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Abstract

Benchmarking RNA-seq differential expression analysis methods using spike-in and simu-

lated RNA-seq data has often yielded inconsistent results. The spike-in data, which were

generated from the same bulk RNA sample, only represent technical variability, making the

test results less reliable. We compared the performance of 12 differential expression analy-

sis methods for RNA-seq data, including recent variants in widely used software packages,

using both RNA spike-in and simulation data for negative binomial (NB) model. Performance

of edgeR, DESeq2, and ROTS was particularly different between the two benchmark tests.

Then, each method was tested under most extensive simulation conditions especially dem-

onstrating the large impacts of proportion, dispersion, and balance of differentially

expressed (DE) genes. DESeq2, a robust version of edgeR (edgeR.rb), voom with TMM

normalization (voom.tmm) and sample weights (voom.sw) showed an overall good perfor-

mance regardless of presence of outliers and proportion of DE genes. The performance of

RNA-seq DE gene analysis methods substantially depended on the benchmark used.

Based on the simulation results, suitable methods were suggested under various test

conditions.

Introduction

High-throughput cDNA sequencing (RNA-seq) has been commonly used for transcriptome

analysis for the last decade [1]. Whereas the hybridization-based method (microarray) can

only be used to measure the expression of preselected genes, RNA-seq is able to cover the

whole transcriptome and has additional applications [2–8]. Even for the measurement of gene

expression, RNA-seq exhibited better reproducibility and sensitivity, particularly for genes

with low expression [9]. One of the main purposes of transcriptome analysis is to identify dif-

ferentially expressed genes (DE genes) between different cellular conditions. Because the gene

expression in RNA-seq data is represented by ‘count’ of short cDNA reads aligned to corre-

sponding gene (or exon), discrete probabilities, such as Poisson or negative binomial (NB) dis-

tributions, have been used to model the read counts [9–13]. Based on these models, a variety of

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0232271 April 30, 2020 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Baik B, Yoon S, Nam D (2020)

Benchmarking RNA-seq differential expression

analysis methods using spike-in and simulation

data. PLoS ONE 15(4): e0232271. https://doi.org/

10.1371/journal.pone.0232271

Editor: Li Chen, Indiana University School of

Medicine, UNITED STATES

Received: November 1, 2019

Accepted: April 10, 2020

Published: April 30, 2020

Copyright: © 2020 Baik et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: TCGA KIRC count

data are obtained from the Broad Institute GDAC

(URL: http://gdac.broadinstitute.org), Bottomly

count data from ReCount (URL: http://bowtie-bio.

sourceforge.net/recount/), and SEQC count data

from GEO database with accession number

GSE49712 (URL: https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE49712). The R package

for our benchmark tests is available from github

(URL: https://github.com/unistbig/

compareDEtools).

https://doi.org/10.1371/journal.pone.0232271
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232271&domain=pdf&date_stamp=2020-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232271&domain=pdf&date_stamp=2020-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232271&domain=pdf&date_stamp=2020-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232271&domain=pdf&date_stamp=2020-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232271&domain=pdf&date_stamp=2020-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232271&domain=pdf&date_stamp=2020-04-30
https://doi.org/10.1371/journal.pone.0232271
https://doi.org/10.1371/journal.pone.0232271
http://creativecommons.org/licenses/by/4.0/
http://gdac.broadinstitute.org
http://bowtie-bio.sourceforge.net/recount/
http://bowtie-bio.sourceforge.net/recount/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49712
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49712
https://github.com/unistbig/compareDEtools
https://github.com/unistbig/compareDEtools


methods have been developed for differential expression analysis (DE analysis) of RNA-seq

data [8, 14–16].

Several comparative studies for DE analysis methods have already been conducted to sug-

gest suitable methods for different test conditions. Some have used real RNA-seq data to test

false positive control, compared the reproducibility of DE analysis results using a reduced

number of samples, and analyzed similarity of results between different methods [16–18]. Oth-

ers have used benchmark data such as spike-in RNA-seq [14, 19, 20] or simulated read counts

[14, 15, 21] for a more systematic comparison of false positive (or discovery) control, power,

and overall discriminatory ability. Especially, simulation-based analysis enabled the compari-

son of methods under various test conditions related to outlier counts, sample size, proportion

of DE genes, and balance of DE genes [14, 15]. Although a few methods with overall good per-

formance have been suggested, their performance was different between studies as different

benchmark datasets and test conditions were used. Moreover, new versions or variants of the

widely used DE analysis packages, namely, edgeR, DESeq, and limma with improved parame-

ter estimation or outlier treatment have been added in recent years.

In this study, (1) we compared the performance of 12 DE analysis methods using both RNA

spike-in [14] and NB-based simulation data. Since the spike-in data were generated from the

same bulk RNA sample (technical replicates), they exhibited much smaller dispersion esti-

mates in NB model [22, 23] as compared to regular RNA-seq data. In addition, the proportion

of DE genes in spike-in data was only 0.27%. We demonstrate that these two features of spike-

in data, which are rarely observed in RNA-seq data based on biological replicates, could have

caused some difference in performance between spike-in and simulation-based test results. (2)

We then performed simulation analysis under various conditions using parameters estimated

from RNA-seq data for biological replicates. Our tests covered the largest range of test condi-

tions to date and demonstrated the large impact of proportion of DE genes on some DE analy-

sis methods (e.g., edgeR and DESeq) and the robust performance of ROTS for unbalanced DE

genes, in addition to confirming the dominant effect of dispersion parameter. Based on the

test results, methods with a good performance were suggested for each condition. (3) Two real

RNA-seq datasets were analyzed for further comparison.

