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Background. Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer, which is one of the most
commonly diagnosed tumors and the leading causes of death from cancer around the world. Since RNA methylation is a
posttranscriptional modification and affects so much biological progress, it is urged to explore the role of N6-methyladenosine
(m6A) methylation in LUAD. Methods. We explored the expression of 24 m6A methylation genes, as well as their correlations
with LAG3 in 561 LUAD samples from TCGA. Consensus clustering was applied to m6A methylation genes, and two LUAD
subgroups were identified. The expression of m6A genes was analyzed by the Wilcoxon test. KEGG and GO enrichment
analyses were performed to indicate the pathway affected by differentially expressed genes in the two groups. A prognostic
model based on LASSO regression using an eleven-m6A gene signature was constructed according to the expression of these
genes. Receiver operating characteristic (ROC) curve was used to confirm the accuracy of the model in the TCGA cohort, as
well as in the test cohort from the Gene Expression Omnibus (GEO) database. Results. Compared to cluster 1, cluster 2
showed poorer overall survival (OS) and higher LAG3 expression. In addition, KEGG and GO enrichment analyses indicated
that differentially expressed genes are enriched in the immune response. We also observed that the expression of LAG3 is
positively correlated with IGF2BP2, CBLL1, and HNRNPA2B1 and negatively correlated with YTHDF2, YTHDF3, and FTO.
For patients in the TCGA cohort, the AUC score is 0.7, and the AUC score for the GSE50081 cohort is 0.675. Patients with
lower risk scores exhibited better overall survival and lower expression of LAG3 than patients with higher risk scores.
Conclusions. In brief, our results indicated the important role of m6 methylation in affecting the tumor immune
microenvironment and the survival of patients with LUAD. The m6A methylation gene signatures might serve as promising
therapeutic targets and help the immunotherapy of LUAD in the future.

1. Introduction

Lung cancer is one of the most commonly diagnosed
tumors and the leading causes of death from cancer. In
2018, approximately 2.09 million cases of lung cancer were
newly diagnosed around the world, based on the estima-

tion from the World Health Organization [1]. It is also
estimated that lung cancer may lead to about 20% of
cancer-related deaths. There are mainly two groups of
lung cancer. Nearly 15% of lung cancers are small-cell car-
cinoma (SCLC), while 85% of lung cancers are non-small-
cell carcinoma (NSCLC) [2]. NSCLC can be further
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classified as adenocarcinoma (AC) and squamous cell car-
cinoma (SCC), which account for about 40% and 25%-
30% of all lung cancers, respectively [3]. Lung adenocarci-
noma (LUAD) is usually diagnosed at an advanced stage
due to the lack of specific clinical symptoms. Although
the treatment of LUAD combines surgical resection, che-
motherapy, radiation therapy, and targeted therapy, the
five-year relative survival rate of LUAD is still less than
20% [4]. Thus, it is important to accurately predict the
prognosis of patients with lung cancer. So far, histopathol-
ogy is being used, but it has the limitations that the same
pathology may indicate a different prognosis because of
individual differences. Thus, it is necessary to focus on
molecular biomarkers as they might improve the prognosis
and treatment of LUAD [5].

Messenger RNA (mRNA) modification is a crucial regula-
tor at the posttranscriptional level, and N6-methyladenosine
(m6A) methylation is the most abundant type of mRNAmod-
ification [6]. RNA methylation, a biochemical process that
introduces a methyl group (-CH3) to an RNA molecular, is
regulated by a family of enzymes called methyltransferases,
which are also called “writers.” The encoding genes of the
components of “writer” include methyltransferase-like 3
(METTL3) [7], METTL14 [8], METTL16 [9], Wilms tumor
1-associated protein (WTAP) [10], RNA-binding motif pro-
tein 15/15B (RBM15/15B) [11], zinc finger CCCH domain-
containing protein 13 (ZC3H13) [12], and KIAA1429 [13].
Methylation is a reversible process, and the enzymes that
remove methyl groups (demethylation) are called demethy-
lases or “erasers.” These enzymes are encoded by fat mass
and obesity-associated (FTO) and alkB homolog 5 (ALKBH5)
[14, 15]. There is another family of enzymes that neither add
nor remove the methyl group but recognize the modifications
and perform different biological functions, so as to pass the
regulation signal downstream. Therefore, they are called
“readers,” including heterogeneous nuclear ribonucleoprotein
C (HNRNPC) [16], YTH domain families (YTHDC1,
YTHDC2, YTHDF1, YTHDF2, and YTHDF3) [17], IGF2
mRNA binding protein (IGF2BP) families (IGF2BP1,
IGF2BP2, and IGF2BP3) [18], fragile X mental retardation 1
(FMR1) [19], leucine-rich pentatricopeptide repeat containing
(LRPPRC) [20], Casitas B-lineage lymphoma-transforming
sequence-like protein 1 (CBLL-1) [21], ELAV-Like RNA
Binding Protein 1 (ELAVL1) [22], and heterogeneous nuclear
ribonucleoprotein A2/B1 [23].

