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Abstract: Identifying patients with a low likelihood of paying their bill serves the needs of patients
and providers alike: aligning government programs with their target beneficiaries while minimizing
patient frustration and reducing waste among emergency physicians by streamlining the billing
process. The goal of this study was to predict the likelihood of patients paying the balance of their
emergency department visit bill within 90 days of receipt. Three machine learning methodologies
were applied to predict payment: logistic regression, decision tree, and random forest. Models were
trained and performance was measured using 1,055,941 patients with non-zero balances across 27 EDs
from 1 August 2015 to 31 July 2017. The decision tree accurately predicted 87% of unsuccessful
payments, providing significant opportunities to identify patients in need of financial assistance.

Keywords: healthcare finance; health equity; emergency department; predictive modeling; Medicaid

1. Introduction

As hospitals and physician groups manage and recover from the COVID-19 pandemic,
the importance of expanding our understanding of health finance to include the complex
array of social and environmental determinants, the developing network of government
programs, and the difficult tradeoffs between personal health and economic stability
patients are faced with is evident.

Emergency physicians (EPs) treat all patients that present to the emergency depart-
ment (ED) regardless of age, severity of injury, or their ability to pay. Due to this federal
mandate, the ED has become the main source of primary care for many financially vul-
nerable patients. Of the 130 million ED visits which occurred in 2013, 36% were covered
by private insurance [1]. However, patients often have less coverage than they expect,
leaving them to face economic repercussions in addition to potentially significant health
challenges. This is especially problematic for lower-income individuals who lack sufficient
assets to cover their health insurance deductible [2].

The number of patients who are unable to pay for their healthcare bills is increasing,
with hospitals providing upwards of USD 660 billion in uncompensated care since the turn
of the century, with over USD 40 billion in 2019 alone [3]. If a patient has not paid the
portion of the bill not covered by insurance, they are ultimately held personally responsible,
despite a lack of resources, which may be compounded by a recent illness or injury that led
to their unplanned emergency care.

Predicting patterns in payment behaviors would identify patients that would benefit
from safety net resources and help providers to connect such qualifying patients with locally
and federally funded services, such as Medicaid, grants, and social workers. These pro-
grams help patients avoid the financial burden of future medical bills and corresponding
detrimental consequences, including the health risks of deferring necessary care due to
financial concerns [4,5]. At a systems level, this can also serve to reduce fragmented care.
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Relatively few studies address the prediction of payment behavior and the significant
burden created by unpaid healthcare bills. In 1991, Zollinger used a multiple regression
model to determine the effect of patient and hospital characteristics on the variation in the
amount of hospital charges left unpaid across 28 Indiana hospitals. He found that insurance
coverage, total hospital charge, pregnancy, marital and employment status, urban location,
and total hospital revenue were significant factors in predicting unpaid hospital bills,
while length-of-stay, gender, age, and diagnoses unrelated to pregnancy and childbirth
were not significant. Notably, 60% of patients with uncompensated balances had some
form of health insurance but were responsible for 40% of the amount owed, emphasizing
the need to increase both health care coverage and collection efforts [6]. The finding that
increasing health insurance coverage decreases uncompensated care is supported by the
sweeping reduction in the burden of uncompensated care throughout states that expanded
Medicaid under the Affordable Care Act (ACA), with estimated savings of USD 6.2 billion
across hospitals in Medicaid expansion states between 2013 and 2015 [7].

Several other studies looked at bad debt versus charity care, in which the exact
write-off is carefully provided via a systematic process [8–10]. Weissman importantly dif-
ferentiated between bad debt that created personal patient liability and balances addressed
through charity care, analyzing the characteristics of patients that remained responsible for
additional balances across six hospitals in Massachusetts in 1992, finding that while most
healthcare debt was not able to be satisfied by the patient (58%), charity care represented
nearly two-thirds of the total write-off amount (63%). In addition, 73% of the patients
faced with outstanding balances were uninsured compared to only 50% of the charity cases,
with pregnant women and newborns representing the largest source of uncompensated
care write-offs [11].

In recent years, healthcare systems have readily applied various data mining tech-
niques to address a wide variety of issues, ranging from determining effective treatment
protocols to detecting insurance fraud [12,13]. This new technology has also been utilized
to model patterns of patient healthcare debt.