Methods

In this article, only two-sample group comparison and ‘gene’-based analysis will be considered

to focus on the performance of DE analysis methods. We consider a raw read count matrix R

= [Rij], i = 1,2,. . .,n, j = 1,2,. . .,(m1+m2) composed of non-negative integers where n is the

number of genes analyzed, and m1 and m2 are sample sizes for the test and control groups,

respectively.

Modeling read counts using discrete probability

A read count Rij of the ith gene in the jth sample has often been modeled by discrete counting

probability, such as Poisson or NB distribution. Poisson distribution is only able to address the

experimental variation between replicates caused by random sampling and is appropriate for

modeling the counts obtained from technical replicates [9, 10]. However, samples from differ-

ent individuals (biological replicates) incorporate biological variation as well. Therefore, in

biological replicate data, means are surpassed by large variances, whereas means and variances

have more similar values in technical-replicate-based data.

To incorporate the increased variability in biological replicates, NB distribution has been

widely used for modeling RNA-seq read counts [11–13, 24]. NB distribution has two parame-

ters, i.e., mean μij�0 and dispersion φi�0, and its variance is represented as s2
ij ¼ mij þ φim

2
ij.
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Here, μij = sjμi, where sj is scaling factor (or depth) of sample j, and μi is the mean expression of

gene i. If φi is zero, NB becomes a Poisson distribution where mean and variance have the

same value. Zero-inflated NB distribution was considered to model the sparse single-cell

RNA-seq data [25, 26], but may not be appropriate to represent RNA-seq data. In this study,

we used NB distribution to simulate RNA-seq read count data.

DE analysis methods and comparison of their performance

We selected such DE analysis methods for RNA-seq data that exhibited relatively good perfor-

mances in a previous comparative study [14–16, 18, 21]. Additionally, recent variants in widely

used R packages were included. The tested methods are as follows: edgeR exact test (edgeR)

[11], GLM version of edgeR (edgeR.glm) [27], robust version of edgeR (edgeR.rb) [28], quasi-

likelihood edgeR method (edgeR.ql) [29, 30], robust version of edgeR.ql (edgeR.ql.rb) [31],

DESeq [12], DESeq with per condition dispersion estimation (DESeq.pc), DESeq2 [32], voom

with TMM (voom.tmm) [33] and quantile normalization (voom.qn) [34], voom with sample

weights (voom.sw) [35, 36], baySeq [24], PoissonSeq [37], SAMseq [38], and ROTS [19]. bay-

Seq method has been implemented with either TMM or quantile normalization (denoted as

baySeq and baySeq.qn, respectively). ROTS was basically applied to voom transformed data

with TMM normalization; however, ROTS was also applied to raw count data when DE genes

were unbalanced between up- and down-regulated genes. A brief summary of recently devel-

oped methods as well as simulation test results of this study are described in Table 1. Detailed

simulation conditions are described in ‘Simulation conditions’ section.

Table 1. Summary and test results of recently developed methods.

Methods Summary Test Results

DESeq2 [32] Empirical shrinkage estimation of dispersions

and logarithmic fold-changes. Z-test is used for

DE analysis. Both outliers of dispersions and

logarithmic fold-changes are treated.

DESeq2 exhibited steady and good

performances regardless of outliers, sample size,

proportion of DE genes, dispersions, and mean

counts.

edgeR.rb [28] Observations that deviate strongly from the

model fit are given lower weights. These

observation weights affect both the regression

and dispersion estimates. Used when data

include outlier counts.

edgeR.rb yielded more DE genes and more false

positives compared to other edgeR methods. In

presence of outliers and large number of

samples (�10), it exhibited outperforming

AUCs.

edgeR.ql [29] While edgeR exact test assumes the estimated

dispersion is true, quasi-likelihood estimation

accounts for the uncertainty of the dispersion

estimates. This approach improves type I error

control.

edgeR.ql showed better AUC, control of true

FDR, and FPCs compared with edgeR methods,

but exhibited relatively low power.

voom.qn

/voom.tmm

[34]

Read counts were quantile normalized (voom.

qn) or normalized with TMM method (voom.

tmm), and then were transformed using voom.

A moderated t-test is used for DE analysis.

voom.tmm performed better than voom.qn

except outlying sample cases. They exhibited

overall good performance for most cases, but

their powers were relatively low. AUC of voom.

qn was noticeably decreased compared to other

voom methods as the proportion of DE genes

increased.

voom.sw [36] Observations from highly variable samples are

down-weighted for more accurate estimation of

regression coefficients. Used when some

samples have amplified dispersions

voom.sw performed like voom.tmm rather than

voom.qn and showed overall good performance.

When samples with amplified dispersions were

included, voom.sw outperformed other

methods.

ROTS [19] voom transformation with TMM normalization

and bootstrap are used for generalized t-statistic

that maximally reproduce preselected top k%

genes. k = 25 was used for our tests.