Recent evidence has shown the associations between
m6A modification and tumor proliferation, differentiation,
and genesis. For example, the high expression of FTO may
lead to leukemic cell transformation and tumorigenesis in
acute myeloid leukemia [24], and it is observed that the
expression of FTO and METTL3 were upregulated in renal
clear cell carcinoma. In hepatocellular carcinoma (HCC),
the upregulation of METTL3 [25] and downregulation of
METTL14 [26] may contribute to HCC progression and
metastasis, causing a poor prognosis of patients. It is also
reported that FTO is associated with the progression of lung
cancer by increasing ubiquitin-specific protease (USP7)
expression [27], and m6A is involved in afatinib resistance
in NSCLC [28]. Except for the changes in the transcript level

of certain m6A genes, the perturbation of overall m6A level
was also reported in many types of cancers, including colo-
rectal cancer [29], adrenocortical carcinoma [30], gastric
cancer, and hepatocellular carcinoma [31].

In addition, more and more studies revealed the close
relationship between m6A and immune responses. For
example, m6A modifications may reduce the type I inter-
feron production during the antiviral innate immune
response [32]. Knockout of METTL3 and METTL14 could
inhibit the IL-7-JAK1/STAT5 signaling pathway and there-
fore increase the production of Th1 and Th17 [33]. A study
by Tong et al. reported that severe systemic autoimmune
diseases were triggered in conditional METTL3-knockout
mice, suggesting the abnormal function of Tregs [34]. The
connection between m6A and immune response may par-
tially explain the role of m6A in cancer, as demonstrated
in some studies. Three m6A modification patterns were
identified in colon cancer, and they are highly consistent
with the three known immune infiltration profiles
(immune-inflamed, immune-excluded, and immune-desert)
[35]. Moreover, the infiltration of M1/M2-like tumor-
associated macrophages and regulatory T cells in tumors
was observed in METTL3-deficient lung cancer and mela-
noma mice model [36]. ALKBH5 can directly interact with
programmed cell death 1 (PD-L1) mRNA and may promote
the expression of PD-L1 and inhibit the expansion and cyto-
toxicity of T cells [37]. In addition, it is reported that
METTL3 mediates the m6A modification of circular RNA
circIGF2BP3 and promotes its circularization in a
YTHDC1-dependent manner in LUAD, causing the upregu-
lation of PKP3 and PD-L1, leading to the attenuation of
immune response [38]. Meanwhile, METTL3-IGF2BP3-
dependent PD-L1 mRNA activation was also observed in
breast cancer cells [39].

Although a significant relationship was suggested
among m6A, cancer, and immune response, a clear under-
standing of the function of m6A modification in lung can-
cer, especially its role in immune regulation, has not been
achieved. Thus, in this study, we evaluated the 24 m6A
modification gene expressions in samples from TCGA
and described the immune landscape of the two clusters
defined by consensus clustering. Prognostic signatures
based on 11 m6A methylation genes were also established
to potentially improve the clinical treatment decision. Our
study also analyzed and discussed the correlation between
lymphocyte-activation gene 3 (LAG3) and m6A methyla-
tion genes to seek their associations with the prognosis
of LUAD.

2. Materials and Methods

2.1. Data Acquisition from the TCGA Datasets. The Cancer
Genome Atlas (TCGA) LUAD datasets (n = 561) were
downloaded from the UCSC Xena browser (https://
xenabrowser.net/). The gene expression data were presented
as FPKM values derived from TCGA level 3 data. 502 tumor
and 59 normal samples were acquired after filtering samples
without survival time and status.
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2.2. m6A Methylation Gene Selection. We selected 24 m6A
methylation genes that were commonly discussed in several
research articles and reviews, namely, METTL3, METTL14,
METTL16, RBM15/15B, WTAP, ZC3H13, KIAA1429,
HNRNPC, YTHDC1/2, YTHDF1/2/3, IGF2BP1/2/3,
FMR1, LRPPRC, CBLL1, ELAVL1, HNRNPA2B1,
ALKBH5, and FTO.

