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Abstract
Acute sleep loss influences visual processes in humans, such as recognizing facial emo-
tions. However, to the best of our knowledge, no study till date has examined whether 
acute sleep loss alters visual comfort when looking at images. One image statistic that 
can be used to investigate the level of visual comfort experienced under visual encod-
ing is the slope of the amplitude spectrum, also referred to as the slope constant. The 
slope constant describes the spatial distribution of pixel intensities and deviations 
from the natural slope constant can induce visual discomfort. In the present counter-
balanced crossover design study, 11 young men with normal or corrected‐to‐normal 
vision participated in two experimental conditions: one night of sleep loss and one 
night of sleep. In the morning after each intervention, subjects performed a computer-
ized psychophysics task. Specifically, they were required to adjust the slope constant 
of images depicting natural landscapes and close‐ups with a randomly chosen initial 
slope constant until they perceived each image as most natural looking. Subjects also 
rated the pleasantness of each selected image. Our analysis showed that following 
sleep loss, higher slope constants were perceived as most natural looking when view-
ing images of natural landscapes. Images with a higher slope constant are generally 
perceived as blurrier. The selected images were also rated as less pleasant after sleep 
loss. No such differences between the experimental conditions were noted for images 
of close‐ups. The results suggest that sleep loss induces signs of visual discomfort in 
young men. Possible implications of these findings are discussed.
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1  | INTRODUC TION

The average duration of sleep in the Western world has decreased 
over the last 50 years (Bixler, 2009), with many adults today not 
managing to sleep the minimum recommendation of 7 hr per day 

(Watson et al., 2015). Although chronic sleep loss has been shown to 
be harmful to well‐being (Åkerstedt et al., 2018; Gallicchio & Kalesan, 
2009), there is growing evidence that even acute episodes of sleep 
loss can worsen health and performance, including impaired cogni-
tive functioning (Cedernaes et al., 2015; Krause et al., 2017; Lim & 
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Dinges, 2010; Rångtell et al., 2019; Yoo, Hu, Gujar, Jolesz, & Walker, 
2007). In recent years, evidence has emerged to suggest that acute 
sleep loss may also compromise visual functions, including difficulty 
in recognizing facial emotions (Van Der Helm, Gujar, & Walker, 2010), 
reduced visual task performance (Jackson et al., 2008) and impaired 
visuospatial perception (Killgore, 2010). However, no study to date 
has examined whether human subjects perceive images as more or 
less aesthetically pleasing and comfortable when experiencing sleep 
loss. This is an important area of research, as it could suggest that 
sleep debt – from an aesthetical perspective – may modulate the 
way we see the world. To fill this gap, the present within‐subject, 
counterbalanced crossover study recruited 11 young men with nor-
mal or corrected‐to‐normal vision. Subjects participated in two con-
ditions: one night of sleep loss and one night of sleep. In the morning 
after each night, subjects were presented a set of images with a ran-
domly chosen initial slope constant on a computer. Specifically, we 
examined whether the slope constants of the amplitude spectrum 
and the perceived pleasantness of natural scenes and close‐ups dif-
fered between the two sleep conditions.

During the last few decades, the use of image statistics has at-
tracted researchers from many different fields (Azzopardi & Petkov, 
2012; Clark et al., 2014; Graham, Schwarz, Chatterjee, & Leder, 
2016; Isherwood, Schira, & Spehar, 2017; Simoncelli & Olshausen, 
2001). Image statistics are useful as they provide a method for quan-
tifying photographs of natural and manmade scenes, thereby provid-
ing tools for understanding the link between the environment and 
the design of biological visual systems (Barlow, 2001). Image statis-
tics can thus be used for defining the sensory input that is essential 
for performing a specific visual task and to apply this knowledge 
under more controlled conditions in the laboratory when performing 
electrophysiological or behavioural experiments (Fitzgerald & Clark, 
2015; Geisler, 2008; Leonhardt et al., 2016).