ROTS exhibited good AUC and false positive

control. ROTS applied to raw count data showed

slightly lowered power, but it outperformed

other methods when DE genes were unbalanced

and a large number of DE genes were included.

https://doi.org/10.1371/journal.pone.0232271.t001
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Performance of the aforementioned DE analysis methods was compared using their area

under receiver operating curve (AUC), true positive rate (TPR), true false discovery rate

(FDR), and false positive counts (FPCs). Here, true FDR is the proportion of non-DE genes

among the significant genes and indicates the extent of reliability of predicted DE genes. We

calculated true FDR only when five or more significant genes were detected in each method.

FPC is the number of significant genes detected from the datasets where no DE genes were

included (Type I error). Compared to the previous simulation study [15], we used a liberal

threshold q-value < 0.1; this is because we applied smaller effect sizes (1.2 fold or larger) when

generating DE genes. Among the compared methods, edgeR and edgeR.glm; and edgeR.ql and

edgeR.ql.rb showed virtually the same results in simulation tests. DESeq.pc showed similar or

better performance as compared to DESeq across all test conditions. Thus, the results of

edgeR.glm, edgeR.ql.rb, and DESeq were removed to simplify the analysis. baySeq.qn results

were also removed from the simulation results because the two baySeq results showed nearly

the same performance in simulation tests.

SEQC spike-in benchmark data

Sequencing Quality Control (SEQC) data pertained to the Microarray Quality Control

(MAQC) study and contained replicated samples of universal human body reference RNA and

human brain reference RNA with spike-in controls. We used the same count data as used in a

previous DE analysis benchmark study (GEO accession GSE49712) [14] (denoted as SEQC

data). SEQC data comprised two sample groups, each having five samples and 21,711 genes

including 92 spike-in transcripts from External RNA Controls Consortium (ERCC). They

exhibited very small dispersion estimates, which were on an average 22.5 times smaller than

those of RNA-seq data of cancer samples (TCGA Kidney Renal Clear Cell dataset). We

removed genes that had less than ten mean read counts and analyzed the rest 17,961 genes,

which included 63 spike-in transcripts composed of 15, 16, 17, and 15 genes with 0.25, 1.5, 2,

and 1 fold changes, respectively. AUCs were calculated using the 63 spike-in genes. In short,

SEQC data were characterized by very small dispersion values and low proportion of DE genes

(0.27%).

Simulation conditions

The above-described DE analysis methods were tested under the following conditions:

1. (pDE) Different proportion of DE genes: pDE = 0.27%, 5%, 10%, 30% or 60% DE genes

were included in the simulation datasets. 0.27% was considered to compare with the results

for SEQC data, and 60% DE genes represent, for example, complex disease conditions such

as cancer vs. normal conditions.

2. (SS) Sample sizes of three or ten were used in each condition.

3. (OL1) Random outliers: each read count could become an outlier with a probability of 0.05

or less. An outlier count was regenerated with five to ten times larger mean value.

4. (OL2) Low-quality sample: dispersions of 30% of samples were increased fivefold.

5. (OL3) Composite condition of 3 and 4: 30% of samples were generated with fivefold

increased dispersions, and the 3% of read counts in the other samples were regenerated as a

random outlier.

6. (Bal) Different balances of up and downregulated genes: Bal = 50%, 70% or 90% of DE

genes were upregulated, while the remainder were downregulated.
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7. (Disp) The same or different dispersion values between conditions were assigned for each

gene.

8. (EF) Weak effect sizes (EF = 1.2 or larger fold changes for ten sample cases; 1.5 or larger for

three sample cases) were used.

These conditions include diverse situations encountered in RNA-seq data analysis and the

test results can provide a guideline for selecting an appropriate method in each situation. Our

tests have the following several differences from the previous simulation study by Soneson and

Delorenzi [15]:

1. Four additional edgeR methods, two additional limma methods, PoissonSeq, DESeq2, and

ROTS were included in our study.

2. Wider range of DE gene proportions from 0.27% to 60% was tested, whereas only 10% and

33% DE genes were considered previously. We demonstrated that both low (0.27% or 5%)

and high (60%) proportions of DE genes have substantial effects on performance of some

methods (e.g., edgeR, edgeR.ql, and ROTS). The low pDE (e.g. 5%) represents the case,

such as gene-knock-out experiment where only a small number of genes are expected to be

differentially expressed, whereas the high pDE (e.g., 60%) represents the case of complex

disease, such as cancer as compared to normal samples where the majority of genes are

expected to be differentially expressed [39].

3. Effects of dispersions and mean counts on DE analysis methods were analyzed. We specifi-

cally showed that dispersions have great impacts on both the relative and absolute perfor-

mances of each method.

4. In our study, weak effect sizes (1.2 or larger fold changes) were used to analyze subtle differ-

ences in performance, whereas 1.5 or larger fold changes were used previously.

Simulation of read counts and parameter estimation

To simulate read counts, we first estimated mean and dispersion parameters for each gene

from two RNA-seq datasets with different parameter distributions: TCGA Kidney Renal Clear

Cell Carcinoma/normal dataset, which is available from GDAC (URL: http://gdac.

broadinstitute.org) (denoted as KIRC) and inbred mouse dataset (denoted as Bottomly) [40].

