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Abstract: Antimicrobial resistance is a multifaceted crisis, imposing a serious threat to global
health. The traditional antibiotic pipeline has been exhausted, prompting research into alternate
antimicrobial strategies. Inspired by nature, antimicrobial peptides are rapidly gaining attention for
their clinical potential as they present distinct advantages over traditional antibiotics. Antimicrobial
peptides are found in all forms of life and demonstrate a pivotal role in the innate immune
system. Many antimicrobial peptides are evolutionarily conserved, with limited propensity for
resistance. Additionally, chemical modifications to the peptide backbone can be used to improve
biological activity and stability and reduce toxicity. This review details the therapeutic potential
of peptide-based antimicrobials, as well as the challenges needed to overcome in order for clinical
translation. We explore the proposed mechanisms of activity, design of synthetic biomimics, and
how this novel class of antimicrobial compound may address the need for effective antibiotics.
Finally, we discuss commercially available peptide-based antimicrobials and antimicrobial peptides
in clinical trials.

Keywords: antimicrobial peptides; antibiotic-resistance; antimicrobial activity; peptide-based
therapies; cationic peptides; clinical translation

1. Introduction

Antimicrobial resistance is not a single grand challenge, but a series of interconnected challenges.
In order to prevent an apocalyptic post-antibiotic era, we require the efforts of governments, policy
makers, pharmaceutical companies, agricultural workers, healthcare workers, and the general public.
The commercialization of antibiotics in twentieth century marked a new era of modern medicine.
Today, the number of antibiotic-resistant bacteria continues to rise [1]. While there are many factors that
determine antimicrobial-resistance, the global spread of antibiotic-resistant bacteria can be attributed
to the misuse of antibiotics and an absence of effective antibiotics released to the market [2]. This crisis
requires a global collaboration and comprehensive effort to design and produce effective antimicrobial
agents that limit the spread of antimicrobial-resistant pathogens. Currently under extensive clinical
research is the naturally occurring class of antimicrobial peptides. This review will explore the benefits
and challenges of antimicrobial peptides as therapeutic agents.
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2. History of Antibiotics and Resistance

Prior to the commercialization of antibiotics, the three leading causes of death were pneumonia
and flu, tuberculosis, and gastrointestinal infections [3]. During World War I (WWI), infectious diseases
caused more deaths than battle wounds [4]. The serendipitous discovery of penicillin in 1928 marked
a new era of modern medicine [5]. Not only did it spark the development of new antibiotics, but it
changed the entire drug discovery pipeline. Today, we have a myriad of antibiotics that are effective
against a wide range of bacteria. However, the over-reliance on antibiotics came with a cost—a cost we
were warned about by Alexander Fleming in his 1945 Nobel prize acceptance speech. He expressed
his concern about improper use of penicillin and how easily resistance is acquired with insufficient
treatment dosages [6]. It is clear we did not heed this warning and are now suffering the consequences.
A brief timeline of antibiotic resistance is provided in Figure 1.
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Fleming’s concerns still have far reaching implications. A comprehensive report, aimed to assess
rising antimicrobial resistance, has predicted that, by 2050, over 10 million deaths with occur annually
as a result of antimicrobial resistant pathogens, culminating to a 100 trillion USD economic burden [1].
Without the use of effective antibiotics, many surgical procedures and treatments that suppress the
immune system (such as chemotherapy) will be prohibited [1]. Similar to the impact of viral pandemics,
without effective prophylactic treatments, or cures, healthcare systems will be consumed with the
spread of uncontrollable diseases.

A variety of factors have led to the progressive increase in antibiotic resistant bacteria; however,
they all narrow down to the over-reliance on antibiotics. The use of antibiotics in agriculture and
the environment is largely unregulated; only when resistance is widespread are certain antibiotics
prohibited [7]. Alarmingly, 80% of all antibiotics are consumed by animals, with the remaining 20%
for human use [8]. These powerful antibiotics are used in agriculture as growth promoters and to
prevent infection of animals kept in unhygienic environmental conditions. For example, colistin is a
last-resort antibiotic for the treatment of unresponsive multidrug-resistant infections. However, its
widespread use in agriculture has propelled the emergence of the mobilized colistin-resistance (mcr)
gene, with enormous implications for the treatment of human infection [7]. Without action, history
suggests we will see our remaining effective antibiotics suffer similar fates.

Over-prescription of antibiotics is another critical factor in the evolution of resistance. In some
countries, antibiotics are available as over-the-counter medications [9]. By contrast, in countries where
antibiotics are prescription-only, the majority of prescriptions are inappropriate [10,11]. For example,
physicians may pre-emptively prescribe an antibiotic based on symptoms of disease, without
confirmation of a bacterial infection [12]. In other cases, antibiotics are prophylactically prescribed to
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patients with viral infections, in order to limit the occurrence of a secondary bacterial infection [13].
A push for antimicrobial stewardship has reduced the number of inappropriate antibiotic prescriptions,
but vigilance remains important [14].

Bacteria utilize multiple mechanisms in their evolution of antibiotic resistance. Briefly, when
a bacterial population is exposed to an antibiotic, the susceptible portion is killed. However, small
genetic mutations within a population allow the resistant proportion to recolonize the infection
site [15]. Mutations in bacterial populations occur randomly, and relatively slowly. A more rapid
form of antibiotic resistance emerges via horizontal gene transfer. Bacteria can acquire genetic
material from neighboring resistant-species and incorporate mutant genes into their own genome [16].
Approximately 20% of the Escherichia coli genome has been modified over time through horizontal
gene transfer [17]. Modifications to bacterial genomes via horizontal gene transfer are commonly seen
in biofilm communities, where bacterial communication is essential to their survival [18].