2.3. Bioinformatic Analysis and Statistical Analysis. The dif-
ferential expression analysis was conducted by the Wil-
coxon rank-sum test while comparing the expression of
m6A methylation genes between 2 groups. The Kruskal-
Wallis test was applied for the comparison among multi-
ple groups. Differential expression genes were identified
with p value < 0.05. All statistical analyses were per-
formed using R language (version 3.6.1) (http://mirrors
.tuna.tsinghua.edu.cn/CRAN/). To quantify the proportion
of m6A gene expression in LUAD samples, we conducted
an unsupervised clustering analysis and classified LUAD
into 2 clusters using “ConsensusClusterPlus” (100 itera-
tions, 80% resampling rate Pearson correlation, http://
www.bioconductor.org/). The edgeR package in R was
used to identify differentially expressed genes (DEGs) in
both cluster 1/2 and immunity high/low group. The t
-test method was used to calculate the p value. The DEGs
were screened out with the threshold of p value < 0.05
and jlogFCj > 1.

2.4. Survival Analysis. To evaluate and compare the overall
survival of patients with LUAD in different subgroups in
our study, the OS probability of each LUAD sample was esti-
mated by the Kaplan-Meier method. The log-rank test was
used to determine the significance of OS probability between
different categorical LUAD groups. Also, in this study, the
clusterProfiler package was used to identify and visualize
the GO terms and KEGG pathways enriched by DEGs. p
value < 0.05 was set as the cut-off criterion for the significant
enrichment.

For each LUAD dataset, we quantified the enrichment
levels of 29 immune signatures in each sample, by the
single-sample gene-set enrichment analysis (ssGSEA) score,
as described in He et al.’s research [40]. Based on the enrich-
ment levels (ssGSEA scores) of these 29 immune signatures,
we performed hierarchical clustering for patients with
LUAD. We also applied a Cox regression analysis on the
immune cells in data from TCGA to find cell types that were
significantly correlated with OS. CIBERSORT (https://
cibersort.stanford.edu/) was used to estimate the fraction of
22 immune cell types by using the corresponding RNA tran-
scripts subsets.

LASSO regression analysis was conducted in the
TCGA cohort to establish the prognostic risk signature.
We calculated and selected the optimal penalty parameter
λ that was correlated with the minimum 10-fold cross-
validation to screen the signatures. The risk score was cal-
culated by adding up all the coefficients obtained from the
LASSO regression algorithm. To be specific, risk score =
sumof coefficients of differentm6Amethylation genes × the
expression level of correspondingm6Amethylation genes.

In order to evaluate the predictive performance of this
model, concordance index (C-index) that represents the
fraction of patients whose predicted survival times are cor-
rectly ordered and the calibration curves that assess the
consistency of predicted survival and the actual survival
were calculated and performed with the rms package in
R. According to the cut-off point, which is the median
value of all the risk scores, patients were designated to
the high-risk group and low-risk group for subsequent
analysis.

3. Results

3.1. Expression of m6A Genes in LUAD Group, Normal
Group, and Different Tumor Stages. Comparing the expres-
sion of 24 m6A genes between 502 tumor samples and 59
normal samples, statistical differences were found in 18 of
these genes. Four genes were downregulated, namely,
METTL14, WTAP, ZC3H13, and FTO, while 14 genes were
upregulated, including METTL3, METTL16, RBM15,
RBM15B, KIAA1429, HNRNPC, YTHDF1, YTHDF2,
IGF2BP1, IGF2BP2, IGF2BP3, LRPPRC, ELAVL1, and
HNRNPA2B1 (Figure 1(a)). The expression of these m6A
genes in different tumor stages was also analyzed. As is
shown in Figure 1(b), there were 8 genes expressed differ-
ently in different stages. To be specific, these genes were
METTL3, METTL14, HNRNPC, YTHDC1, YTHDC2,
IGF2BP1, IGF2BP3, and LRPPRC. It is worth noting that
HNRNPC and LRPPRC were continuously upregulated
from stage I to IV. All these genes were also tested for the
relevance between the expression level and survival. The
Kaplan-Meier curves (Supplementary Figure 1) indicate
that the low expression of ELAVL1, HNRNPA2B1,
HNRNPC, IGF2BP1, IGF2BP2, IGF2BP3, KIAA1429, and
RBM15 was related with better overall survival (OS).
Meanwhile, the high expression of YTHDC2 and YTHDF2
has positive effects on OS.