A common image statistic used to describe the visual environ-
ment is the amplitude spectrum, which describes the spatial distri-
bution of pixel intensities (Tolhurst, Tadmor, & Chao, 1992; Torralba 
& Oliva, 2003). This follows a power law, so that when plotted on 
a log‐log scale, there is a linear relationship between the average 
amplitude spectrum (A) and the spatial frequency (f), of the following 
function:

This relationship allows us to describe a large two‐dimensional 
amplitude spectrum with a single value (alpha) referred to as the 
slope constant (Dyakova & Nordström, 2017; Field & Brady, 1997), 
facilitating comparisons between images (Graham & Field, 2007; 
Pouli, Cunningham, & Reinhard, 2011; Redies, Hasenstein, & Denzler, 
2007; Tolhurst et al., 1992; Torralba & Oliva, 2003).

Artificially increasing the slope constant of an image leads to 
this being perceived as more blurry (Tadmor & Tolhurst, 1994). In 
addition, the distance between the camera and the object affects 
the slope constant, where, for example, close‐up photos have 
higher slope constants than distant scenes (Torralba & Oliva, 2003). 

However, even among images obtained from similar distances, the 
slope constant may vary: photos of fields, clouds and coasts have 
higher slope constants, with more signatures in the lower spatial fre-
quencies, whereas photos of mountains or forests have lower slope 
constants, with more signatures in the higher frequencies (Torralba 
& Oliva, 2003). Nevertheless, the slope constants across a range 
of natural scenes have been found to typically be close to 1–1.2 
(Dyakova & Nordström, 2017; Tolhurst et al., 1992).

Based on previous findings suggesting that acute sleep loss mod-
ulates visual functions (e.g., Jackson et al., 2008; Killgore, 2010; Van 
Der Helm et al., 2010), we hypothesized that one night of sleep loss 
would alter the slope constants perceived as most natural. To in-
vestigate this hypothesis, we recruited 11 healthy young men for a 
counterbalanced crossover design study, with one night of sleep loss 
versus one night of sleep.

2  | MATERIAL S AND METHODS

2.1 | Participants

Eleven men aged 20–25 years (mean ± SEM, 22.6 ± 0.5 years), with 
normal BMI (23.0 ± 0.77 kg/m2) and normal or corrected‐to‐normal 
vision, were included in the present study. The participants reported 
no sleep disorders, and no nicotine, alcohol, drug or caffeine addic-
tion. None of the participants was jet lagged, experienced shiftwork 
or had sleep deprivation during the month leading up to the experi-
ment. All participants were scored as having intermediate, moder-
ate morning or moderate evening chronotypes, with a mean (±SEM) 
score of 51.2 (±3.2) on the Morningness–Eveningness Questionnaire 
(MEQ, Horne & Ostberg, 1975). The study was conducted accord-
ing to the Declaration of Helsinki, all participants provided written 
informed consent and the study was approved by the regional ethics 
office (Regionala etiksprövingsnämden, 2016/278).

2.2 | Experimental procedure

Each subject took part on two separate occasions, spaced apart 
on average by 5 days: one night of sleep loss versus one night of 
sleep. The two study nights were allocated using a counterbal-
anced crossover design (first session/second session: sleep/sleep 
loss and sleep loss/sleep; n = 6 and 5, respectively). In each ex-
perimental session, participants arrived at the laboratory between 
20:00 and 21:00 hours to perform baseline tests. In the sleep 
condition, participants wore a wrist actigraphy monitor to meas-
ure their sleep at home (wActiSleep+, ActiGraph, LLC, Pensacola, 
FL). Subjects were instructed to remain fasting, with the excep-
tion of drinking water, and to be in bed approximately between 
23:00 and 07:00 hours (actigraphy‐estimated total sleep duration, 
mean ± SEM: 7 hr, 13.5 ± 15 min). Subjects returned to the labo-
ratory the next morning. In the sleeploss condition, participants 
stayed in the laboratory. They were allowed to spend their time 
with a selection of movies, games and books and were continu-
ously monitored by a female experimenter to ensure that they 

A(f)= c∕falpha
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remained awake (Chapman, Benedict, & Schioth, 2018). In order to 
account for the increased energy expenditure during the night, in 
the sleeploss condition, research participants were given a sand-
wich (~320 kcal) at ~02:00 hours (as in Greer, Goldstein, & Walker, 
2013). Participants were allowed to drink water ad libitum but no 
caffeinated beverages.

In each of the experimental conditions, participants’ perception 
of the slope constant (Figure 1, task description below) was mea-
sured in the evening, not later than 22:00 hours, and the following 
morning, approximately 10 hours later (Figure 1a). To test for periph-
eral effects such as oculomotor muscle fatigue, or lens accommoda-
tion issues, a visual acuity test was performed immediately before 
the evening session and immediately before the morning session 
(Figure 1a). All research participants had 20/20 vision.