In 2005, Zurada and Lonial compared the efficacy of five data mining techniques in
evaluating whether patients are likely to have the means to reduce their healthcare debt, in
an attempt to effectively understand and predict payment behaviors without the insight
of a patient’s financial information. Neural networks, decision trees, logistic regression,
memory-based reasoning, as well as the ensemble method (a combination of the first
three methods) were applied to a dataset of several thousand patients, examining four
characteristics (age, gender, diagnosis, and the total amount owed) to predict whether the
patient would be able to repay their debt burden. Logistic regressions, neural networks,
and the ensemble method exhibited the most accurate classifications, with the neural
network model classifying the most unpursued cases as likely to pay, providing a potential
source of additional recovered income [8].

Four recent works have investigated the effectiveness of computational intelligence
methods to the task of predicting patients’ ability to decrease their healthcare debt in
imbalanced datasets, showing support for the role of cost-sensitive learning methods in
the classification of unknown cases, as well as Bayesian network-based models [9–11,14].

The objectives of this study were to develop and compare the ability of machine
learning (ML) models to predict successful ED visit payment accurately, to help identify
patients in need of financial support, and to lay the foundation for programs that support
patients obtaining access to available low-cost healthcare services. This study expands
existing work by using a significantly larger dataset, both in the number of patients
and features.

2. Materials and Methods

Using data provided by a national billing company, a retrospective, cross-sectional
study was conducted using two years of de-identified patient billing records from 1 August
2015 to 31 July 2017. The dataset included 1,055,941 patients with positive balances due
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from 27 blinded EDs across 13 states. The available data were a combination of information
gathered at patient registration and after billing the patient’s health insurer. Of these
patients, 39% (412,209) successfully paid their bills within 90 days. The remaining patients
did not close their balance in 90 days. The sites and commercial insurance carriers were
blinded to protect the site identities.

Twelve features were used to model and predict successful payment, as shown in
Table 1. For classification and prediction purposes, paid bills were labeled as “positive”,
while unpaid bills were labeled as “negative”. The first feature represents if the patient was
seen by just a physician, as opposed to a shared visit with an advanced practice provider.
Three features represent the patient’s gender, age, and out-of-state residency. The ages
were grouped as: under 18, 18–24, 25–34, 35–44, 45–54, 55–64, 65–79, and over 80, with the
variable representing ages 35–44 omitted and used as a base as it contained the median
age. Additional features represented whether the patient provided a work phone number
and the primary insurance grouped as Medicare, Medicaid, Private, Other, and None,
with Private serving as the base. Notably, this was the insurance information gathered at
registration, which in some cases did not represent the true payer.

Table 1. Twelve categorial features used to model payment results.

# Feature Grouping

1 Physician Only Yes, No

2 Primary CPT 99283, 99284, 99285, 99291, “all other” codes

3 # of CPT codes 1, 2+

4 Patient Age 0–17, 18–24, 25–34, 35–44, 45–54, 55–64, 65–79, 80+

5 Gender Female, Male

6 Out of state No, Yes

7 Work phone No, Yes

8 Primary insurance Medicare, Medicaid, Private, Other

9 Secondary insurance No, Yes

10 Relationship Self, Spouse, Other

11 Marital status Single, Married, Other

12 Patient responsibility Under USD 25, USD 25–100, USD 100–300, USD 300–600, USD 600+

A binary feature was created indicating if the patient had secondary insurance or not,
and another feature categorized if the patient was the policyholder, or their spouse, or
some other relationship. The patient’s marital status was categorized as single, married,
or in another marital status, while the patient’s debt burden was broken into five tiers:
under USD 25, USD 25–100, USD 100–300, USD 300–600, and over USD 600, with the
USD 100 to USD 300 group omitted and used as a base as it contained the median debt
burden. The primary current procedural terminology (CPT) code signified four visit level
severities (99283, 99284, 99285, and 99291), and “all other” codes—99284 was set as the
base, representing an average ED visit severity, while binary variables were created for the
four remaining levels.

We developed and tested three ML models to predict payment behavior: logistic
regression (LR), decision tree (DT), and random forest (RF). Similar to linear regression,
LR is a statistical technique that determines the optimal set of coefficients to multiply
by each independent factor such that the sum of squared error is minimized. LR then
transforms the output to a probability, ranging from 0 to 1. In general, if the likelihood
is greater than 50%, then the model predicts a positive outcome, and negative otherwise.
Alternatively, DT uses recursive partitioning to split a dataset into classes, one field at a
time. At every stage, each threshold within its respective field is examined to determine the
optimal split, such that the two resulting datasets are the most pure (i.e., tending towards
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the positive or negative outcome). RF expands upon traditional DTs. Instead of making a
single tree, many trees are created, each programmed to be slightly different due to random
feature selection. When predicting an outcome, each tree gets a “vote” on the outcome,
with majority rules. Data were prepared in Microsoft Excel, and statistical analyses were
performed using the R statistical programming language.