3.2. Consensus Clustering of m6A Genes Revealed the
Difference in Immune-Related Pathways in Two Clusters of
LUAD. To get a better understanding of the biological
function of m6A gene expression in LUAD, consensus
clustering was performed based on the gene expression
of 24 m6A methylation genes. According to the analysis,
the optimal k is 2, and therefore, two subgroups were
clustered, namely, cluster 1 and cluster 2 (Figure 2(a)).
The comparison of the m6A gene expression between
these 2 clusters is shown in Figure 2(d). Significant differ-
ences and clear distinctions were found in most of these
genes. It is worth mentioning that cluster 2 showed a uni-
gnorably high expression of HNRNPA2B1. To further
identify the meaning of this clustering, the Kaplan-Meier
curves representing the OS situation of these two groups
were generated, and a significant difference (p = 0:00041)
was observed (Figure 2(c)). Then, an R package named
“edgeR” was used to identify DEGs in genome-wide
between these 2 clusters. With the threshold set on p
value < 0.05 and jlogFCj > 1, a total of 608 DGEs were
found (Figure 2(b)). Their biological functions might be
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Figure 1: Continued.
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the major reason that cluster 1 had a better OS than clus-
ter 2, so Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) enrichment analyses
were also performed. Interestingly, many biological pro-
cesses enriched by GO analysis were related to immune
response, especially humoral response (Figure 3(a)).
KEGG pathway enrichment analysis indicated that DEGs
were mainly enriched in neuroactive ligand-receptor inter-
action and several metabolism pathways (Figure 3(b)). To
get a clearer view of how different expression patterns of
m6A methylation genes may affect immune-related path-
ways, we perform the KEGG and GO enrichment analyses
again using the DEGs that are listed in ImmPort and
InnateDB. The selected DEGs are shown in Supplemen-
tary Figure 2 and Supplementary Table 1. In addition to
humoral immune response and defense against other
organisms, regulation of inflammatory response and
positive regulation of cytokine production were also
enriched by GO analysis (Figure 3(c)). The second
KEGG analysis mainly enriched the cytokine-cytokine
receptor interaction pathway (Figure 3(d)).

3.3. Different Immune Landscapes in the Patients with
LUAD. To understand the relationship between m6A modi-
fication and immune infiltration and response, the analysis
started with evaluating the immune landscape. Based on
the ssGSEA score of 29 immune cells or relative pathways
and functions (immune characters), the high and low
immune infiltration were defined. The ssGSEA scores of
almost all the immune characters were lower in low immune
infiltration LUAD (Figure 4(a)). The univariate Cox regression
analysis was also applied, and the results showed that 7 immune
characters were significantly correlated with OS. All of them are
protective, with HR < 1 (Figure 4(b)). Comparing the expres-
sion of 24 m6A genes between the low and high immune
infiltration groups, METTL3, RBM15, RBM15B, KIAA1429,
HNRNPC, YTHDC1, YTHDF1, YTHDF2, IGF2BP1,
IGF2BP3, LRPPRC, ELAVL1, HNRNPA2B1, and ALKBH5
were highly expressed in low immune infiltration group, while
the low expression of METTL14, WTAP, YTHDC2, and FTO
was observed in the same group (Figure 4(c)). Comprehensive
relationships between m6A methylation genes and immune
characters are calculated and displayed in Figure 4(d).
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Figure 1: (a) The expression of m6A methylation genes in tumor and healthy samples. (b) The expression of m6A methylation genes in
different tumor stages.
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Figure 2: Continued.
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Subsequently, we analyzed the fraction of 22 immune
cell types between cluster 1 and cluster 2. As displayed in
Figure 5(a), cluster 1 showed a higher infiltration level of
memory B cells, CD4 naive T cells, CD4 memory-resting T
cells, resting dendritic cells, and neutrophils, while the infil-
tration levels of CD4 memory-activated T cells, resting NK
cells, M0 macrophages, M1 macrophages, and resting mast
cells were higher in cluster 2. Since the significantly different
infiltration of CD4 T cells was observed between the two
clusters, we picked up 10 immune-checkpoint-related genes
and compared their expression level in cluster 1 and cluster
2 (Figure 5(b)). Among them, the expression of LAG3 was
higher in cluster 2, while HAVCR2 and CD86 had higher
expression in cluster 1. Similar to PD-1 and CTLA-4,
LAG3 plays an important role in Treg suppressive function
and has a strong potential to become the target of anticancer
drugs. Thus, we further explored the correlations between
LAG3 and m6A methylation genes. Several “reader” m6A