Most commonly, mutations result in the structural modification of an antibiotic target,
and subsequent abolishment of antibiotic activity. For example, changes in the structure of the
23S rRNA in Streptococcus pneumoniae and Staphylococcus aureus confer resistance to the antibiotic
linezolid [19]. Resistance to penicillin and other antibiotics in the β-lactam class (cephalosporins,
monobactams, carbapenems, and carbacephems) has also emerged owing to the evolution of a diverse
range of β-lactamase enzymes. These enzymes directly hydrolyze the antibiotic and render them
ineffective [20]. These and various other mechanisms of antibiotic resistance have been extensively
reviewed by Munita and Arias [15].

Regulatory and economic hurdles have also stalled the development of new antibiotics by the
pharmaceutical industry. As resistant bacteria emerged, and certain antibiotics became ineffective,
“me-too” drugs were developed. Minor modifications were made to existing antibiotics; however, many
had an identical mechanism of action [21]. Thus, rapid resistance was seen with these compounds.
Today, the antibiotic pipeline has been exhausted, with the number of new antibiotics developed seeing
a steady decline over the last three decades [2]. Novel drug development is time consuming and
costly, thus many pharmaceutical companies have directed their attention towards more profitable
drugs. While antibiotic research declines, drug-resistant pathogens are increasing globally [22]. Of the
twelve antibiotics released since 2000, eight have widespread resistant clinical isolates. The most
recent antibiotic combination, ceftazidime/avibactam, developed in resistant isolates within one year
of release to market [23].

3. Antimicrobial Peptides in Nature

There is an undeniable need to research novel antibiotic compounds and new strategies to combat
bacterial infections. Antimicrobial peptides and their mimics are rapidly gaining attention as a new
class of antimicrobial, with profound clinical potential. Antimicrobial peptides show extraordinary
chemical diversity in nature. However, there are some common structural characteristics that set them
apart from traditional antibiotics. These peptides usually contain less than 100 amino acids, often
including more positively charged residues (such as lysine, arginine, and histidine) and a large portion
of hydrophobic residues (>50%) [24]. In addition to their structural differences, antimicrobial peptides
often target the bacterial cell membrane directly, as opposed to intracellular machinery (Figure 2).

Antimicrobial peptides are broadly classified into four different groups based on their structure:
α-helical, β-sheet, extended, and cyclic. Some antimicrobial peptides consist entirely of a single helix
or sheet, while others have a more complicated structure. The extended peptides are characterized by
their lack of recognizable structural motifs. However, they contain high amounts of specific amino
acids, such as arginine, tryptophan, glycine, and histidine [25]. The human histatins are particularly
rich in histidine residues. The diversity of three-dimensional antimicrobial peptide structures is shown
in Figure 3.
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Antimicrobial peptides have been identified in all domains of life, where they play an important
role in innate immunity. As insects and plants do not have an adaptive immune system, antimicrobial
peptides are their primary defense against pathogenic microorganisms [32,33]. Antimicrobial peptides
are also produced by bacteria and other microorganisms, where they help microbes to defend their
environmental niche [32,33]. Antimicrobial peptides have more diverse roles in higher eukaryotes,
including regulation of the innate and adaptive immune pathways [34].

The first evidence for the critical role played by antimicrobial peptides in insect defense
systems was obtained in the 1996, when Hoffmann and colleagues demonstrated that removal
of the antimicrobial peptide synthesis genetic machinery rendered fruit flies susceptible to fungal
infections [35]. Simultaneously, with the discovery of antimicrobial peptides in mammalian skin and
demonstration of the importance of antimicrobial peptides in mammalian host defense, scientific
and clinical interest in antimicrobial peptides increased [36]. Since then, antimicrobial peptides have
been discovered and characterized from almost every multicellular organism. The Antimicrobial
Peptide Database (http://aps.unmc.edu/AP/main.php) currently contains more than 3000 antimicrobial
peptides, with this number expected to increase in the coming years.

The most prevalent mechanism of action of antimicrobial peptides is via their direct activity on
the bacterial cell membrane [37]. The amphipathic nature of antimicrobial peptides contributes to their
ability to interact with bacterial membranes. Most antimicrobial peptides have a net positive charge
and are thus called cationic antimicrobial peptides. Electrostatic interactions between the cationic
antimicrobial peptides and anionic bacterial membranes stabilize the binding of these antimicrobial
peptides to the membranes. Subsequently, the bacterial membrane is disrupted, leading to insertion of
antimicrobial peptides into the membranes and, often, the formation of pores [33]. Various mechanisms
have been suggested for the permeation of antimicrobial peptides through bacterial membranes
and have been extensively reviewed [38,39]. In summary, antimicrobial peptide binding leads to a
breakdown of membrane potential, an alteration in membrane permeability, and metabolite leakage,
ultimately causing bacterial cell death.

In addition to their direct activity as antimicrobials, antimicrobial peptides regulate key
immunomodulatory mechanisms in the innate immune system (Figure 2). In higher eukaryotes,
a class of antimicrobial peptides, called host defense peptides, modulate immune responses by acting
as chemoattractants for leukocytes, enhancing leukocyte/monocyte activity and the expression of
proinflammatory cytokines [33]. For example, the human antimicrobial peptide, LL-37, a membrane
disrupting peptide, also acts as a chemoattractant for monocytes, neutrophils, mast cells, and T cells [33].