To develop each predictive model, 80% of the full dataset was first used to “train”
the model, leaving 20% to serve as the test dataset to assess model performance. This
training protocol reduces bias when assessing the quality of each model. Each record in
the test dataset was placed into one of four buckets: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). This bucketing is based on whether the true
result is positive (P) or negative (N), and if the model predicts positive (P’) or predicts
negative (N’). In addition to accuracy, we also measured sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV). Overall accuracy is the ratio
of correct predictions to the total number of records (n). The confusion matrix in Figure 1
shows the equations for all five performance measures.
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Figure 1. Confusion Matrix. Correct predictions are either TP or TN, while incorrect predictions are either FP or FN.
Sensitivity is the ratio of TP to all P, which represents the strength of the model at identifying positive results. The specificity
is the ratio of TN to all N, which represents the strength of the model at identifying negative results. The PPV represents the
likelihood of a positive prediction being correct, while NPV represents the likelihood of a negative prediction being correct.

Prior to running the ML algorithms, we applied the chi-squared test for homogeneity
to each factor. The primary hypothesis is as follows:

Hypothesis H1. The frequency of paid bills has no relation to the level of each factor.

Hypothesis H2. The frequency of paid bills is related to the level of each factor.

3. Results

All features, except for the variable indicating whether a work phone was provided,
were statistically significant (p < 0.001), for which we reject the null hypothesis. We found
that higher severity cases, indicated by CPT level and procedures, were more likely to
fully resolve the debt burden, as well as older, female, and out-of-state patients. Spouses,
children, and married patients were also more likely to successfully pay. Patients with
Medicare and private insurance, secondary insurance, and smaller bills had a higher
likelihood of payment. Table 2 indicates the percentage of patients successfully paying for
all features.
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Table 2. Feature analysis showing the proportion paid for each level and chi-square test results for each feature.

Characteristic
Paid

n = 412,209
Unpaid

n = 643,732
Total

n = 1,055,941
Paid % Chi-Square Statistic p-Value
39.0%

Physician

Y 299,037 420,085 719,122 41.6% 6143.1 <0.001
N 113,172 223,647 336,819 33.6%

Primary CPT

99283 88,734 168,796 257,530 34.5% 4201.4 <0.001
99284 144,804 229,637 374,441 38.7%
99285 149,148 208,494 357,642 41.7%
99291 16,327 20,699 37,026 44.1%
Other 13,196 16,106 29,302 45.0%

# of CPT Codes

1 250,777 457,637 708,414 35.4% 11,966.4 <0.001
2+ 161,432 186,095 347,527 46.5%

Patient Age

0–17 49,604 64,075 113,679 43.6% 93,785.6 <0.001
18–24 38,064 96,132 134,196 28.4%
25–34 49,603 150,315 199,918 24.8%
35–44 47,077 117,222 164,299 28.7%
45–54 60,400 103,120 163,520 36.9%
55–64 71,525 68,523 140,048 51.1%
65–79 60,764 34,084 94,848 64.1%
80+ 35,172 10,261 45,433 77.4%

Gender

Female 217,199 315,202 532,401 40.8% 1396.1 <0.001
Male 195,010 328,530 523,540 37.2%

Out of State

N 367,791 587,716 955,507 38.5% 1255.7 <0.001
Y 44,418 56,016 100,434 44.2%

Work Phone

N 353,854 552,261 906,115 39.1% 0.6 0.635
Y 58,355 91,471 149,826 38.9%

Primary Insurance

Medicare 107,134 69,267 176,401 60.7% 132,260.1 <0.001
Medicaid 25,541 45,450 70,991 36.0%

Private 232,763 279,271 512,034 45.5%
Other 21,662 26,278 47,940 45.2%
None 25,109 223,466 248,575 10.1%

Secondary Insurance

N 319,321 585,117 904,438 35.3% 36,874.9 <0.001
Y 92,888 58,615 151,503 61.3%

Relationship

Self 332,186 573,757 905,943 36.7% 15,370.9 <0.001
Spouse 34,364 26,924 61,288 56.1%
Other 45,659 43,051 88,710 51.5%
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Table 2. Cont.