KIRC is composed of independent individual samples and showed large mean counts and dis-

persions, whereas Bottomly is composed of samples from genetically identical mice and

showed smaller means and dispersions (5.6 times and 10 times, respectively). Here, indepen-
dent samples denote those obtained from different individuals with possibly different genetic

backgrounds, such as KIRC. Independent samples typically exhibit large dispersion values

[22]. We additionally built two kinds of synthetic datasets using hybrid combinations of mean

and dispersion parameters obtained from KIRC and Bottomly datasets, in order to compare

the effects of mean and dispersion parameters. These parameters were estimated from each of

the test and control groups using edgeR package. Especially, edgeR provided the common and

tagwise dispersion estimates that were used for the same and different dispersion conditions in

our simulation study, respectively. All the read counts were simulated using the ‘rnbinom’ R

function and estimated parameters. The inverse of the dispersion values was used for ‘size’

argument. To generate fold changes for a DE gene, we added a random number sampled from

exponential distribution, exp(1) to the minimum fold changes of 1.5 (three sample case) and

1.2 (ten sample case) [15], respectively. Mean values in the test condition were multiplied or

divided by these fold change values to generate up- or down-regulated DE genes, respectively.
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To generate outlier counts, we randomly selected approximately 5% (or less) of all read counts

and regenerated those counts with five or ten times larger mean values in both test and control

conditions. To generate low quality sample data, we randomly selected one sample and three

samples from each condition for three and ten sample cases, respectively and regenerated

those samples using five times larger dispersion values for all genes. Read counts were gener-

ated for 10,000 genes using KIRC parameters and for 5,000 genes using Bottomly or hybrid

parameters. In addition, the two real RNA-seq datasets (KIRC and Bottomly) were analyzed

using 12 DE analysis methods and the results were compared. All of our analyses can be repro-

duced using the R package which is available from https://github.com/unistbig/

compareDEtools.

Results and discussion

Comparison of test results for SEQC spike-in and simulation data

We tested the 13 DE analysis methods including two different implementations of baySeq for

both, SEQC spike-in data and KIRC-based simulation data and compared their AUCs. The

AUCs for SEQC data are shown in Fig 1A. ROTS outperformed other methods and was fol-

lowed by PoissonSeq and baySeq.qn. SAMseq and DESeq2 showed the worst AUCs. baySeq

results based on two normalizations showed a considerable difference. Then, read counts of

10,000 genes were simulated using the parameters estimated from KIRC data. Three or five

samples were included in each sample group. In particular, a low pDE (0.27%) and 67% up

regulated DE genes (Bal = 67%) were assumed to compare with the results for SEQC data. The

results for KIRC-based simulation are shown in Fig 1B. edgeR, edgeR.ql, and DESeq.pc

showed relatively low AUCs and DESeq2 showed a much better AUCs as compared to the

SEQC analysis results. Such a large difference in relative performance of each method between

benchmark studies confuses researchers while choosing a suitable method.

Hence, we performed further simulation tests to investigate the cause of such differences,

by adjusting dispersion parameters and pDE. First, the dispersions of KIRC simulation data

were decreased to the level of SEQC data (22.5 times lower) and AUCs were compared (Fig

1C). Because such small dispersions caused nearly perfect AUCs for all methods, we applied

rather reduced fold changes to simulate DE genes (0.625, 1.15, and 1.3). As a result, high AUC

of edgeR.ql and relatively low AUC of DESeq2 shown in SEQC results were reproduced. Then,

we slightly increased pDE from 0.27% to 1% while keeping the large dispersions of KIRC (S1D

Fig). In this case, only the AUC for edgeR.ql increased while DESeq2 remained the same.

These results indicate that small dispersions of SEQC caused the relatively low performance of

DESeq2, and both, low dispersion and low pDE of SEQC supported the high performance of

edgeR.ql in SEQC result. However, the high performances of ROTS, edgeR, and DESeq.pc in

SEQC analysis result were not explained by these adjustment experiments. The TPR and true

FDR results are also shown in S1 Fig.

Overall, this experiment shows the extremely small dispersion and proportion of DE genes

in SEQC data may not provide fully reliable evaluation of DE analysis methods and simulation

tests based on parameters for biological replicates should also be considered. A similar concern

of benchmarking SEQC data has also been raised when normalizing RNA-seq data [41]. Thus,

we herein present the evaluation of 12 DE analysis methods using NB-based simulation under

extensive test conditions.

Simulation tests under various conditions

The test results are depicted as boxplots in Fig 2 and S2–S10 Figs. Basically, we compared the

performance of methods based on AUCs; however, we have also considered TPRs, true FDR,
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and FPC to select ‘recommended’ methods under each test condition (Table 2). We attached

‘(LP)’ if a method exhibited good AUC but rather low power (TPR). If AUCs were similar, the

priority was given to ‘liberal’ methods with high power and high type I error rate, considering

that researchers may have additional means or information to reduce false positives. We

mainly considered equal proportions of up and down regulated genes among DE genes

(Bal = 50%). We further considered the unbalanced cases where 70% and 90% of DE genes

were upregulated (Bal = 70% or 90%).

