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Abstract: Quantifying the similarity of molecules is considered one of the major tasks in virtual
screening. There are many similarity measures that have been proposed for this purpose, some of
which have been derived from document and text retrieving areas as most often these similarity
methods give good results in document retrieval and can achieve good results in virtual screening.
In this work, we propose a similarity measure for ligand-based virtual screening, which has been
derived from a text processing similarity measure. It has been adopted to be suitable for virtual
screening; we called this proposed measure the Adapted Similarity Measure of Text Processing
(ASMTP). For evaluating and testing the proposed ASMTP we conducted several experiments on two
different benchmark datasets: the Maximum Unbiased Validation (MUV) and the MDL Drug Data
Report (MDDR). The experiments have been conducted by choosing 10 reference structures from
each class randomly as queries and evaluate them in the recall of cut-offs at 1% and 5%. The overall
obtained results are compared with some similarity methods including the Tanimoto coefficient,
which are considered to be the conventional and standard similarity coefficients for fingerprint-based
similarity calculations. The achieved results show that the performance of ligand-based virtual
screening is better and outperforms the Tanimoto coefficients and other methods.
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1. Introduction

The past few years have witnessed more attention to chemoinformatics and now it has become
an active multidisciplinary research area that covers wide aspects of chemistry and drug discovery
using different tools and technology. Virtual screening (VS) is considered as one of the most relevant
aspects of chemoinformatics; the term screening is given to the selection of molecules for bioactivity
testing, and the use of computer methods for the selection of molecules is hence generally referred
to as virtual screening [1]. The purpose of VS methods and techniques is to screen a large database
of molecules in order to find compounds that fit some established criteria [2]. VS is now one of
the important processes of discovering new ligands on the bases of biological structure and it has
many definitions, one of which is: “Use of high-performance computing to analyze large databases of
chemical compounds in order to identify possible drug candidates” [3]. VS is different and contrasts
high-throughput screening (HTS). The experiments are not really done in a chemical laboratory, as HTS,
and the compounds do not need to physically exist as they are virtually done by computers programs
and methods. They actually rely on computational methods that are used to search molecular databases
and identify molecular structures that are most likely to bind to a drug target, typically a protein
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receptor or enzyme. The VS research challenge is how to develop sophisticated techniques that can
easily synthesize and analyze large molecules numbers to help in the drug discovery process [3–7].

For molecular data, there are several types of descriptors, where the molecular descriptor is
defined as “The final result of a logical and mathematical procedure which transforms chemical
information encoded within a symbolic representation of a molecule into an useful number or the
result of some standardized experiment“ [8], the most Ligand-based Virtual Screening(LBVS) methods
use 2D fingerprint descriptors [9–11], then they calculate the similarity between molecules using
similarity coefficients and some others methods. A query involves the specification of the entire
structure of a molecule. The drug discovery process faces some challenges and some difficulties,
such as complexity, cost and its time-consuming nature. Some studies estimate that the process,
and the time and cost of discovering and developing a new drug takes over 10 years and costs
approximately $1 billion [12]. To solve the high cost and reduce the time of developing drugs, a lot
of researches are being done to provide methods and techniques that could contribute to easing the
process. These studies have focused on aiding the efforts of the drug discovery process by using
several computational methods. In this paper, we focused on the ligand-based virtual screening (LBVS)
approach, which is based on comparative molecular similarity and the analysis of compounds that
have known and unknown activities. This approach involves using large molecular databases to find
similar molecules that have similar biological properties, as the molecular similarity principle states
that “similar compounds tend to have similar properties and activities” [13], and that means molecules
that are structurally similar tend to have similar activities. This could be used to identify, analyse
and predict the most biologically active compounds and then demonstrate the correlated structural
features and chemical properties of molecules with specific activities.

In LBVS, many methods and techniques have been proposed [14–16] for instance, Zheng et al. studied
the performance of twenty different LBVS methods and they found that the LBVS is a good predictive
of lead identification [16], and the work by Ripphausen et al. discussed the LBVS from different
viewpoints by analyzing the information that have been provided form peer-reviewed publication [17].
Other research used the Bayesian inference network (BIN) and molecular fragments reweighing to
enhance LBVS [14], and another recent work used the quantum based similarity measure (QBS) that
provided a clear enhancements for LBVS. In addition, other works applied different fusion rules
and techniques using the group fusion and similarity fusion, for instance, Willett [18] discussed
and demonstrated most of these fusion rules that available for similarity ranking, Ali and et al. [15]
developed a Condorcet fusion which combines the outputs of similarity searches using different
distance similarity coefficients. However, more research needs to be done to provide better results for
LBVS methods.