genes were significantly correlated with LAG3, including
YTHDF2, YTHDF3, CBLL1, IGF2BP1, and HNRNPA2B1.
Meanwhile, the abundance of an “eraser” gene, FTO, is also
related to LAG3. Among them, IGF2BP2, CBLL1, and
HNRNPA2B1 are positively correlated with the expression
of LAG3, while YTHDF2, YTHDF3, and FTO are negatively
correlated (Figure 5(c)).

3.4. Construction and Validation of the Prognostic Ability of
m6A Methylation Signature. We then explored the prognos-
tic ability of these m6A methylation genes in patients with
LUAD. The LASSO Cox regression analysis was conducted
based on the expression value of above 24 m6A methylation
genes from TCGA to better predict the survival rate of
patients with LUAD. Eleven genes were selected by the
LASSO algorithm, and the formula was generated as fol-
lows: Risk score = −0:033 ∗METTL3 + 0:0028 ∗ KIAA1429
+ 0:0087 ∗HNRNPC − 0:0053 ∗ YTHDF1 − 0:0101 ∗
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Figure 2: (a) Consensus clustering matrix for k = 2. (b) Differentially expressed genes (DEGs) in clusters 1 and 2. With the threshold set on
p value < 0.05 and jlogFCj > 1. (c) Kaplan-Meier curves of overall survival for patients in clusters 1 and 2. (d) The expression of m6A
methylation genes in cluster 1 and cluster 2.
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YTHDF2 + 0:0413 ∗ IGF2BP1 + 0:001 ∗ IGF2BP2 + 0:0033
∗ IGFBP3 − 0:0165 ∗ FMR1 − 0:0056 ∗ LRPPRC + 0:0039
∗HNRNPA2B1. All patients were designated to the high-
risk group and the low-risk group according to the cut-off
value that is set as the average value of the risk scores. As
in Figures 6(a) and 6(b), the low-risk-score group has a bet-
ter overall survival (p < 0:0001) than the high-risk-score
group, and the AUC value is 0.701 in the TCGA cohort.
The correction curve of this model is shown in Supplemen-
tary Figure 4 and the C-index value is 0.682. To further
validate the prognostic ability, we used a validation
cohort-GSE50081 and the AUC score of the validation
cohort is 0.675 (Figure 6(c)). Meanwhile, a lower risk
score is also related to better OS (Figure 6(d)).

Next, we analyzed the relationship between risk score
and different tumor stages, clusters, and the expression level
of m6A methylation genes and LAG3. Clearly in Figure 7(e),
the risk score increases consistently with the tumor stages.
Meanwhile, the lower risk score is correlated with cluster 1
and lower expression of LAG3 (Figures 7(c) and 7(d)).
Besides, the expressions of WTAP, HNRNPC, YTHDF3,

IGF2BP1, IGF2BP2, IGF2BP3, LRPPRC, ELAVL1, and
HNRNPA2B1 were higher in patients with higher risk scores
(Supplementary Figure 3). We also performed the univariate
and multivariate Cox regression analyses to see if the risk
score can independently predict the prognosis of patients
with LUAD. In the univariate analysis (Figure 7(a)), only 2
of 4 factors, stage (p < 0:001) and risk score (p < 0:001),
were associated with overall survival. Thus, they were
included in the multivariate Cox regression analysis
(Figure 7(b)), and these two factors remained significantly
correlated with OS (both p < 0:001).

4. Discussion

As a dynamic and reversible process, m6A modification reg-
ulates mRNA by adding or deleting the methyl group on
adenosine, as well as binding readers on modification sites,
causing the subsequent biological effects. Understanding
the function and the features of m6A regulators may extend
our knowledge of the mechanism of tumorigenesis and
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Figure 3: (a and b) GO (a) and KEGG (b) enrichment analyses for DEGs in clusters 1 and 2. (c and d) GO (c) and KEGG (d) enrichment
analyses for genes that belonged to DEGs in clusters 1 and 2 and were listed in ImmPort and InnateDB.
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provide new therapeutic methods or targets for cancer
treatment.