Test results with large dispersions and large mean counts: Independent samples. Read

counts of 10,000 genes were generated using the parameters estimated from KIRC data. Three

or ten samples were generated in each sample group. To begin with, we tested for the ‘base’

condition where no outliers and no low quality samples were included, and same dispersions

between sample conditions and equal proportions of up and down regulated DE genes

(Bal = 50%) were assumed. Then, we further tested for alternative test conditions. Under the

Fig 1. Performance comparison of 13 DE analysis methods for SEQC benchmark data and simulation data based on KIRC parameters. Three and five samples

were used in simulation tests. (A) SEQC spike-in data test, 5 sample condition, 0.25, 1.5, 2 fold changes are introduced to DE genes. (B) KIRC based simulation. 1.5 or

larger and 1.3 or larger fold changes are introduced to 0.27% of 10,000 genes for 3 and 5 samples, respectively. (C) Same condition as B but fixed fold changes, 0.625,

1.15, and 1.3 were introduced to DE genes. Dispersions were also lowered to SEQC level (22.5 times).

https://doi.org/10.1371/journal.pone.0232271.g001
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base condition for three samples, DESeq2 performed best (Fig 2A). Difference in the propor-

tion of DE genes (pDE) showed dramatic changes in the edgeR and DESeq.pc test results.

These two methods did not show good AUCs under low pDE condition (� 5%); however, they

performed as well as DESeq2 under high pDE condition (� 30%). edgeR.ql showed consider-

ably good AUCs, but showed very low power when three samples were used and pDE was not

larger than 10%. Voom methods (voom.qn, voom.tmm, and voom.sw) exhibited similarly

good AUCs in low pDE condition (5%); however, the AUC of voom.qn was lowered with the

increase of pDE. A larger sample size of ten allowed every method to show better performance

(Fig 2B); SAMseq, edgeR, and edgeR.rb showed large improvements in AUC.

In presence of outliers (OL1 = 5%), the best AUCs were observed for DESeq2 and edgeR.rb

followed by voom.tmm, and voom.sw when three samples were used. Especially with ten sam-

ples, edgeR.rb surpassed every other method, and SAMseq was the second best. DESeq2, voom

methods, and ROTS showed similarly good AUCs. We further compared DESeq2 and edgeR.

rb by additionally introducing lower proportion of outliers (1% and 3%) to the base condition

(S4 Fig). edgeR.rb method tended to exceed DESeq2 when pDE or sample size increased and

larger proportion of outliers was introduced, and vice versa. voom.sw and voom.tmm showed

similarly good performance under most test conditions. When samples with enhanced disper-

sions (i.e., low quality samples) were included, voom.sw outperformed other methods (Fig 2E

and 2F). Under this condition, edgeR-based methods and DESeq.pc showed low AUCs for low

pDE (5%) and small sample size conditions (Fig 2E). Overall, AUCs and powers tended to

increase as the proportion of DE genes increased for many of the test conditions.

Next, when we applied different dispersions between conditions, the AUCs of most meth-

ods except those for edgeR, edgeR.rb, and DESeq.pc, were slightly decreased (S2 Fig). Lastly,

Fig 2. Performance comparison of 12 DE analysis methods for simulated RNA-seq data with KIRC parameters. Area under ROC curve (AUC), true positive

rate (TPR) and true false discovery rate (FDR) are shown. Three and ten samples were used in each sample group for (A, C, E) and (B, D, F), respectively. (A, B)

Same dispersion between test and control groups, Bal = 50%, four different proportions of DE genes (5%, 10%, 30%, and 60%) were used. (C, D) Random ourlier

counts: the same condition as A-B but each read count can be a random outlier with 5% probability. (E, F) Low quality samples: the same condition as (A, B) but one

and three samples of each sample group have fivefold increased dispersion parameters, respectively. True FDR graphs of some methods did not appear in low pDE

condition because they detected no DE genes.

https://doi.org/10.1371/journal.pone.0232271.g002

Table 2. Recommended methods for DE analysis of biological replicate RNA-seq data (simulation results).

Outlier Sample size %DE gene Independent replicates (large dispersions) Genetically identical replicates (small

dispersions)

No outlier counts 3 5% DESeq2, edgeR.ql (LP) DESeq2 and most other methods

� 30% DESeq2, edgeR, DESeq.pc DESeq2 and most other methods

10 5% DESeq2, edgeR.ql, edgeR.rb DESeq2, edgeR methods, ROTS, PoissonSeq

� 30%
a(Bal�0.7)

edgeR and DESeq methods, (%ROTS) edgeR methods, DESeq2, ROTS, (%ROTS)

With outlier counts 3 5% DESeq2, edgeR.rb DESeq2, ROTS

� 30% DESeq2, edgeR.rb edgeR.rb, DESeq2, ROTS

10 5% edgeR.rb, SAMseq, DESeq2, voom methods, ROTS SAMseq, DESeq2, edgeR.rb

�30% a(Bal�0.9) edgeR.rb, SAMseq, DESeq2, voom methods, ROTS, (%

ROTS)

edgeR.rb, DESeq2, SAMseq, (%ROTS)

With outlying

samples

3 5% Voom.sw Voom.sw, edgeR.rb

� 30% Voom.sw, DESeq2 Voom.sw, edgeR.rb

10 5% Voom.sw Voom.sw, edgeR.rb

� 30% Voom.sw, edgeR.rb Voom.sw, edgeR.rb

aUnder these conditions, ROTS without normalization (denoted as %ROTS) performed best. LP denotes low power.

https://doi.org/10.1371/journal.pone.0232271.t002
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when the fraction of upregulated DE genes was increased (Bal = 70% and 90%), the overall per-

formance worsened (S3 Fig). The impact of this imbalance of DE genes increased as the pDE

increased. When pDE was 60% and Bal = 90%, the majority of genes were up-regulated (60% �

90% = 54%), and most of the tested methods exhibited a nearly random prediction

(AUC < 0.6). Interestingly, ROTS applied to raw count data without any normalization or
transformation was much less affected by the varying proportion and imbalance of DE genes

and showed outperforming AUCs when Bal� 0.7 and pDE� 0.3 (S3 and S7 Figs). We note

that the same depth was applied to each sample in our simulation tests.