The rest of the paper is organized as follows: the next section describes the general concepts of
similarity searching. The third section describes the proposed method, the fourth section discusses the
experimental design and the results that have been carried out, and the last section concludes the work.

2. Related Work

The similarity measures have been used in different aspects of sciences and for different purposes
such as clustering, classification and retrieval problems, the way of finding the appropriate similarity
measures for specific domain needs considerable efforts, for chemical area a lot of some many similarity
measures have been proposed as earlier we explained, the researchers found that some of these
similarity measures which are appropriately work with text and document retrieving also properly
work with chemical information [19], for this reason in chemoinformatics researchers give high
consideration to the similarity measures proposed in the document and text retrieval area, one of these
recently proposed similarity measures for the document retrieval area is the A Similarity Measure for
Text Classification and Clustering (SMTP) that proposed by Lin et al. [20], which gained interest in this
work, as the SMTP provided a good solution for document classification and clustering based on the
flowing similarity proprieties [20]:
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1. The presence or absence of a feature is more essential than the difference between the two values
associated with a present feature.

2. The similarity degree should increase when the difference between two non-zero values of
a specific feature decreases.

3. The similarity degree should decrease when the number of presence-absence features increases.
4. Two documents are less similar to each other if none of the features have non-zero values in

both documents.
5. The similarity measure should be symmetric.
6. The value distribution of a feature is considered, i.e., the standard deviation of the feature is taken

into account, for its contribution to the similarity between two documents. A feature with a larger
spread offers more contribution to the similarity between d1 and d2.

SMTP is used to measure the similarity measures between two documents, and also it has been
extended to measure the similarity between two sets of documents. The SMTP has been derived from
different similarity measures that have been used for text such as Dice, Euclidean, Extended Jacard,
Cosine which are shown in Table 1 where d1 and d2 are two documents represented as vectors.

Table 1. Similarity measures most used in text retrieval.

Similarity Measure Formula

Extended Jaccard coefficient S EJ pd1 , d2q = pd1 ˆ d2q

pd1 ˆ d1q` pd2 ˆ d2q – pd1ˆ d2q

Dice sDic pd1 , d2q = 2d1 ˆ d2
pd1ˆ d1 q `pd2 ˆ d1 q

Euclidean distance dEUC pd1 , d2q “
a

pd1 ´ d2q ˆ p d1 ´ d2q

Cosine similarity sCos pd1 , d2q “
d1 ˆ d2?

d1 ˆ d1
?

d2 ˆ d2

Pairwise-adaptive dPair “ pd1 , d2q = d1,k ˆ d2,k?
dp1,kq ˆ dp1,kq

?
dp2,kq ˆ dp2,kq

IT-Sim Sit pd1 , d2q “
2
ř

wi minpp1i , p2i qlogπpwiq
ř

wi p1ilogπpwiq `
ř

wi p2ilogπpwiq

where di ,K in Pairwise-adaptive is a subset of di , i “ 1, 2, containing the values of the features which are the
union of the K largest features appearing in d1 and d2, respectively.

The SMTP measure the similarity between two documents d1 “ td11, d12 . . . d1mu and
d2 “ td21, d22. . . d2mu . Define a function F as follows in Equation (1) 1below:

F pd1, d2q “

řm
j“1 N ˚

`

d1j , d2j
˘

řm
j“1 N Y

`

d1j , d2j
˘ (1)

where this function numerator and denominator have different cases according to the compared
features values as mentioned below.

N ˚
`

d1j, d2j
˘

has three different cases according the value of compared features:

1. N ˚
`

d1j, d2j
˘

“ 0.5
ˆ

1` exp
"

´

´

d1j´d2j
σj

¯2
*˙

if pd1j ˆ d2jq ą 0.