Among the 18 genes that were differentially expressed
between tumor and normal samples in our study, the
expression of HNRNPC and HNRNPA2B1 was much
higher than the others. These two genes belong to the
hrnNP family. Heterogeneous nuclear ribonucleoproteins
(hnRNPs) are commonly expressed in most human tis-
sues. Several biological functions of hnRNPs were demon-
strated, including mRNA genesis, DNA repair, telomere
biogenesis, and regulation of gene expression. More and
more evidence indicate that some hnRNPs are associated
with the development and progression of tumors. For
example, in breast cancer, knocking down hnRNPA2B1
leads to apoptosis of tumor cells, so hnRNPA2B1 is an
oncogene in glioblastoma development and therefore may
serve as a predictor of glioblastoma patient survival [41,
42]. From the perspective of signaling pathways, it is
observed that hnRNPA2B1 plays an important role in
STAT3 and ERK1/2 signaling transduction and activation
[43]. Similar biological functions of hnRNPA2B1 are also

observed in pancreatic cancer. It is reported that
hnRNPA2B1 is highly expressed in pancreatic cancer and
is related to higher expression of N-cadherin and vimen-
tin, as well as lower expression of E-cadherin. Thus,
hnRNPA2B1 may stimulate the epithelial-mesenchymal
transition (EMT) [44]. With all these correlations between
hnRNPA2B1 and cancer, this gene may have a high pre-
dictive value, as well as another heterogeneous nuclear
ribonucleoprotein, hnRNPC. In breast cancer, the high
expression of hnRNPC is also observed, and the inhibition
of this gene leads to the accumulation of double-stranded
RNA (dsRNA). Based on the computational inference
and extensive experimental investigations, the cascade of
interferon responses mediated by RIG-I may trigger this
tumor-inhibitory effect, which means that its role in breast
cancer might be controlling dsRNA and downstream
interferon response [45]. In brief, hnRNPAB1 and
hnRNPC are highly expressed in several cancers and have
negative effects on OS, which is consistent with our result.
The potential mechanism behind this phenomenon could
be related to immune response.
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Figure 4: (a) Heatmap of ssGSEA scores of TCGA-LUAD. (b) Cox regression analysis for immune cells or pathways. Univariate Cox
regression was used to calculate the hazard ratios (HR) and 95% confidence intervals (CI). (c) The expression of m6A methylation genes
in immunity high and low group. (d) Correlations between 24 m6A methylation genes and 29 immune characters.
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Figure 5: (a) The infiltration levels of 22 types of immune cells in clusters 1 and 2. (b) The expression of 10 immune-checkpoint-related
genes in clusters 1 and 2. (c) The correlation analysis of LAG3 and m6A methylation genes.

16 Disease Markers



++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++

+++
++ +++++++++++ + +

+ + + + +

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++

+++
+++++++++++++++

+ ++
+ ++

+ +
p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

+
+

High risk 
Low risk 

Survival in TCGA

(a)

AUC: 0.626

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

TCGA ROC curve (Survival) 

(b)

Figure 6: Continued.
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N6-methyladenosine methylation is a complex biologi-
cal progress and is not completely explored. With more
and more m6A genes emerging and the lack of comprehen-
sive understanding, it is hard to select m6A genes while
exploring how N6-methyladenosine methylation may affect
cancer or other diseases. Hence, another set of genes we
would like to discuss is the eukaryotic translation initiation
factors (EIFs), especially EIF3 gene family. Containing 13
subunits (EIF3A-EIF3M), EIF3 protein is a large complex
that helps the binding of mRNA and ribosome [46]. There-
fore, they belong to m6A reader genes and can control the
downstream protein synthesis [47]. Many studies have
shown that different EIF3 subunits may play different roles

in different cancers. For example, EIF3A can promote the
glycolysis in hepatocellular carcinoma by regulating the
hypoxia-inducible factor 1-alpha [48]. EIF3B may function
as an oncogenic protein that activates the PI3K/AKT/
mTOR pathway in gastric cancer [49]. In addition, the
translation facilitated by METTL16, which is important in
the carcinogenesis of hepatocellular carcinoma, is mediated
by the interaction between METTL16 and EIF3A and
EIF3B [50]. EIF3C is the direct target of YTHDF1, and
increased overall translational output of EIF3C by the reg-
ulation of YTHDF1 may facilitate the tumorigenesis and
metastasis of ovarian cancer [51]. EIF3H subunits have
been proved to physically and functionally interact with
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Figure 6: (a and c) ROC curves for the predictive value of risk score in TCGA (a) and GSE50081 (c) cohort. (b and d) Kaplan-Meier curves
of OS for patients in TCGA (b) and GSE50081 (d) cohort with high risk and low risk.
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METTL3, which causes the translation of many oncogenic
mRNA, including bromodomain-containing protein 4
which is modified by m6A in primary lung cancer [52].
The oncogenesis ability in lung adenocarcinoma of EIF3M
has been proved by gain-and-loss function assay [53].
However, it is hard to decide whether genes of all these