Antimicrobial peptides produced by vertebrates are grouped into two major families: defensins
and cathelicidins. LL-37 is the only human cathelicidin peptide. In non-polar environments, LL-37
has an α-helical morphology [33]. Defensins also exhibit chemotactic properties alongside their
bactericidal effects. Defensins are produced by multiple cell types, such as neutrophils, macrophages,
cardiomyocytes, lymphocytes, keratinocytes, and intestinal epithelial cells [37]. In addition to their role
as chemoattractants, defensins are also involved in the activation of classical complement pathways [40].

An advantage of antimicrobial peptides is their action on distinct biological targets to traditional
antibiotics [41]. Moreover, a unique quality of many antimicrobial peptides is their multiple mechanisms
of action, which together contribute to their overall antimicrobial activity. For example, the human
cathelicidin LL-37 demonstrates direct antimicrobial killing, immune modulation, and antibiofilm
activity [42]. While most commonly known for its action on the bacterial cell membrane, LL-37 is also
able to modulate both pro-inflammatory and anti-inflammatory immune responses [43]. Additionally,
LL-37 exerts antibiofilm activity at physiologically relevant concentrations, far below its in vitro
minimum inhibitory concentration (MIC) [44,45]. Thus, antimicrobial peptides, such as LL-37, have
diverse and dose-dependent mechanisms of action.

As many antimicrobial peptides act on lipid components of the bacterial cell membrane, they often
demonstrate broad-spectrum antimicrobial activity [46]. Antimicrobial peptides isolated from nature are
effective against bacteria (gram-positive and gram-negative), viruses (enveloped and non-enveloped),
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yeasts, fungi, molds, and parasites [41,47,48]. While a single antimicrobial peptide may not act against
all of these pathogens, owing to their mechanism of action, there may be overlap in microbial activity
between different microbes with anionic membranes. Paradoxically, some antimicrobial peptides
isolated from natural sources can also display species-specific antimicrobial activity [49]. This may
be a consequence of a highly specialized environmental niche, where specific antimicrobial peptides
present an evolutionary advantage.

For example, human defensins have demonstrated antimicrobial activity against bacteria
(gram-positive and gram-negative), fungi, and viruses including human immunodeficiency virus,
influenza A, adenovirus, severe acute respiratory syndrome, human papillomavirus, and herpes
simplex virus [24]. Meanwhile, other antimicrobial peptides, such as C16G2, have been specifically
designed to target strain-specific mutans, leaving the parent strains unaffected [50]. Although not
discussed in this review of antimicrobial activity, some antimicrobial peptides have potent anticancer
activity, which is currently a highly anticipated field of research [51].

4. Therapeutic Potential of Antimicrobial Peptides

As many antimicrobial peptides act directly on the bacterial membrane, as opposed to
intracellular targets, they have similar activity against antibiotic-resistant and antibiotic-sensitive
organisms. For example, mutations in penicillin-binding proteins of Staphylococcus aureus confer
methicillin-resistance. However, as antimicrobial peptides target the cell membrane, there is no overlap
in the mechanism of action, and no cross-resistance is observed. Considering that antimicrobial
peptides have potent activity against multidrug-resistant organisms, they could be used to treat the
increasing number of antibiotic-resistant infections [52].

Additionally, the ability for a single antimicrobial peptide to act via multiple mechanisms, and
distinct pathways, not only increases its antimicrobial efficacy, but also decreases the propensity for
resistance to occur [53]. A compound that acts via multiple pathways reduces the likelihood that
bacteria can acquire multiple mutations simultaneously. Moreover, as many antimicrobial peptides act
on evolutionarily conserved components of the cell membrane, bacteria must completely redesign the
structure of their cell membranes, requiring multiple mutations over a prolonged period of time [54].
It is common in cancer chemotherapy for multiple drugs, with distinct mechanisms, to be used in
combination to limit tumour resistance [55]. However, the use of multiple drugs increases the potential
side effects and toxicity of chemotherapy. Therefore, a single antimicrobial peptide drug, with multiple
complementary mechanisms, may have the same antimicrobial effect with minimal side effects.

These desirable qualities of antimicrobial peptides lead to another potential
application—coadministration with antibiotics. Combinational antimicrobial peptide and
antibiotic therapy may reduce or bypass the occurrence of antibiotic resistance [56]. For example,
combination therapy with the antimicrobial peptide DP7 eradicated vancomycin and azithromycin
resistance in Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli [57]. Additionally,
in vitro synergy has been observed between many antimicrobial peptides and antibiotics [58–60].
This demonstrates particular clinical relevance where the toxicity or adverse side effects of a drug
may be reduced when used in combination, at lower dosages. Not only do antimicrobial peptides
demonstrate synergistic activity with antibiotics, but they may also interact synergistically with
components of the immune system [61].

When considering antimicrobials peptides for their clinical use, it is important to consider toxicity
to eukaryotic cells. A number of antimicrobial peptides have been shown to be highly nephrotoxic,
largely owing to their high therapeutic dose [62]. Even commercially available antibiotics, such as
colistin, are only used as a last resort because of their nephrotoxicity [63]. Selective drug delivery
methods may reduce the systemic toxicity of antimicrobials peptide therapy and explains why many
antimicrobials peptides have been developed as topical applications.

Synthetic mimics of antimicrobials peptides represent a promising class of novel antibiotic. They are
rationally designed in the laboratory to retain an antimicrobial pharmacophore, while allowing
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flexibility in the chemical structure to adjust for desirable properties such as improved activity,
reduced cytotoxicity, and proteolysis. Synthetic mimics are used to overcome the difficulties of
synthesizing non-canonical amino acids and complex structural motifs [64]. Solid-phase synthesis
is used to generate a range of antimicrobial peptides, with the ability to easily modify selective
moieties [65]. Advantageously, chemically synthesized peptide mimics are also more financially viable
than conventional methods.