2. N ˚
`

d1j, d2j
˘

“ 0 if d1j “ 0 and d2j “ 0 .
3. N ˚

`

d1j, d2j
˘

“ ´λ , otherwise

N Y
`

d1j, d2j
˘

has two cases:

1. N Y
`

d1j, d2j
˘

“ 0, if d1j “ 0 and d2j “ 0;
2. N Y

`

d1j, d2j
˘

“ 1, otherwise;
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where: d1, d2: document 1 and document 2 (compared document)
J: number of features (vectors).
σ: standard deviation of all non-zero values in a vector.
λ : small value of λ, e.g., 0.01–0.0001

Their proposed similarity measure as shown in Equation (2) below:

SSMTP pd1, d2q “
F pd1, d2q ` λ

1` λ
(2)

The measures of SMTP that are shown in Equation (2), are focused to meet all proprieties
which provide solution of weakness of text similarity measures which are mentioned in Table 1,
for the Euclidean does not meet properties 1, 3, 4, and 6 which are previously stated, and Cosine,
Pairwise-adaptive, Extended Jaccard, Dice, and IT-Sim does not satisfy one or more of properties 3,
4 and 6. SMTP provides good results in classification and clustering. In this work we adopted SMTP
to be used in ligand-based virtual screening.

3. Similarity Searching

The similarity between any two objects regardless of what that object is can be described as
the degree of overlap between characteristic features of these specific objects. These overlaps are
calculated using different ways and methods. In cheminformatics, the calculation of similarity
measures in order to find matching molecules is not an easy task, as the molecular data representation
is quite different from other data representations. For LBVS the similarity searching is considered as
an important technique for screening chemical databases in order to identify those molecules that are
most similar to other user-defined reference structures using computerized methods and techniques.
In virtual screening, there are three main searching methods that are used for compound databases:
the structure search, the substructure search and the similarity search. Structure searching focuses
on searching a molecular database to check if there are presences or absences of a specific molecule
in the database [21–23]. The substructure search focuses on the retrieval of molecules that contain
a partial structure of a user-defined query [24,25]. Finally, similarity searching is focuses on searching
the database to find a similar molecules by look for all the structures in a database that are achieving
the highly similar to a given structure [26] for the exact match of molecules and concentrating on the
specification of the entire structure of a molecule [27–32]. There are some works that combine more
than research methods for screening [33]; in VS, the major task of similarity searching is to search
databases to find which molecules in a database are similar or contain specific molecular structures and
then detect fragments that are shared by the molecules. Many similarity coefficients have been applied
in similarity searches and, for classification and clustering purposes, the literature is full of descriptions
of these similarity coefficients. The work of Willett [26], and Todeschini et al. [34] discuss most of the
proposed similarity measures in chemical databases. Other methods have also been used besides
similarity coefficients, such as machine learning methods adapted for VS like the Naive Bayesian
classifier [15,35,36], support vector machines (SVMs) [37,38] and voting techniques [37,39,40].

For the molecular similarity searching, many coefficients are introduced and applied with different
fingerprint molecular databases. For instance, the Euclidian distance, Cosine, Dice, Forbes and
Tanimoto coefficients, which is considered as the standard similarity measure for fingerprint-based
similarity calculations [4].

4. Methods

4.1. Tanimoto Similarity Method

Both binary and distance similarity coefficients have been applied, as we mentioned before.
A typical coefficient used in chemoinformatics is Jacard-Tanimoto, which is considered the most
widely used asymmetric coefficient. It has two formulas for binary and continuous data, as shown in
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Equations (3) and (4) below, when the molecules A and B are represented by vectors, x, of length N
with the number of property having the value xi.

Equation (3) Tanimoto continuous variable formula:

SA,B “

řN
i“1 Xi AXiB

řN
i“1 pXi Aq

2
`
řN

i“1 pXiBq
2
´
řN

i“1 Xi AXiB
(3)

Equation (4) Tanimoto binary variable formula:

S A,B “
c

a` b´ c
(4)

a = bits set to 1 in A; b = bits set to 1 in B; c = number of 1 bits common to both.
Besides that, there are also other measures that have been popularly adopted for computing the

similarity between two molecules derived for different areas and these have achieved good results.