True FDRs tended to decrease as pDE increased in most cases. Voom methods, edgeR.ql,

and SAMseq exhibited overall quite good control of true FDRs, while PoissonSeq and baySeq

showed large true FDRs. ROTS, edgeR, and DESeq exhibited poor true FDRs for three sample

case and small DE proportions (pDE� 10%), but they were dramatically improved when pDE

or sample size was increased. True FDRs were considerably increased as random outlier

counts were introduced (Fig 2C and 2D). They were also increased by inclusion of low quality

samples for KIRC case when SS = 3 (Fig 2E). True FDRs were not much affected by low quality

samples when SS = 10, except for PoissonSeq (Fig 2F).

We then compared the FPCs in each case by randomly sampling two groups from the same

sample group (Fig 3); in other words, no DE genes were included. edgeR.ql, voom methods,

PoissonSeq, and SAMseq strictly controlled FPCs, while baySeq yielded large FPCs. Although

PoissonSeq exhibited very poor true FDR control, its FPC control was observed to be quite

good. This shows that FPC control alone is not enough to assess the predicted DE genes, and

true FDR control should also be considered. Interestingly, the two methods that account for

outlier counts viz. edgeR.rb and DESeq2, did not perform better than other methods in either

true FDR or FPC control (Fig 3C and 3D). They exceeded other methods in AUCs.

We also tested the composite conditions of random outliers and increased dispersions (OL3)

for a large number of samples (10 and 30 samples in each condition) (S5 Fig). The overall results

seemed to reflect both the results of OL1 and OL2, and edgeR.rb showed the best AUC followed

by those of limma.sw and SAMseq. Interestingly, DESeq2 which performed well under both

OL1 and OL2 showed a low AUC and high true FDR under this complex simulation condition.

Test results with small dispersions and small mean counts (genetically identical repli-

cate case); and hybrid parameters. The same conditions were tested using the parameters

estimated from Bottomly data. It is known that large mean counts and low dispersions increase

the statistical power of DE analysis [21, 22]. Despite the low depths in Bottomly data, their low

dispersions allowed all the methods to show much better AUCs and powers than those

obtained using KIRC parameters (S6–S8 Figs). Under the base condition, many methods

including DESeq2 and edgeR.rb showed similarly high AUCs; therefore, unique features of

each method were not clearly distinguishable. Unlike in the KIRC case, edgeR performed as

well as other edgeR-based methods when pDE was low (5%). In presence of outliers and using

ten samples, the best performing methods were edgeR.rb, DESeq2, and SAMseq followed by

voom based methods. True FDRs for Bottomly were overall much improved as compared to

those for KIRC, and their patterns were overall similar to each other.

To compare the impacts of mean and dispersion parameters, we additionally created simu-

lation data with hybrid parameters by combining KIRC means and Bottomly dispersions

(denoted as mKdB) and Bottomly means and KIRC dispersions (denoted as mBdK), respec-

tively. As shown in S10 and S11 Figs, all 12 methods showed high powers for low dispersion

datasets (mKdB and Bottomly), while they showed relatively low powers for high dispersion

datasets (mBdK and KIRC). In contrast, mean had only limited effects; performance for

mKdB dataset was only slightly better than that for Bottomly dataset, and the performances for

mBdK and KIRC datasets were observed to be nearly the same.
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A guide for choosing methods. We have shown through simulation tests that dispersion

values, proportion of DE genes, and outlier counts largely impact the performance of each

method. However, it is not always clear which condition in Table 2 corresponds to the data at

hand except for the sample size. We have previously demonstrated that RNA-seq data gener-

ated from independent samples tended to exhibit large dispersion values (approximately,�

Fig 3. False positive count comparison of 12 DE analysis methods for simulated RNA-seq data with KIRC parameters. Three and

ten samples in each sample group and three different conditions (No random outlier, random outlier, and outlying dispersion sample)

were used for comparison.

https://doi.org/10.1371/journal.pone.0232271.g003
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0.1), whereas those obtained from genetically identical replicates yielded relatively small dis-

persion values (approximately, 0.01–0.1) [22]. Thus, the replicate type used is able to roughly

suggest the distribution of dispersions. To be more precise, the researcher may also use existing

packages, such as edgeR, directly to estimate dispersion values from their own read count data.

For outlier counts, DESeq2 automatically truncates them or simply remove genes that con-

tained a potential outlier count depending on the sample size. However, for edgeR package,

the user has to choose a method between edgeR and its robust version. If the given data are

highly noisy, edgeR.rb may be most effective. For moderately noisy data, both DESeq2 and

edgeR.rb perform better than their original methods. Recently developed methods can help

detect outlier counts in RNA-seq data [42, 43].

Lastly, the proportion of DE genes are not known to the user. However, we can roughly

estimate the proportion from the test condition. In complex disease, such as cancer, the major-

ity of genes are differentially expressed compared to the normal condition, where the condi-

tion�30% can be considered. If a single gene with potentially limited effects was knocked out,

much less proportion of DE genes are expected compared to complex disease conditions. In

ambiguous cases, several DE analysis methods can be tested together to roughly estimate DE

genes from significantly detected genes.