There is an enormous array of potential modifications that can be used to generate new
antimicrobial peptides. For example, peptoids are a peptide mimic that are resistant to proteolysis,
thus extending their half-life for therapeutic use [66]. In this class of peptide mimics, the side chains are
appended to the nitrogen atom, rather than the alpha carbons. Synthetic mimics of the antimicrobial
peptide magainin have been developed to tune the conformation of aromatic groups and adjust the
overall charge on the molecule. One analogue demonstrated activity against two-hundred strains
of Staphylococcus aureus and Escherichia coli, compared with eight for the endogenous magainin [67].
Enhanced immunomodulatory activity was also seen in this magainin mimic, including neutrophil
chemoattractant and enhanced macrophage activation.

5. Commercially Available Peptide-Based Antibiotics

Currently, there are ten commercially available peptide-based antimicrobials (Table 1). Similar to
many of the traditional antibiotics, seven of these active compounds were isolated from bacterial species.
The remaining three are semi-synthetic derivates of existing compounds. All of these peptide-based
antibiotics act on the bacterial cell membrane, either directly (membrane lysis) or indirectly (inhibition
of cell wall synthesis).

While many antimicrobial peptides have similar mechanistic targets (bacterial cell membrane),
their chemical composition can be very broad, as seen in the peptide-based antibiotics currently on
the market (Table 1). Polypeptides are a chain of peptide-bonded amino acids. Many peptides are
linear in aqueous solutions; because of their amphipathic nature, however, they are able to change their
three-dimensional conformation upon interaction with the bacterial cell membrane [68]. Compared
with their linear counterparts, cyclic peptides have increased stability in vivo [69]. Glycopeptides are a
class of antibiotic, often produced by soil bacteria. The three glycopeptide derivatives (dalbavancin,
oritavancin, and telavancin) each have a lipid moiety attached to the peptide backbone, increasing
their affinity for the bacterial cell membrane [70].

There remains a gap in the market for compounds that are effective against gram-negative
bacteria [71]. The World Health Organisation has published a list of “priority pathogens”, or ESKAPE
pathogens, listing multidrug-resistant bacteria that pose a great threat to human health [72]. Of the
six critical ESKAPE pathogens, four are gram-negative bacteria. Traditionally, these bacteria have
been harder to kill, often because of their cell wall composition and the increased number of drug
efflux pumps [72]. While colistin and polymyxin B have gram-negative activity, because of their
severe toxicity, they are reserved as last-resort treatments when other options have been exhausted.
Gramicidin D has some activity against gram-negative bacteria. However, it shows a strong preference
against gram-positive cell membranes. Again, because of its cytotoxicity, gramicidin is only used as a
topical agent.

Previously, researchers suggested that antimicrobial peptides had a lower propensity for resistance.
However, vancomycin-resistant enterococcus is an increasingly relevant nosocomial pathogen.
Telavancin and oritavancin are both peptide-based antibiotics that were developed in response
to vancomycin-resistant bacteria. Synthetic modifications to the vancomycin structure increased
activity and did not confer cross resistance in vancomycin-resistant organisms [73]. Additionally,
the mobilized colistin resistance (mcr) gene is commonly found in agricultural samples. The implications
of this widespread resistance towards colistin have prompted several countries to ban its use outside
of the hospital system. These observations highlight the need for antimicrobial stewardship, and act as
a warning for future therapeutics.
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Table 1. Commercially available peptide-based antibiotics.

Active Ingredient Origin Target Organism Class Mechanism of Action Indication Dosage Route of Administration Ref

Bacitracin Bacteria
(Bacillus subtilis)

Gram-positive
bacteria Cyclic peptide Inhibits cell wall

synthesis Skin infections
500 units/g
500 units/g
5000 units/vial

Topical
Ophthalmic
Intramuscular

[74]

Dalbavancin Teicoplanin
derivative

Gram-positive
bacteria Lipoglycopeptide Inhibits cell wall

synthesis Skin infections 1000 mg/vial Intravenous [75,76]

Daptomycin
Bacteria
(Streptomyces
roseosporus)

Gram-positive
bacteria Lipopeptide Membrane lysis Skin infections 500 mg/vial Intravenous [77]

Colistin Bacteria
(Bacillus polymyxa)

Gram-negative
bacteria Cyclic peptide Membrane lysis

Multi
drug-resistant
gram-negative
infections

150 mg/vial Intravenous [78,79]

Gramicidin D Bacteria
(Bacillus brevis)

Gram-positive
bacteria,
some
gram-negative
bacteria

Mix of three
polypeptides

Membrane
poration/lysis

Skin and eye
infection

0.25 mg/mL
0.025 mg/mL

Topical
Ophthalmic [80]

Oritavancin Vancomycin
derivative

Gram-positive
bacteria Lipoglycopeptide

Membrane lysis and
inhibits cell wall
synthesis

Skin infections 800 mg/vial Intravenous [81]

Polymyxin B Bacteria
(Bacillus polymyxa)

Gram-negative
bacteria Polypeptide Membrane lysis

Urinary tract
and
bloodstream
infections

10,000 units/g
10,000 units/g
500,000
units/vial

Ophthalmic
Topical
Intravenous

[82]

Teicoplanin
Bacteria
(Actinoplanes
teichomyceticus)

Gram-positive
bacteria Glycopeptide Inhibits cell wall

synthesis

Serious
gram-positive
infections

400 mg/vial
400 mg/vial

Intramuscular
Intravenous [83]

Telavancin Vancomycin
derivative

Gram-positive
bacteria Lipoglycopeptide

Membrane lysis and
inhibits cell wall
synthesis

Skin infections 750 mg/vial Intravenous [84]