4.2. The Adapted Similarity Measure of Text Processing (ASMTP)

The molecules are usually represented in fingerprints, which represent a way of encoding the
structure of a molecule. The most common type of fingerprints is a series of binary digits (bits) that
represents the presence or absence of particular substructures in the molecule. These features are stored
in vectors where each component indicates the value of the corresponding feature in the molecule.
The feature values are represented as bit-strings values. The investigation of these bit-strings values
show that approximately 90% are zeros, and this sometimes causes difficulty and complexity when
quantifying the similarity in drug discovery compared to the other domains of quantifying objects.

The proposed ASMTP algorithm has been derived for the text area, as we found that most of the
algorithms developed for textual database processing can be used for processing chemical structure
databases [1,19]. This has been applied in several text applications, including single label classification,
multi-label classification, k-means like clustering and hierarchical agglomerative clustering, and the
results obtained demonstrate the effectiveness of the proposed similarity measure. The documents
and text databases are structured typically to the molecular databases, where both use small numbers
for representing documents and chemical data by vectors. ASMTP is an adaptation of recently work
of [20] which relies on three similarity properties concepts:

(a) The feature appears in both documents.
(b) The feature appears in only one document.
(c) The feature appears in none of the documents.

There are different assumptions for each of the mentioned proprieties concepts. For the first case,
the assumption was that similarity increases as the difference between the two involved feature values
decreases. For the second case they put an assumption that a fixed value contributed to the similarity.
For the last case, if the feature does not appear in the compared objects, this will result in there being no
contribution to the similarity. In addition to these similarity properties, the values of the distribution
and average of the feature values are taken into account. This has a good effect on calculating the
similarity between two molecules. The features with a larger spread make more contributions to the
similarity between compared molecules.

For chemical databases we applied SMTP for ligand-based virtual screening by making some
modifications to its equation as discussed below.

Suppose there is a molecule m1, m2 with j features f1, f2. Whereby Fj is represented as
a j-dimensional vector. The proposed similarity measure ASMTP, which is based on the above
mentioned similarity properties, has function F defined as in Equation (5) below:

f pm1, m2q “

řm
j“1 N ˚

`

m1j , m2j
˘

řm
j“1 N Y

`

m1j, m2j
˘ (5)
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where the numerator of F function N ˚
`

m1j , m2j
˘

has three different cases, according to the value of
compared features as shown below in Equation (6):

1. N ˚
`

m1j, m2j
˘

“ 0.5
ˆ

1` exp
"

´

´

m1j´m2j
µj

¯2
*˙

i f pm1j ˆ m2jq ą 0

2. N ˚
`

m1j, m2j
˘

“ 0 i f m1j “ 0 and m2j “ 0
3. N ˚

`

m1j, m2j
˘

“ ´λ, otherwise.

(6)

And µ “

řn
i“1 mij

nj

The denominator of F function N Y
`

m1j, m2j
˘

has two different cases:

1. N Y
`

m1j, m2j
˘

“ 0, i f m1j “ 0 and m2j “ 0.
2. N Y

`

m1j, m2j
˘

“ 1 , otherwise.

The similarity measure equation of ASMTP is shown in Equation (7) below:

SSMTP pm1, m2q “
F pm1, m2q ` λ

1` λ
(7)

where:

m1: Molecule1 (query).
m2: Molecule 2(reference).
J = feature index (vector).
µ: is the average of all non-zero values of vector (feature) j.
λ: small value λ, e.g., 0.01–0.0001.
nj j: total number of non-zero values in the features index.

The proposed ASMTP measure takes into account the following three cases: (a) The feature
that appears in both compared molecules; (b) the feature that appears in only one of the compared
molecules; and (c) the feature that appears in none of the compared molecules.

Each one of the mentioned cases has a different way of calculating the first case, so we set a lower
bound 0.5 and decrease the similarity as the difference between the feature values of the compared
molecules increases. This is scaled by a Gaussian function, as shown in Equation (5) where we have
modified to use µ for representing the average of all non-zero values for a specific feature (feature
vector) j in the molecules data set instead of σ which was representing the standard deviation of all
non-zero values for feature in the training data in SMTP. In the second case, a negative constant ´λ
disregarding the magnitude of the non-zero feature value has been added. For the last case, when
the feature has not appeared on both compared molecules, this is considered to have no effect on the
similarity and no contribution to the similarity. For λ, it has taken a small value for our test using
ASMTP, which is the value = 0.0001.