Real RNA-seq data analysis

We also compared the 12 DE analysis methods by analyzing the two RNA-seq datasets (KIRC

and Bottomly) that exhibited different distribution of parameters. As the true DE genes are not

known for real data, we only compared the number of significantly detected genes and FPCs.

KIRC contained 72 normal and 72 cancer samples. Bottomly contained ten C57BL/6J strain

and eleven DBA/2J strain samples. Three, five, ten, and twenty (KIRC only) sample sizes were

considered. After removing the genes with average read count of less than ten, 16,621 genes

and 8,550 genes remained for KIRC and Bottomly, respectively. We used q-value < 0.1 to

select DE genes. To compare FPCs, we used only the normal sample group for KIRC, where

two contrasting groups were randomly sampled for DE analysis. The same analysis was done

for the DBA/2J sample group of Bottomly. Each experiment was repeated fifty times and the

results are represented as boxplots in Fig 3A and 3B.

Most results showed similar patterns between the two datasets except that PoissonSeq

detected relatively small number of DE genes for Bottomly. SAMseq and voom.sw detected the

largest numbers of DE genes, while DESeq.pc and ROTS detected the smallest numbers of DE

genes for both datasets. We assumed that KIRC included many DE genes between cancer and

normal conditions (e.g., pDE = 60%), and found high similarity between the number of

detected DE genes (Fig 4A; 3 and 10 samples) and the TPR of simulation results (Fig 2A and

2B; pDE = 60%); we may expect such a similarity though DE genes and TPR represent differ-

ent concepts. We also found a similarity in FPCs in that edgeR.ql, voom methods, ROTS, Pois-

sonSeq, and SAMseq exhibited very small or no FPCs while baySeq exhibited relatively large

FPCs in both datasets.

Additionally, we compared the similarity of DE analysis results between the 12 methods.

Five samples were randomly selected from each sample group, and DE analysis was repeated

fifty times using each method. Based on our observation that most methods detected approxi-

mately 5,000 and 500 DE genes with five samples for KIRC and Bottomly, respectively (Fig 4A

and 4B), the top 5,000 and 500 DE genes in each method were selected based on DE q-values

for KIRC and Bottomly, respectively. The selected DE genes obtained using each method were

pooled and sorted by their average DE q-values. Then, Spearman rank correlations between

each pair of methods were calculated. The similarity matrix as well as clustering results for
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KIRC and Bottomly are shown in Fig 4C and 4D, respectively. In both cases, edgeR.ql and

DESeq2 were closely combined. Voom methods were also closely combined to each other.

However, voom.sw was separated from other voom methods in Bottomly, thus implying the

presence of outlying samples in Bottomly. Indeed, principal component analysis for the two

datasets (S12 Fig) showed samples in KIRC exhibited a relatively homogeneous and compact

distribution in each condition, while those in Bottomly showed a rather heterogeneous distri-

bution and less clear difference between conditions. ROTS was most distantly clustered from

other methods in both cases. Similar clustering patterns were reproduced when we used top

3,000 and 300 genes in KIRC and Bottomly, respectively (S13 Fig).

Comparison of the computing time

Lastly, the running times for each method for analyzing KIRC data were compared (Fig 5).

Each method was executed ten times using ‘proc.time’ R function. A subset of KIRC contain-

ing 16,621 genes with 3, 5, 10, and 20 samples were used for this measurement. All the methods

were run on a Linux machine with Inter X5670 hexa core processor and 20Gb of 1333MHz

DDR3 memory. The two fastest methods were voom.qn and voom.tmm followed by

Fig 4. Analysis on KIRC and Bottomly. (A, B) The number of DE genes between two sample groups and FP counts under varying

sample sizes. (A) DE genes between normal and cancer sample groups and 3 to 20 sample size conditions were tested for KIRC. (B)

DE genes between C57BL/6J strain and DBA/2J strain sample groups and 3 to 10 sample size conditions were tested for Bottomly.

(C, D) Hierarchical clustering of DE genes obtained from 12 DE analysis methods based on spearman rank correlation. Top 5000

and 500 DE genes are used to calculate spearman rank correlation for KIRC and Bottomly datasets, respectively.

https://doi.org/10.1371/journal.pone.0232271.g004

Fig 5. CPU-times to run DE analysis methods for KIRC data. Each method was run 10 times for different sample

sizes 3, 5, 10, and 20.

https://doi.org/10.1371/journal.pone.0232271.g005
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PoissonSeq and edgeR.ql. Most methods finished computing within 100 cpu-time. The slowest

was observed to be baySeq (1,000 to 4,000 cpu-time) followed by DESeq.pc and ROTS. As sam-

ple size increased, many methods including baySeq, DESeq.pc, DESeq2, edgeR, and SAMseq

showed a linear increase in the computing time.

Conclusion

We compared the performances of DE analysis methods including recent developments avail-

able from popularly used packages, for RNA spike-in, simulated read counts, and real RNA-

seq data. We demonstrated the extremely small dispersions and proportion of DE genes in the

spike-in data could cause quite different benchmarking results. We performed most extensive

simulation tests based on NB model and obtained many new or more detailed results in addi-

tion to confirming previously tested results. Our test results suggest appropriate methods in

each experimental condition.