Vancomycin
Bacteria
(Amycolatopsis
orientalis)

Gram-positive
bacteria Glycopeptide Inhibits cell wall

synthesis

Serious
gram-positive
infections

250 mg
10 g/vial

Oral
Intravenous [85]
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As research continues into the factors that determine resistance, the origin of each antimicrobial
peptide is proving to be important. Antimicrobial peptides found in nature are classified as either
ribosomally synthesized or non-ribosomally synthesized [53]. Non-ribosomally synthesized peptides
are produced by bacteria and fungi [53]. These include bacitracin, daptomycin, colistin, gramicidin,
polymyxin B, teicoplanin, and vancomycin. They utilize peptide synthetases to catalyze the production
of peptides. In contrast, ribosomally synthesized peptides are produced by plants, animals, and some
bacteria, and are found as evolutionarily conserved peptides of the innate immune defenses [53].
These include defensins, indolicidin, lactoferricin, magainins, and melittin. It has been proposed
that the acquisition of resistance towards ribosomally synthesized peptides is lower, compared with
non-ribosomally synthesized peptides [86]. Evidently, there is an unknown biological significance of
the origin of each antimicrobial peptide. Thus, pursuing drug derivatives that are based on ribosomally
synthesized peptides may reduce clinical resistance. However, more research is needed to understand
this trend.

The design and optimization of peptide mimetics represents a promising avenue for new bioactive
compounds. For example, telavancin is a semi-synthetic derivative of vancomycin. The hydrophobic
(decylaminoethyl) side chain, appended to the vancosamine sugar, aids in the attachment to bacterial
cell membranes [87]. An additional hydrophilic (phosphonmethyl aminomethyl) attachment to the
resorcinol moiety increases the half-life of the compound [87]. Telavancin has a proposed second
mechanism of action of membrane lysis. It is thought that hydrophobic appendage interacts with
lipid II, a peptoglycan embedded in the bacterial cell membrane [88]. While the precise molecular
mechanisms remain to be elucidated, preliminary studies in Staphylococcus aureus demonstrate that
lipid II binding rapidly depolarizes the cell membrane [89].

Antimicrobial peptides are often susceptible to proteases in serum, and may display eukaryotic cell
toxicity in high therapeutic doses [90]. Consequently, they are often developed as topical antibacterial
agents. Bacitracin and gramicidin are exclusively used as topical agents owing to their protease
degradation and hemolytic side effects. However, topical applications come with their own unique
challenges. For example, topical gels and creams require sufficient tissue penetration in order to be
effective against skin wounds [91]. Thus, drug delivery plays an important role in the efficacy of
antimicrobials. Therapeutic development of antimicrobial peptides should focus on optimizing each
individual compound to suit the chosen delivery method. Synthetic modifications of antimicrobial
peptides may reduce the toxicity and/or increase stability and allow for greater drug delivery options.

6. Antimicrobial Peptides in Clinical Trials

The vast number of antimicrobial peptides entering clinical trials reflects their therapeutic potential
(Table 2). The antimicrobial peptides in clinical development can be categorized into three distinct
approaches: (i) direct antimicrobial activity via the cell membrane, (ii) indirect antimicrobial activity
via immune modulation, and (iii) inhibition of intracellular functions. Of the forty-four peptides
undergoing clinical and pre-clinical trials, thirty-five compounds act directly on the bacterial cell
membrane, where eight target the immune system to modulate the body’s response to infection and
three act on an intracellular targets (Table 2). Sixteen of these compounds demonstrate broad-spectrum
activity, addressing the need for gram-negative activity.

While antimicrobial peptides themselves are a new class of antibiotic, their unique mechanism of
action has also opened a plethora of novel applications. For example, the membrane-active, chimeric
peptides melimine, and Mel4 retain antimicrobial activity when covalently bound to contact lens
surfaces [92,93]. Moreover, the coated lenses were active after repeated microbial exposure [94].
The covalent attachment of an antimicrobial molecule removes the need for recurrent dosing and
avoids non-compliance of individual dosing regimens. A phase III clinical trial of covalently attached
Mel4 contact lenses found that, with extended wear (14 days), the incidence of corneal infiltration was
reduced by 50% [95]. No cytotoxicity or corneal irritation was observed.
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Table 2. Peptide-based antimicrobial compounds in clinical trials.

Name Origin Target Organism Class Mechanism of Action Indication Dosage Route of Administration Ref

Phase 3

Dusquetide
(IMX942, SGX942)

Rational drug
design

p62 protein
(sequestosome-1)

Synthetic
peptide Immune modulation Oral complications of

chemotherapy 1.5 mg/mL Intravenous NCT03237325

Iseganan
(IB-367)

Protegrin
analogue

Broad spectrum
antibacterial

Synthetic
peptide

Bacterial membrane
disruption

Oral complications of
radiation therapy,
Ventilator-associated
pneumonia

Undefined
9 mg

Oral rinse
Inhalation

NCT00022373
NCT00118781

Mel4 Melimine
analogue

Broad spectrum
antibacterial

Synthetic
chimeric
peptide

Bacterial membrane
disruption Keratitis Undefined Ocular ACTRN1261500072556

Murepavadin
(POL7080)

Protegrin-1
synthetic mimic Pseudomonas Synthetic

peptide

Bacterial membrane
disruption via LptD
binding

Ventilator-associated
pneumonia Undefined Intravenous NCT03409679

Omiganan
(MX-226)

Indolicidin
analogue

Broad spectrum
antifungal,
antibacterial

Synthetic
peptide

Bacterial membrane
disruption

Severe papulopustular
rosacea Undefined Topical NCT02576847

p2TA
(AB103)