ASMTP is used to enhance the molecular ranking performance in VS by performing similarity
calculations that improve the computational efficiency and help to rank and sort molecules in
decreasing order of highest probability ratio. The aim is determine the result of the screening in
the top 1% and 5%, so the ASMTP will simplify the calculation process and reduce the algorithm
programming complexity.

5. Experimental Design

In this section, we investigate the effectiveness of the proposed similarity measure of ASMTP.
The investigation is done by conducting several experiments of the simulated VS searches on
two different benchmark datasets: the MDL Drug Data Report (MDDR) [41] and the maximum
unbiased validation (MUV) [42]. It has been used widely for LBVS, and have also been used by our
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research group in some previous works [15,43]. All datasets contain 2D structural representations that
have been converted to Pipeline Pilot’s ECFC_4 (Extended Connectivity) fingerprints and flooded to
1024 feature sizes [44], whereby the MDDR database contains 102,516 active and inactive molecules.
From the MDDR we used two datasets: DS1 and DS2. The DS1 dataset contains 11 activity classes,
containing structurally homogeneous and heterogeneous active classes. The DS2 dataset is different
from DS1 as it contains more than 10 homogeneous activity classes. The details of selected activity
classes of the MDDR are shown in Tables 2 and 3. Each table contains an activity class index, the
activity class name and the number of active molecules that belong to each class. The second dataset is
the MUV, which is prepared for VS and has seventeen activity classes that have varying numbers of
actives and decoys (Table 4).

Table 2. MDDR activity classes for the DS1 dataset.

Activity Index Activity Class Active Molecules

31420 Renin inhibitors 1130
71523 HIV protease 750
37110 Thrombin inhibitors 803

31432 Angiotensin II
AT1antagonists 943

42731 Substance P antagonists 1246
06233 Substance P antagonists 752
06245 5HT reuptake inhibitors 359
07701 D2 antagonists 395
06235 5HT1A agonists 827

78374 Protein kinase C
inhibitors 453

Table 3. DS2 dataset activity classes.

Activity Index Activity Class Active Molecules

07707 Adenosine (AI) agonists 207
07708 Adenosine (A2) agonists 156
31420 Rennin inhibitors 1 1300
42710 CCK agonists 111
64100 Monocycle_ lactams 1346
64200 Cephalosporin’s 113
64220 Carbacephems 1051
64500 Carbapenems 126
64350 Tribactams 388
75755 Vitamin D analogues 455

Table 4. MUV activity classes.

Activity Index Activity Class

466 S1P1 rec. (agonists)
548 PKA (inhibitors)
600 SF1 (inhibitors)
644 Rho-Kinase2 (inhibitors)
652 HIV RT-RNase (inhibitors)
689 Eph rec. A4 (inhibitors)
692 SF1 (agonists)
712 HSP 90 (inhibitors) 30
713 ER-a-Coact. Bind. (inhibitors)
733 ER-b-Coact. Bind. (inhibitors)
737 ER-a-Coact. Bind. (potentiators)
810 FAK (inhibitors
832 Cathepsin G (inhibitors)
846 FXIa (inhibitors)
852 FXIIa (inhibitors)
858 D1 rec. (allosteric modulators)
859 M1 rec. (allosteric inhibitors)
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6. Results and Discussion

The experiments were conducted by performing the proposed ASMTP algorithm. This simulated
the VS search by using ten reference structures from each activity class randomly, as the selected
references were unified and applied to Tanimoto and the ASMTP. The final output of obtained similarity
results of the whole molecules of the database will then be ranked in decreasing order. The average
retrieved output of the ten references’ query results mean are calculated in the 1% and 5% cutoffs of the
recall data, while the procedure is repeated for the all databases. The common method of evaluating
any similarity searching method is achieved by determining where the active compounds appear in
the ranked list if the number of known active compounds listed in the top will be an indicator of the
effective VS method. The effectiveness of the proposed ASMTP algorithm is evaluated using MUV
and MDDR benchmark datasets.

