileyonlinelibrary.com]
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