EIF3 subunits should be included in the analysis of m6A-
related genes. On one hand, the potential role of EIF3 in
LUAD is unignorable. On the other hand, it seems inappro-
priate to include all these EIF3 genes in the analysis when
they function as a complex while having different expres-
sion pattern, especially EIF3L (Supplementary Figure 5).
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Figure 7: (a and b) Univariate Cox regression analysis for assessing the effects of clinical characters and risk score on the prognosis of
LUAD. (b) Multivariate Cox regression analysis for assessing the effects of clinical characters and risk score on the prognosis of LUAD.
(c) The distribution of risk score in clusters 1 and 2. (d) The expression of LAG3 in patients with high- and low-risk scores. (e) The
distribution of risk score in different tumor stages.
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In addition, there is no significant difference between the
survival rate of 2 clusters clustering with the data including
EIF3 genes (p = 0:062), meaning that the subsequent analysis
may not point out potential targets for clinical application,
even though EIF3 is important in N6-methyladenosine
methylation. Hence, EIF3 genes were not included in the
main body of our work, but we still conducted some analysis
to get a more comprehensive understanding of m6A in
LUAD. Some worth-mentioning results are as follows. The
expressions of EIFG3A-EIF3E and EIF3H-EIF3M are
significantly different, and EIF3L is the only one that is
downregulated in LUAD patients (Supplementary Figure 5).
In the K-M analyses, worse survival is observed in patients
with high expression of EIF3B, EIF3CL, EIF3D, EIF3H, and
EIF3M (Supplementary Figure 7). Difference is found in the
expression of EIF3A, EIF3B, EIF3D, EIF3F, EIF3H, EIF3J,
and EIF3M in different tumor stages (Supplementary
Figure 6). Only EIF3B and EIF3B show strong correlation
with several genes sets in the 29 immune signatures
(threshold: p < 0:05 and correlation coefficient > 0:3)
(Supplementary Figure 8). The expression of EIF3A,
EIF3B, EIF3G, EIF3H, EIF3J, and EIF3M was all lower in
imunity_H group, except for EIF3G (Supplementary
Figure 9). LAG3 shows negative correlation with EIF3 C,
EIF3D, EIF3E, EIF3H, and EIF3L (Supplementary
Figure 10). The univariate Cox regression analysis indicates
that EIF3B, EIF3J, and EIF3M are the risk factors for the
overall survival with hazard ratio = 1:012, 1.028, and 1.038,
respectively (Supplementary Figure 11). All these results,
though simple and superficial, provide a possibility that the
expressions of EIF3 subunits are higher in LUAD patients
and may directly or indirectly lead to a worse survival,
partly through immune inhibition, but in a LAG3-
independent way. Several studies have already reported the
harmful effect of high expression of EIF3 subunits in lung
cancer, including EIF3C [54], EIF3D [55], and EIF3H [52,
56]. In addition, a few studies focused on the immune
regulation ability of EIF3, especially on the activation of T
cells, including both cytotoxic T cells [57] and Treg cells
[58]. In brief, EIF3 plays a really important role in LUAD,
and how it may interact with other m6A components and
immune regulation requires further investigation.

The result of GO enrichment analysis indicated that the
DEGs between two m6A clusters were enriched in humoral
immune responses. To our surprise, in addition to cancer
cells, bacteria might also be one of the targets of such
humoral immune response. Although lungs were considered
sterile for a long time, the amount of microbiota colonized in
lungs is beyond our expectations. A lot of studies have
already demonstrated the existence of microbiota in lungs
[59], and it is proved that the abundance of microbiota is
different in lung cancer tissues and adjacent normal samples
[60]. In addition, it seems like these microbiotas may partic-
ipate in the pathogenesis of many lung diseases. For
instance, after 210 bronchoscopic samples were analyzed,
Laroumagne et al. identified several Gram-negative bacteria
[61], which supported one of the biological processes that
GO analysis enriched in our study. In vitro experiments
demonstrated that Veillonella directly activates the ERK/