The experiment results obtained by ASMTP, Tanimoto and one of the most recently VS similarity
measure technique called Standard Quantum-Based(SQB) that have been proposed by Al-Dabbagh
and et al. [43] are shown in Tables 5–7. Each table of results shows the database activity classes in
the first column, while the second and third columns respectively show the average of recall of the
ranking results for all activity classes at the cut off 1% and 5% for the standard similarity coefficient
Tanimoto, and the fourth and fifth columns represent the SQB corresponding results and the seventh
and eighth columns show ASMTP results. The end of each column shows the overall average recalls
results of all classes. The best average recall for each class is highlighted. In the bottom of each column
there is a shaded cells row that corresponds to the total number of shaded cells for the Tanimoto and
the proposed method that achieved better results. The obtained results DS1 and DS2 are shown in
(Tables 5 and 6), and the results of MUV is shown in (Table 7).

The overall average results of all datasets achieved good results and outperformed Tanimoto
and SQB. The DS1 achieved good results in six out of 11 classes in a cut off 1% and seven out of 11 in
a cut off 5%. The DS2 achieved good results in nine out of 10 classes in a cut off 1%, and 10 out of 10
in cut off 5%. This is considered a good indicator of the high performance of the ASMTP algorithm.
The MUV results also outperformed Tanimoto and SQB in both cut offs 1% and 5%, and 11 out of
17 MUV classes achieved good results in cut offs 1% and 5% respectively.

Table 5. The recall is calculated using the top 1% and top 5% of the DS1 dataset.

Activity Classes TAN SQB ASMTP

1% 5% 1% 5% 1% 5%

31420 57.3 85.85 73.73 87.22 78.83 96.81
71523 29.96 58.09 26.84 48.7 12.82 51.94
37110 14.38 29.98 24.73 45.62 39.53 63.84
31432 36.37 76.85 36.66 70.44 45.22 97.45
42731 16.89 27.74 21.17 19.35 13.95 20.88
6233 22.72 37.78 12.49 21.04 22.77 36.75
6245 5.03 14.83 6.03 13.63 11.73 26.26
7701 8.45 23.07 11.35 21.85 8.95 17.26
6235 9.03 21 10.15 19.13 21.91 37.17
78374 12.08 17.81 13.08 20.55 1.77 2.65
78331 8.77 16.71 5.92 13.1 3.31 10.24
Mean 20.08909 37.24636 22.01364 34.05 23.65 41.93182

Shaded cells 3 4 0 0 8 7



Molecules 2016, 21, 476 9 of 13

Table 6. The recall is calculated using the top 1% and top 5% of the DS2 dataset.

Activity Classes TAN SQB Proposed Method

1% 5% 1% 5% 1% 5%

09249 61.84 70.39 58.5 74.22 72.82 73.3
12455 47.03 56.58 55.61 100 99.35 100
12464 65.1 88.19 62.22 95.24 81.66 96.46
31281 81.82 86.64 83 93 92.73 99.09
43210 80.31 93.75 80.73 98.94 88.2 99.85
71522 53.84 77.68 53.13 98.93 81.25 99.11
75721 46.8 63.94 34.61 90.9 77.27 98.67
78331 30.56 44.8 29.04 92.72 80 96.8
78348 80.18 91.71 81.86 93.75 82.17 99.74
78351 87.56 94.82 85.4 95.39 96.48 96.92
Mean 63.504 76.85 62.41 93.31 85.193 95.994

Shaded cells 0 0 0 0 10 10

Table 7. The recall is calculated using the top 1% and top 5% of the MUV 17 activity classes data sets.

Activity Index Tanimoto SQB Proposed Method

1% 5% 1% 5% 1% 5%

466 3.1 5.86 1.38 8.62 5.86 9.66
548 8.62 22.76 11.38 24.14 10.34 17.93
600 3.79 11.38 5.52 16.21 6.21 13.45
644 7.59 17.59 8.97 17.93 7.24 12.41
652 2.76 7.93 3.79 9.66 5.86 11.38
689 3.79 9.66 4.48 11.72 5.86 9.71
692 0.69 4.83 1.38 4.83 3.79 6.55
712 4.14 10.34 5.17 11.03 6.21 8.97
713 3.1 7.24 2.76 5.86 6.21 9.31
733 3.45 8.97 4.14 8.62 5.86 9.31
737 2.41 8.28 1.72 8.28 7.59 14.14
810 2.07 6.9 1.72 11.03 7.24 13.1
832 6.55 13.1 8.28 14.83 13.1 20
846 9.66 28.62 12.41 26.9 10.69 25.52
852 12.41 21.38 9.66 20 13.45 21.03
858 1.72 5.86 1.38 6.21 6.21 7.93
859 1.38 8.97 2.41 8.62 5.86 10.69
Avg 4.54 11.70 5.09 12.61 7.50 12.991