Supporting information

S1 Fig. Performance comparison of 13 DE analysis methods for SEQC benchmark and

simulation data. Area under ROC curve (AUC), true positive rate (TPR) and true false discov-

ery rate (true FDR) are shown. Three and five samples were used in simulation tests. (A) Test

results for SEQC spike-in data (5 samples). 0.25, 1.5, and 2 fold changes were introduced to

DE genes. (B) KIRC based simulation. Not less than 1.5 or 1.3 fold changes are introduced to

0.27% of 10,000 genes for 3 and 5 samples, respectively. (C) Two conditions are different from

B: fixed fold changes of 0.625, 1.15, and 1.3 were introduced to DE genes, and dispersions were

also lowered to SEQC level (22.5 times) (D) The same condition as A but DE proportion was

increased to 1%.

(EPS)

S2 Fig. Simulation study with KIRC parameters. Dispersions between test and control

groups are different (A) Three samples per each group and four different proportions of DE

genes (5%, 10%, 30%, and 60%) were used. (B) Sample size is increased to ten. (C, D) Each

read count can be a random outlier with 5% probability.

(EPS)

S3 Fig. Simulation study with KIRC parameters for imbalanced DE proportions where

70% or 90% DE genes are upregulated (Bal = 70% and 90%). No random outlier was

included, and same dispersions were used between conditions. (A) Three samples per each

group and Bal = 70% were used for four different proportions DE genes (5%, 10%, 30%, and

60%). (B) Bal = 90%. (C, D) The same condition as A-B, but sample size is increased to ten.

(EPS)

S4 Fig. Simulation study for low probabilities (1% and 3%) of each read count being an

outlier (KIRC parameters). (A) 1% probability for each read count to be an outlier was

applied. Three samples per each group and four different proportions DE genes (5%, 10%,

30%, and 60%) were used. (B) The same condition as A, but the sample size is increased to ten.

(C, D) The same as A and B, but the outlier probability of 3% is used.

(EPS)

S5 Fig. Simulation test with KIRC parameters for complex conditions. 30% of each sample

group have fivefold increased dispersion parameters and 3% of counts in the other samples

were regenerated as outliers. Ten and 30 samples were used in each sample group for (A) and
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(B), respectively.

(EPS)

S6 Fig. Performance comparison of 12 DE analysis methods for simulated RNA-seq data

with Bottomly parameters. Area under ROC curve (AUC), true positive rate (TPR) and true

false discovery rate (true FDR) are shown. Three and ten samples were used in each sample

group for (A, C, E) and (B, D, F), respectively. (A, B) Same dispersion between test and control

groups, Bal = 50%, four different proportions DE genes (5%, 10%, 30%, and 60%) were used.

(C, D) Random outlier counts: the same condition as A-B but each read count can be a ran-

dom outlier with 5% probability. (E, F) Low quality samples: the same condition as (A, B) but

one and three samples of each sample group have fivefold increased dispersion parameters.

(EPS)

S7 Fig. Simulation study with Bottomly parameters. Dispersions between test and control

groups are different (A) Three samples per each group and four different proportions of DE

genes (5%, 10%, 30%, and 60%) were used. (B) The sample size is increased to ten. (C, D) The

same condition as A-B but each read count can be a random outlier with 5% probability.

(EPS)

S8 Fig. Simulation study with Bottomly parameters for imbalanced DE proportions where

70% or 90% DE genes are upregulated (Bal = 70% and 90%). Same dispersions were used

between conditions. (A) Three samples per each group and Bal = 70% were used for four dif-

ferent proportions of DE genes (5%, 10%, 30%, and 60%). (B) Bal = 90%. (C, D) Sample size is

increased to ten.

(EPS)

S9 Fig. False positive count comparison of 12 DE analysis methods for simulated RNA-seq

data with Bottomly parameters. Three and ten samples were used in each sample group for

(A, C, E) and (B, D, F), respectively. (A, B) Same dispersions between test and control groups

are assumed. (C, D) Random outlier counts: the same condition as A-B but each read count

can be a random outlier with 5% probability. (E, F) Low quality samples: the same condition as

(A, B) but one and three samples of each sample group have fivefold increased dispersion

parameters.

(EPS)

S10 Fig. Simulation study with hybrid parameters (mBdK: Means of Bottomly and disper-

sions of KIRC). Same dispersions between test and control groups are used. (A) Three samples

per each group and four different proportions of DE genes (5%, 10%, 30%, and 60%) were

used. (B) Sample size is increased to ten. (C, D) Random outlier counts: the same condition as

A-B, but each read count can be a random outlier with 5% probability.

(EPS)

S11 Fig. Simulation study with hybrid parameters (mKdB: Means of KIRC and dispersions

of Bottomly). Same dispersions between test and control groups are used. (A) Three samples

per each group and four different proportions of DE genes (5%, 10%, 30%, and 60%) were

used. (B) Sample size is increased to ten. (C, D) Random outlier counts: the same condition as

A-B, but each read count can be a random outlier with 5% probability.

(EPS)

S12 Fig. Principal Component Analysis for (A) KIRC and (B) Bottomly datasets.

(EPS)
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S13 Fig. Similarity of DE analysis methods. Hierarchical clustering of DE genes based on

spearman rank correlation. The union of top 3000 and 300 DE genes obtained from 12 DE

analysis methods were clustered between different methods based on spearman rank correla-

tion for (A) KIRC and (B) Bottomly datasets, respectively.

(EPS)
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