Rational drug
design

CD28 receptor on
T-helper 1
lymphocytes

Synthetic
peptide Immune modulation Necrotizing soft tissue

infections 0.5 mg/kg Intravenous NCT02469857

Pexiganan
(MSI-78)

Magainin
analogue

Broad spectrum
antibacterial

Synthetic
peptide

Bacterial membrane
disruption Diabetic foot ulcers 0.8% w/w Topical NCT01590758

Surotomycin
(CB-183,315)

Daptomycin
analogue

Gram-positive
bacteria

Synthetic cyclic
lipopeptide

Bacterial membrane
disruption

Clostridium difficile
infection 250 mg Oral NCT01597505

Talactoferrin
(TLF, rhLF)

Lactoferrin
analogue

Gastrointestinal
epithelium

Synthetic
glycoprotein Immune modulation Severe sepsis 100 mg/mL Oral solution NCT01273779

Phase 2

Brilacidin
(PMX-30063) Defensin mimetic Broad spectrum

antibacterial
Arylamide
foldamer

Bacterial membrane
disruption

Oral complications of
radiation therapy 3 mg/mL Oral rinse NCT02324335

C16G2 Novispirin
analogue Streptococcus mutans Synthetic

peptide

Strain selective
membrane disruption,
intracellular targets

Dental caries 13.6 mg
9.2 mg

Oral varnish
Oral strip NCT03196219

DPK 060
(GKH17-WWW)

Human protein
kininogen
derivative

Broad spectrum
antibacterial

Synthetic
peptide

Bacterial membrane
disruption Acute otitis externa 2% w/w Auricular NCT01447017
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Table 2. Cont.

Name Origin Target Organism Class Mechanism of Action Indication Dosage Route of Administration Ref

EA-230

Human chorionic
gonadotrophin
hormone
derivative

Proinflammatory
immune pathway

Synthetic linear
tetrapeptide Immune modulation Systemic inflammatory

response syndrome 90 mg/kg Intravenous NCT03145220

Exeporfinium
chloride
(XF-73)

Dicationic
porphyrin
derivative

Broad spectrum
antibacterial

Synthetic
porphyrin

Bacterial membrane
disruption Staphylococcal infections 0.2% w/w Nasal gel NCT03915470

LL-37
Human
cathelicidin
LL-37

Antibacterial,
antibiofilm Cathelicidin

Bacterial membrane
disruption, immune
modulation

Diabetic foot ulcer 0.5 mg/mL Topical NCT04098562

Lytixar
(LTX-109)

Host defense
peptide derivative

Broad spectrum
antibacterial

Synthetic
Oligopeptide

Bacterial membrane
disruption

Gram-positive skin
infections 5% w/w Topical NCT01223222

Melimine Melittin /
protamine splice

Broad spectrum
antibacterial

Synthetic
chimeric
peptide

Bacterial membrane
disruption Keratitis Undefined Ocular ACTRN12613000369729

Novexatin
(NP213)

Rational drug
design Antifungal Synthetic, cyclic

peptide
Bacterial membrane
disruption Fungal nail infection 10% w/w Topical NCT02933879

OP-145
Human
cathelicidin
LL-37 derivative

Broad spectrum
antibacterial

Synthetic
peptide

Bacterial membrane
disruption

Chronic suppurative
otitis media 0.5 mg/mL Auricular ISRCTN12149720

Opebacan
(rBPI21, neuprex)

Human
recombinant
endotoxin-binding
protein

Lipopolysaccharides/
endotoxins of
gram-negative
bacteria

Synthetic
peptide

Bacterial membrane
disruption

Graft versus host
disease 4 mg/kg Intravenous NCT00454155

PAC113
(Nal-P-113) Histatin analogue Broad spectrum

antibacterial
Synthetic
peptide

Bacterial membrane
disruption, immune
modulation,
anti-biofilm

Oral candidiasis 0.15% Oral rinse NCT00659971

XOMA-629
(XMP-629)

Human
recombinant
endotoxin-binding
protein

Lipopolysaccharides/
endotoxins of
gram-negative
bacteria

Synthetic
peptide

Bacterial membrane
disruption Bacterial skin infections 1% w/w Topical [96]

Phase 1

hLF1-11 Lactoferrin
derivative

Broad spectrum
antibacterial,
antifungal

Synthetic
peptide

Chelating agent,
immune modulation

Staphylococcal
bacteremia 0.5 mg Intravenous NCT00509847
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Table 2. Cont.

Name Origin Target Organism Class Mechanism of Action Indication Dosage Route of Administration Ref

WLBU2
(PLG0206)

Rationally
designed

Broad spectrum
antibacterial, antiviral

Synthetic
peptide

Bacterial membrane
disruption Microbial infections 3 mg/kg Intravenous ACTRN12618001920280

Preclinical

Bac8c Bactenecin
derivative

Broad spectrum
antibacterial

Synthetic
peptide

Bacterial membrane
disruption Dental carries MIC E. coli 6 µg/mL Oral spray [97–99]

Bacteriocin OR-7 Lactobacillus
salivarius

Gram negative
bacteria, campylobacter
jejuni

Bacteriocin Bacterial membrane
disruption Bacterial infections MIC C. coli

0.5 µg/mL Undefined [100,101]

Buforin II Bufo bufo
gargarizans

Broad spectrum
antibacterial Bofurin I Nucleic acid binding A. baumannii infections

E. coli infections
1 mg/kg
0.05 mg/mL

Intravenous
Oral [102–105]

CA(1-7)M(2-9) Cecropin
A/melittin splice

Broad spectrum
antibacterial

Synthetic
chimeric
peptide

Bacterial membrane
disruption Bacterial infections MIC A. baumannii

2 µg/mL Undefined [106,107]