Shaded cells 0 2 3 5 14 11

In addition, to examine the effectiveness of the proposed method ASMTP ,we used some of the
most widely used evaluation method for VS, firstly we applied the Receiver Operating Characteristic
(ROC) curve which has been used in various fields (medicine, meteorology, etc.) and also in the drug
discovery field [45,46]. A ROC curve describes the tradeoff between sensitivity and specificity, which
are the main characteristic features of any test. In the drug design context, sensitivity (Se) would be the
percentage of truly active compounds being selected from the virtual screening workflow: the number
of true positive (TP) results divided by the sum of true positives and false negatives (FN):

Sensitivity “
Number selected actives
Number of total actives

“
TP

TP` FN
(8)

The Specificity (Sp) represents the percentage of truly inactive compounds being correctly
identified by the computer test and therefore being discarded, that is, the number of true negative
results (TN) divided by the sum of true negatives and false positives (FP):

Specificity “
Number of discarded inactives

Number of inactives
“

TN
TN ` FP

(9)
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The area under the ROC curve (AUC) is a measure used to measure the test performance for the
he closer AUC is to 1, the better is the performance of the prediction. For ASMTP we applied the
ROC curve to study and evaluate the performance of the proposed ASMTP at cutoff 5%. Figures 1–3
illustrate and provides a preliminary indication about the quality of the proposed method for data set
DS1, DS2, and MUV compared to conventional similarity measures Tanimoto, and we can say that
the conclusion derived from these tables (Tables 5–7) provides the same conclusion that derived from
Figures 1–3 that confirms the superior of ASMTP method.
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Beside ROC curve, we also used Boltzmann enhanced discrimination of receiver operating
characteristic (BEDROC) [45] which is based on the idea of exponentially weighted active ranks. And it
is a little bit different from the enrichment factor (EF) or the receiver operating characteristic (ROC),
for it concentrates on the beginning of a ranked list, and giving more weight to the compounds that
will be ranked early the BEDROC scores are bounded between 0 and 1, where higher scores indicating
more known actives being ranked on earlier ranks. Table 8, shows the results of EF and the BEDROC,
The conclusion which can be drawn from all above evaluation methods confirm that ASMTP search
outperformed the conventional similarity measure and SQB performance or at least it is not worse
than them.

Table 8. Comparison results of enrichment values of (BEDROC α = 20) and (EF 1%) using ASMTP on
MDDR1, MDDR2, and MUV data sets.

Methods
DS1 DS2 MUV

BEDROC( α 20) EF (1%) BEDROC( α 20) EF (1%) BEDROC( α 20) EF (1%)

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

Tan 0.48 0.46 80.01 86.01 0.33 0.34 23.01 23.01 0.37 0.37 16.69 17.92
SQB 0.53 0.57 90.01 89.31 0.44 0.39 29.01 22.01 0.41 0.39 18.01 19.74

ASMTP 0.61 0.64 92.9 90.23 0.46 0.50 28.27 25.32 0.44 0.42 18.93 20.14

In spite of the recent work done by Nagwani [47], where he reported some limitations of SMTP in
document retrieving. Conversely, by applying the ASMTP in LBVS we found that it works properly,
and it has achieved good results which prove that the ASMTP is working properly with both datasets
that contain most similar molecules (homogeneous) and also it enhanced the retrieval performance of
diversity data (heterogeneous) data sets.

7. Conclusions

In this study, we presented a new LBVS similarity measure that has been derived from the
document and text searching areas. The adapted ASMTP algorithm focuses on the preferred selected
similarity properties, we conduct the experiments on two benchmark datasets the MDDR and
MUV, and compared the achieved results with the Tanimoto coefficient which is considered as the
conventional similarity measure in VS, and also we compared the results with QSB which is most
recently proposed similarity measure for LBVS , We also have investigated the effectiveness of ASMTP
performances by applying a set of VS mostly used evaluation methods. The overall achieved results
from conducting screening and evaluation results show that the performance obtained by the proposed
measure is improved LBVS with heterogeneous molecules data, and achieved superior results with
data that are structurally homogeneous.
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