PI3K pathway which represents the early event in lung can-
cer [62]. Except for the carcinogenesis signaling pathway,
specific bacteria could promote cancer development and
affect OS through immune response [63]. For instance,
mycobacterium tuberculosis (TB) may contribute to carci-
nogenesis by causing chronic inflammation. The bacteria
itself and its metabolites activate TLRs in immune and epi-
thelial cells, triggering the start of inflammation and result-
ing in irreversible damage in normal cells [64, 65].
However, it is hard to precisely evaluate the difference in
inflammation states between the two clusters based on tran-
scriptome data, and we are also unable to acquire microbiota
data in patents with LUAD to verify our hypothesis. Thus,
prospective studies and multicenter clinical trials are
required to provide further validation. Methods like using
RNA-Seq data in TCGA to calculate the microbiota abun-
dance in tumor tissue may also help to explain the role of
microbiota in lung cancer [66].

Like programmed cell death 1 (PD-L1) and cytotoxic T
lymphocyte antigen 4 (CTLA-4), LAG3 is an important
checkpoint for immune responses. Continuous antigen
stimulation could induce the expression of LAG3 on
CD4+ and CD8+ T cells, which suppresses the function
of these T cells and turns them into exhausted T cells
[67]. Although the blockade of LAG3 does not result in
the same effects as the PD-1 blockade [67], several studies
have already focused on utilizing LAG3 as a target in can-
cer therapy [68]. In our study, we preliminarily analyzed
the correlations between LAG3 and 24 m6A methylation
genes in patients with LUAD. The result indicated that
LAG3 is strongly correlated with several m6A regulators
and could be one of the factors that affect the overall sur-
vival in cluster 1 and cluster 2, as well as in patients with
high- and low-risk scores. Based on our educated guess,
we hypothesized that the high expression of LAG3, caused
by long-time anticancer immune response or microbiota-
induced chronic inflammation, triggered a LAG3-
mediated immunosuppressive microenvironment and sub-
sequently leads to a worse prognosis. Interestingly, there
is no difference in the expression of PD-1 between cluster
1 and cluster 2. Aoki et al. offered a possible reason since
they identified a novel Hodgkin lymphoma-associated sub-
set of T cells that highly express LAG3, and LAG3+ T
cells are the mediator of immunosuppression [69]. Mean-
while, Jain et al. found that PD-1 is not overexpressed in
leukemia antigen-specific T cells, but the overexpression
of LAF3 and TIM3 was observed during the relapse [70].
Thus, considering the fact that PD-1 is not the only
checkpoint in immune response, it is reasonable that no
significant difference in PD-1 expression was observed
between the two clusters in our study, since they might
be clustered by other factors that are related to immuno-
suppress, including LAG3.

However, all our analyses were based on public data and
were not validated in clinical cohorts. Conducting prospec-
tive research and validating the result from this study will
be our next step, and we are looking forward to more clinical
trials attempting to interpret the correlation between m6A
and LUAD.
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5. Conclusion

Our study evaluated the prognostic value, the correlations
with LAG3, their role in immune infiltration, and the poten-
tial regulatory mechanisms of 24 m6A methylation genes in
patients with LUAD. Two clusters of patients were identified
via consensus clustering and were significantly different in
their overall survival. Identified by GO analysis, the DEGs
of these two groups were enriched in immune responses. A
strong correlation between m6A methylation genes and
immune infiltration was also observed and analyzed. Other
than tumor stages, the risk score calculated by an eleven-
gene-based signature is also a prognostic indicator for
patients with LUAD. We hypothesized that the difference
in overall survival between clusters 1 and 2, as well as
patients with higher risk scores and lower risk scores, was
partially caused by LAG3-mediated immunosuppression,
which lead to a worse prognosis. Since LAG3 was signifi-
cantly correlated with several m6A regulators, further
research focusing on the potential mechanism behind these
correlations and how m6A regulation could affect the
expression of LAG3 on immune cells may provide promis-
ing targets for the immunotherapy of LUAD.
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Supplementary Figure 11: univariate Cox regression analysis for
assessing the effects of EIF3 subunits on the prognosis of
LUAD. Supplementary Table 1: genes that belonged to DEGs
in clusters 1 and 2 and were listed in ImmPort and InnateDB
with the threshold set on p value < 0.05 and jlogFCj > 0:5.
(Supplementary Materials)
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