2.3 | Psychophysics tests

Each subject was placed in a dark room in front of a linearized 13‐inch 
monitor (Retina MacBookPro), with each image displayed in its centre, 
surrounded by a black background, at a viewing distance of ~30 cm, 
with no head or eye fixation. Subjects had unlimited time to observe 
each presented image, and the test lasted no longer than 45 min in 
total. The images were presented in a random order to each subject, 
and so was the initial slope constant (alpha) of each image. Note that 
the initial slope constant would most often lie outside the underlying 

slope constant of each image (i.e., before image manipulation). Subjects 
were instructed to press the left or right arrow on the keyboard until 
they perceived each image as most natural looking. The right arrow 
increased alpha by 0.1, up to a maximum of 1.7, and the left arrow 
decreased alpha by 0.1, down to a minimum of 0.5 (Figure 1b). Once 
subjects had chosen the slope constant that they perceived as most 
natural looking, they indicated the pleasantness of the “final” image on 
a visual analogue scale from 0 to 100, where 0 is absolutely unpleas-
ant and 100 is extremely pleasant. Then, the next randomly selected 
image appeared, which initiated the next trial.

2.4 | Images

The participants were shown 32 images; 16 depicted natural landscape 
scenes (examples in Figure 1c) and 16 represented close‐ups of natu-
ral objects (Figure 1d). The images were captured using a full‐frame 
digital single‐lens reflex Nikon D700 or Canon Ixus 230 HS camera. 
Each image was cropped to a 1024 × 1024 square and converted to 
greyscale using the Matlab function rgb2grey (Mathworks). To ma-
nipulate the slope constant, we used previously described approaches 
(Dyakova, Lee, Longden, Kiselev, & Nordström, 2015; Tadmor & 
Tolhurst, 1994; Tolhurst & Tadmor, 1997). Briefly, we first performed a 
two‐dimensional Fourier transform and calculated the orientation‐av-
eraged amplitude as a function of spatial frequency. We next divided 
the Fourier‐transformed image by its amplitude spectrum to get a flat 

F I G U R E  1  Experimental design. (a) Schematic overview of the experiments, with a visual acuity test and a psychophysics test in the 
evening and in the morning, with approximately 10 hours in between. During the 10 hours of the night, the participants were either kept 
awake under supervision or were asleep at home, monitored by using wrist actigraphy (~23:00–07:00 hours). (b) Schematic description 
of the psychophysics experiment. Each participant was shown a randomly selected image with a randomly selected slope constant. By 
pressing the right or left arrow on the keyboard, the image's slope constant increased or decreased in steps of 0.1. This continued until the 
most natural looking image was chosen. (c) Examples of images depicting natural scenes. The contrast and brightness of the images shown 
here are adjusted for display purposes. (d) Examples of the images depicting close‐ups of natural objects. (e) Examples of a scene with 
manipulated slope constants (alpha as indicated)
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one (i.e., where alpha = 0). By multiplying the result with the coeffi-
cient (1+k∗ f- alpha), where k is a constant, we generated images with 
the desired alpha. Then, by performing an inverse Fourier transform, 
we recreated the images, but now with the selected alpha (examples 
in Figure 1e).

We generated manipulations of all images with slope constants 
between 0.5 and 1.7 in increments 0.1. We used imadjust (Matlab) to 
maximally increase the image contrast and next set the image RMS 
contrast to 0.1 and the mean brightness level (from 0 to 255) to 127. 
The RMS contrast was defined using the equation:

where n is the number of pixels, xi is the brightness level (from 0 to 
255) of pixel i and x is the mean brightness of the image.

2.5 | Statistical analysis

All statistical analyses were performed in Prism version 7.0d 
(GraphPad Software, San Diego, CA, USA). The data in the text are 
given as mean ± SEM, unless otherwise stated. Significant differ-
ences between the two sleep conditions (p < 0.05) were investigated 
using Wilcoxon matched‐pairs signed rank tests with Bonferroni 
correction for multiple comparisons. Bonferroni‐corrected p‐values 

are given in the text. Correlation was investigated using the Pearson 
correlation coefficient.