Colicin E1 Escherichia coli
H22 Antibacterial Bacteriocin Bacterial membrane

disruption Bacterial infections MIC E. coli 1 µg/mL Undefined [108,109]

Demegel
(D2A21)

Cecropin
analogue

Antifungal,
antibacterial

Synthetic
peptide

Bacterial, fungal
membrane disruption Burn wounds 1.5% w/w Topical [110,111]

ETD151 Heliomycin
analogue Antifungal Synthetic

peptide
Fungal membrane
disruption Fungal infections Undefined Intravenous [112]

HB-107 Cecropin B Wound healing Cecropin B
fragment

Undefined,
nonbacteriostatic Wound infections 100 µg/mL Topical [113,114]

HB-50 Cecropin
analogue

Broad spectrum
antibacterial

Synthetic
peptide

Bacterial membrane
disruption Wound infections 1% Topical [110,115]

HB1345 Rational design
Broad spectrum
antibacterial,
anti-inflammatory

Synthetic
lipohexapeptide

Bacterial membrane
disruption Skin infections, acne

MIC
P. acnes
1 µg/mL

Topical [116,117]

IDR-1002 Bactenecin
derivative Staphylococcus aureus Synthetic

peptide Immune modulation P. aeruginosa lung
infections 50 µM Intratracheal [118,119]

Lactocin 160 Lactobacillus
rhamnosus

Antibacterial,
Gardnerella vaginalis Bacteriocin Bacterial membrane

disruption Bacterial vaginosis 10 mg/mL Intravaginal [120]

Nisin A Lactococcus lactis
Antibacterial,
spermicidal
contraceptive

Type A
lantibiotic,
bacteriocin

Bacterial membrane
disruption Bacterial infections 8 µg/mL Undefined [121,122]

Novarifyn
(NP432)

Rationally
designed

Broad spectrum
antibacterial

Synthetic
peptide

Bacterial membrane
disruption Bacterial infections Undefined Topical [123,124]
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Table 2. Cont.

Name Origin Target Organism Class Mechanism of Action Indication Dosage Route of Administration Ref

Pediocin PA-1 Pediococcus
acidilactici UL5 Antibacterial Bacteriocin Bacterial membrane

disruption Bacterial infections 1.8 nM Undefined [125,126]

Planosporicin Planomonospora Gram-positive
bacteria Lantibiotic Inhibition of cell wall

biosynthesis
Methicillin-resistant S.
aureus infections

MIC
S. aureus
2 µg/mL

Undefined [127,128]

Ruminococcin C Ruminococcus
gnavus Anti-clostridial Bacteriocin Bacterial membrane

disruption
Gastrointestinal
infections 1.2 µM Oral [129–131]

SB006 (M6) Rational design Gram-negative
bacteria

Synthetic
peptide

Bacterial membrane
disruption Bacterial infections 4 µg/mL Undefined [132]

Syphaxin
(SPX1-22)

Leptodactylus
syphax

Broad spectrum
antibacterial Ocellatin-S1 Bacterial membrane

disruption Bacterial infections
MIC
S. aureus
64 µg/mL

Undefined [133]

Temporin10a Rana ornativentris Gram-positive
bacteria Temporin Bacterial membrane

disruption Bacterial infections
MIC
S. aureus
2 µM

Undefined [134]



Int. J. Mol. Sci. 2020, 21, 7047 14 of 23

In addition to their antibacterial activity, many antimicrobial peptides act on the fungal cell
membrane [135]. Similarly to antibiotics, most antifungal agents act on intracellular targets [136].
Thus, many of the problems with antibiotics also apply to antifungals. The antimicrobial action
on the cell membrane reduces the development of drug-resistant strains. Candida species are the
most common opportunistic fungal pathogens, with limited therapeutic options and increasing
antifungal-resistance [136]. Of the peptide-based compounds in clinical trials (Table 2), omiganan,
novexatin, hLF(1-11), demegel, and ETD151 all demonstrated activity against Candida species, including
drug-resistant strains. These compounds are promising candidates to treat fungal infections that are
resistant to available antifungal agents.

While the majority of antimicrobial peptides act directly on the bacterial cell membrane, a select few
act on intracellular targets. Buforin II is a broad spectrum antibacterial in preclinical trials. Mechanistic
studies proved that buforin II caused bacterial cell death, without membrane lysis, even at 5×MIC [103].
While structurally similar to the membrane-active magainin 2, buforin II accumulates inside the cell
and binds nucleic acids, resulting in rapid cell death [103]. Planosporicin is a natural peptide with a
similar mechanism of action to β-lactam antibiotics. While its primary action is inhibition of cell wall
synthesis, a recent paper reports that planosporin also acts as an extracellular signaling molecule to
increase its own production [137]. This feed-forward mechanism was shown to produce biologically
effective concentrations of planosporin [137].

Alternatively, some antimicrobial peptides do not have direct antibacterial activity. Paradoxically,
these compounds may be the strategy we need to limit bacterial resistance. Any biocidal compound
will encounter resistant organisms. However, with no bacterial target to modify, resistance cannot
occur to these compounds. Many of the compounds in clinical development to treat sepsis act on
pro-inflammatory immune pathways. For example, p2TA is a peptide mimic of the CD28 receptor on
T-helper 1 lymphocytes and EA-230 is a human chorionic gonadotropin hormone mimic. The immune
modulating peptide, dusquetide, is currently in Phase III clinical trial. This peptide mimic acts on the p62
protein expressed on innate immune cells, in order to increase wound debridement and healing [138].
While these peptides act on different biological targets, each attenuates the pro-inflammatory response
to bacterial toxins, and thus decreases the incidence of organ failure.