3  | RESULTS

3.1 | Acute sleep loss alters the slope constant of 
natural scenes but not close‐ups

After a night of sleep loss, subjects selected higher slope con-
stants for natural scenes than they did after a full night of sleep 
(p = 0.0064, Figure 2a). For images of close‐ups, the slope constant 
chosen as looking most natural was similar to the one following sleep 
loss (p = 0.96, Figure 2b). Importantly, no differences in slope con-
stants between the experimental conditions were observed at base-
line (i.e., in the evening before the sleep intervention) (both p = 1, 
Figure 2c, d).

3.2 | Sleep loss reduces the visual comfort of 
viewing natural scenes but not close‐ups

Natural scenes were perceived as less pleasant following sleep 
loss compared with a night of sleep (59.8 ± 1.8 versus 64.0 ± 1.6; 
p = 0.0024, Figure 3a). In contrast, no such difference in pleasant-
ness was seen for close‐ups (sleep loss versus sleep: 45.0 ± 1.7 ver-
sus 47.8 ± 2.0; p = 0.74, Figure 3b). Importantly, no differences in 
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F I G U R E  2  Acute sleep loss alters the slope constant of natural scenes. (a) Slope constant (alpha) chosen as most natural looking when 
viewing images of natural scenes after a night of sleep loss or a night of sleep. (b) Slope constant (alpha) chosen as most natural looking 
when viewing close‐ups after a night of sleep loss or a night of sleep. (c) Slope constant chosen as most natural looking when viewing natural 
scenes at baseline (i.e., in the evening before each sleep intervention). (d) Slope constant chosen as most natural looking when viewing 
close‐ups at baseline (i.e., in the evening before each sleep intervention). For each image, we averaged the slope constants chosen by each 
participant. In each panel, the central mark of each boxplot shows the median, the edges of the box the 25th–75th percentiles of the data, 
and the whiskers extend from the minimum to maximum of the data. **p < 0.01, ns = p ≥ 0.05
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pleasantness between the experimental conditions were observed 
at baseline (i.e., in the evening before the sleep intervention) (p = 1 
and p = 0.79, respectively; Figure 3c, d).

3.3 | Correlational analysis

In the next step, we investigated the correlation between the slope 
constant ratio for natural scenes and pleasure rating ratio for natu-
ral scenes. The slope constant ratio was defined as the average 
slope constant in the sleep‐loss condition divided by the average 
slope constant for the same individual in the sleep condition. The 
pleasure rating ratio was defined as the average pleasure rating 
score in the sleeploss condition divided by the average pleasure 
rating score in the sleep condition for the same individual. This 
analysis showed a weak correlation for natural scenes (R2 = 0.39, 
p = 0.04; Figure 4a) but not for close‐ups (R2 = 0.19, p = 0.18; 
Figure 4b).

4  | DISCUSSION

The present counterbalanced crossover design psychophysics study 
examined whether a night of sleep loss, in contrast to a night with 
regular sleep, would alter the visual perception of images of natural 
scenes and close‐ups by young men. To this aim, we measured the 
slope constant and assessed subjects’ pleasantness when viewing 

the images. The slope constant describes the spatial distribution of 
pixel intensities (Tolhurst et al., 1992), and a slope constant within 
the natural range is perceived by both naïve and experienced 
human observers as more aesthetically pleasing and comfortable 
to view (Graham & Redies, 2010; O'hare & Hibbard, 2013; Redies, 
Brachmann, & Wagemans, 2017).

The main finding of our study was that acute sleep loss in-
creased the slope constant of natural scenes (i.e., blurrier repre-
sentations of distant landscapes were perceived as most natural 
looking) and lowered the visual comfort when viewing these im-
ages. These sleeploss‐induced changes were also weakly cor-
related. In contrast, acute sleep loss neither affected the slope 
constant nor pleasure ratings of images of close‐ups. Studies 
have shown that natural scenes regulate emotions in a positive 
way (Johnsen & Rydstedt, 2013; Joye & Bolderdijk, 2015). Indeed, 
one can improve people's directed‐attention abilities and increase 
their positive emotions by placing them in a natural environment, 
or even simply making them view natural scenes (Berman, Jonides, 
& Kaplan, 2008; Berman et al., 2012; Nisbet & Zelenski, 2011). In 
addition, images with naturalistic slope constants are more pleas-
ant to human observers (Graham & Field, 2007; O'hare & Hibbard, 
2013; Redies et al., 2007). With all this in mind, an important area 
of future research is to investigate whether getting less pleasure 
from viewing natural scenes could play a role in the connection 
between long‐term sleep loss and conditions hallmarked by anhe-
donia, such as depression (Bao et al., 2017; Fernandez‐Mendoza 