Antimicrobial peptides, such as Nal-P-113, also have antibiofilm activity [139]. Biofilm infections
can be up to 1000× more resistant to antibiotics [140], and there is an unmet clinical need for
biofilm-acting compounds. As almost all medical device-related infections are biofilm-related,
these compounds may have a profound impact on the way we prevent infection [141]. While the
exact mechanism of Nal-P-113 is unknown, it was shown to reduce biofilm formation at low
concentrations [139]. Interestingly, this is also seen with the human LL-37 peptide [44]. Furthermore,
recent data highlight the ability of antimicrobial peptides to infiltrate an established biofilm [142].
While antimicrobial peptides are promising candidates, biofilms are complex biological communities,
and more detailed studies are required to evaluate their full potential.

While the currently approved peptide-based antibiotics are mostly isolated from bacteria (Table 1),
many of the antimicrobial peptides currently in clinical trials are chemically synthesized peptide
mimetics (Table 2). The ability to modify the chemical structure of antimicrobial peptides allows
finer tuning of efficacy, toxicity, and stability. The ability to modify a chemical structure to tune for
desired properties will enhance a drug’s ability to proceed through clinical trials. Synthetic mimics of
antimicrobial peptides further elucidate the structure–activity relationship of antimicrobial activity.
For example, in the cecropin family, CA(1-7)M(2-9), demegel, and HB-50 all disrupt the bacterial cell
membrane. However, the cecropin mimic, HB-107, is nonbacteriostatic and is thought to act as an
immunomodulator [114]. This highlights how subtle changes to peptide structures confer different
mechanisms of action.

While the currently approved peptide-based antibiotics are mostly isolated from bacteria (Table 1),
many of the antimicrobial peptides currently in clinical trials are chemically synthesized peptide
mimetics (Table 2). The ability to modify the chemical structure of antimicrobial peptides allows finer
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tuning of efficacy, toxicity, and stability. For example, fine tuning of antimicrobial pharmacophores has
increased the stability of peptides and increased their clinical potential. While many antimicrobial
peptides have been developed as topical agents, a large number have been developed for internal use
(Table 2). Synthetic modifications to reduce systemic toxicity allow peptides to be used internally. For
example, selective tuning of the membrane-active region of an AS-48 homologue reduced cytotoxicity
towards mammalian cells [143].

The range of peptide structures and origins also highlights the diversity of their clinical potential.
Peptide-based agents are not limited to one application, but are being developed for an array of
indications (Table 2). Antimicrobial peptide treatments range from simple mouth washes to treatment
of severe sepsis. While different delivery methods require different dosages, they are comparable to
those required for traditional antibiotics (Tables 1 and 2). Clinical trials have been cautious of toxicity
at these doses, as other peptide-based antibiotics (such as colistin) are toxic in high concentrations.

The successful development of antimicrobial peptides as clinical therapeutics remains a challenge.
A large number of antimicrobial peptides have failed throughout the various stages of clinical trials.
While many show promising activity in animal models and in vitro, this does not always translate to
the multifaceted nature of human disease [144]. One reoccurring reason that antimicrobial peptides fail
to progress to market is that they do not show improved activity over currently available antibiotics,
for a particular indication. Thus, in the clinical trial design, it is important to consider if there is an
overwhelming need for a particular indication. Another concern is the level of toxicity. In the case
of iseganan, the clinical trial was stopped when patients in the treatment group showed increased
mortality compared with placebo [145].

As compounds proceed through clinical trials, the focus shifts from safe drug dosages to drug
efficacy. Thus, the primary reason drugs fail at stage 3 is that they fail to reach clinical endpoints
for efficacy. Indeed, omiganan, pexiganan, and surotomycin failed to show a benefit over control
treatments [146–148]. For iseganan and talactoferrin, the studies were halted because of increased
mortality in treatment groups compared with controls [149,150]. Meanwhile, murepavadin failed
because of acute renal toxicity in the treatment group [151].

7. Future Perspectives

There is a global call for action, for the development of novel antimicrobial compounds, in order
to avert the next antimicrobial crisis. The large number of antimicrobial peptides proceeding clinical
trials reflects their clinical potential. While antimicrobial peptides represent a promising class of
antimicrobial compounds, there is still more work to be done. Many of the antimicrobial peptides in
clinical trials failed to progress to market owing to inappropriate trail design, or lack of efficacy. Thus,
more research into the interaction between peptide-based antimicrobials and the complex human
environment will help to evaluate the true potential of these agents. As antimicrobial peptides represent
a powerful tool against drug-resistant pathogens, clinical trials should focus on where there is an
unmet clinical need in order to gain momentum.

The ability to chemically modify the structure of antimicrobial peptides allows almost infinite
possibility. Identifying a common pharmacophore and desirable modifications will enhance the ability
of a compound to proceed through clinical trials. Indeed, many of the compounds in clinical trials have
some sort of chemical modification to improve their druggability. The development of sophisticated
digital libraries and modelling software will further optimize the development of these compounds.

Finally, we must not repeat the mistakes of our past, and must diligently try to limit the rate
of resistance towards novel antimicrobial compounds. While research suggests that antimicrobial
peptides have a lower propensity for resistance, this phenomenon is an unavoidable evolutionary
consequence. The continued development of varied antimicrobial compounds and mechanisms of
antimicrobial action will help to limit the impact of antimicrobial resistance. Moreover, when a new
antimicrobial drug is released to market, it will require detailed monitoring and stewardship. Limiting
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the use of antimicrobials in non-essential cases, or coadministration with antibiotics, will further limit
the risk of resistant organisms.
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