F I G U R E  3  Sleep loss reduces the visual comfort of viewing natural scenes. (a) Subjective pleasantness for images of natural scenes 
following either a night of sleep loss or a night of sleep. Pleasantness was ranked on a scale from 0 to 100. (b) Subjective pleasantness for 
images of close‐ups following sleep loss or sleep. (c) Subjective pleasantness for images of natural scenes at baseline (i.e., on the previous 
evening). (d) Subjective pleasantness for images of close‐ups at baseline (i.e., on the previous evening). In all panels we show variations 
across images after averaging the results across participants, with the central mark of each boxplot showing the median, the edges of the 
box the 25th–75th percentiles of the data, and the whiskers extending from the minimum to maximum of the data. **p < 0.01, ns = p ≥ 0.05
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et al., 2015). Conversely, it could also be speculated that perceiv-
ing blurrier representations of natural scenes as more natural but 
less pleasant may underlie the change in creativity experienced by 
some artists when pulling an all‐nighter, also referred to as insom-
nia creativity. In this context, it is worth mentioning that emotions, 
including negative ones, and art are strongly correlated (Palmer & 
Alfano, 2017; Silvia, 2005).

Another undesirable effect of experiencing lower visual com-
fort when viewing distant scenes under sleep loss conditions might 
be that humans are less motivated to switch attention to the varia-
tions in their visual environment. Of note, sleep‐deprived subjects 
in driving simulators have reduced peripheral attention (Jackson 
et al., 2008) and reduced ability to process peripheral signals (Rogé, 
Pébayle, El Hannachi, & Muzet, 2003). Gaze orientation, which re-
flects attention, is also affected by sleep deprivation, being less syn-
chronised and slower (Tong et al., 2016). This is important because 
selective attention gives us the ability to focus on a particular part 
of the visual surround. After sleep deprivation, there is thus not only 
a reduced suppression of irrelevant information (Poh & Chee, 2017), 
but also a negative effect on selective attention, likely to be caused 
by a reduction in top‐down biasing of information processing in the 
sensory cortex (Chuah & Chee, 2008; Tomasi et al., 2009). Attention 
deficits are particularly serious when considering real‐world errors 
(Dinges, 1995) because attention facilitates perception (Ungerleider, 
2000).

Several limitations apply to our study. Our study should be seen 
as a pilot study, as it is based on a small sample of young men. Hence, 
our main findings must be followed‐up by studies with large sam-
ples, including women as well as subjects of other ages. It is also un-
clear whether the observed effects of acute sleep loss on the slope 
constant and pleasure rating of images of natural scenes would be 
seen at later time‐points in the day. Moreover, no conclusions can be 
drawn regarding the extent to which other types of sleep problems, 
such as sleep apnea, partial sleep loss and mistimed sleep, may af-
fect measures of visual comfort. Notwithstanding these limitations, 

our study is the first to suggest that a single night of sleep loss is 
sufficient to alter aesthetical aspects of natural scenes. Importantly, 
the observation that sleep loss altered the slope constant of images 
of landscapes but not close‐ups suggests that our findings are un-
likely to be a result of oculomotor muscle fatigue or an inability of 
the lens to focus because of sleep loss. Also, pleasantness ratings for 
the close‐ups were not affected by sleep loss, indicating that a gen-
eral lowering in mood is not what is driving the effect of a perceived 
lower pleasantness for the natural scenes. Rather, the changes in vi-
sual perception driven by sleep loss seem to be specific to the type 
of image, in this case landscapes. In line with this, it has, for instance, 
been shown that sleep loss increases the brain reward response 
when viewing images of food in a functional magnetic resonance 
imaging setting (e.g., Benedict et al., 2012). This specificity in brain 
response to different types of visual scenes after sleep loss may be 
mediated by the physiological consequences of sleep loss; for ex-
ample, the body is trying to compensate by reallocating the use of 
energy in order to cope with a higher metabolic stress.
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