Characteristic
Paid

n = 412,209
Unpaid

n = 643,732
Total

n = 1,055,941
Paid % Chi-Square Statistic p-Value
39.0%

Marital Status

Single 187,185 396,415 583,600 32.1% 28,347.0 <0.001
Married 165,646 168,597 334,243 49.6%

Other 59,378 78,720 138,098 43.0%

Patient Responsibility

<USD 25 83,229 17,508 100,737 82.6% 113,249.8 <0.001
USD 25–100 104,811 110,896 215,707 48.6%

USD 100–300 80,917 166,145 247,062 32.8%
USD 300–600 81,676 199,839 281,515 29.0%

>USD 600 61,576 149,344 210,920 29.2%

While the factor analysis looked at each variable independently, the LR holistically
modeled all variables simultaneously and produced an odds ratio (OR) instead of a prob-
ability. The OR is the ratio of the probability of success to the probability of failure.
For instance, the OR of 1.97 for ages 0–17 means that in the absence of other information,
patients under seventeen years of age have almost twice the odds of a successful payment
relative to a patient having all the base levels. The OR increases substantially with both
ages above 35–44 and below. Patients without insurance represent the lowest OR out of all
variables. Spouses and children were more likely to pay, as were married adults. Like the
factor analysis, smaller bills were also correlated with a higher likelihood of successful pay-
ment. Table 3 shows the results of the LR analysis, including all ORs, confidence intervals,
and p-values.

Although the full DT includes 131 nodes, which is too large to display, the first four
levels are shown in Figure 2. The top value in each node represents the number of patients
in the training dataset, and the bottom value represents the proportion of patients that
successfully paid their bill. The first split of this tree was made on the level representing
patients with no insurance. The 212,837 patients for which this was true had a 12% payment
rate and the 631,524 that did not, had a 48% payment rate. The count of 212,837 patients
differs from the count of 266,029 patients in Table 2 because this DT used only the training
data, which made up 80% of the total dataset. The DT shows us that the most important
indicator in the dataset is if a patient does not have insurance. If they do have insurance,
the next most important variable is if the amount owed is under USD 25. The tree indicates
that patients with insurance, owing less than USD 25, and a high severity case, paid 94%
of the time, while patients without primary or secondary insurance who owed more than
USD 25 only paid 10% of the time.

The three ML models and five performance metrics are shown in Table 4. RF per-
formed best on all measures except for specificity, for which DT performed best. The models
were similar in scores, without a substantial range in performance. Notably, all models
had substantially higher specificity versus sensitivity, which indicates that unsuccessful
payments were predicted with higher accuracy than successful payments. This pattern
suggests there is still much more to be understood regarding why some patients are unable
to pay their bills.
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Table 3. LR results, including odds ratio (OR), confidence interval (CI), and p-value for each non-base level by feature.

Characteristic OR CI (95%) p-Value Characteristic OR CI (95%) p-Value
Intercept 0.36 (0.35–0.37) <0.001 Work phone

Physician N base base base
Y base base base Y 1.17 (1.16–1.19) <0.001
N 0.90 (0.89–0.91) <0.001 Primary Insurance

Primary CPT Medicare 0.49 (0.48–0.50) <0.001
99283 0.99 (0.97–1.00) 0.146 Medicaid 0.91 (0.89–0.93) <0.001
99284 base base base Private base base base
99285 1.08 (1.07–1.10) <0.001 Other 1.02 (0.99–1.05) 0.131
99291 1.00 (0.97–1.03) 0.858 None 0.23 (0.22–0.23) <0.001
Other 1.13 (1.09–1.16) <0.001 Secondary Insurance

# of CPT Codes N base base base
1 base base base Y 1.66 (1.64–1.69) <0.001

2+ 1.00 (0.99–1.02) 0.580 Relationship
Patient Age Self base base base

0–17 1.97 (1.92–2.01) <0.001 Spouse 1.22 (1.20–1.25) <0.001
18–24 1.15 (1.12–1.17) <0.001 Other 1.36 (1.34–1.39) <0.001
25–34 0.97 (0.95–0.99) <0.001 Marital Status
35–44 base base base Single base base base
45–54 1.30 (1.28–1.33) <0.001 Married 1.61 (1.59–1.63) <0.001
55–64 2.16 (2.12–2.20) <0.001 Other 0.87 (0.85–0.88) <0.001
65–79 3.53 (3.45–3.62) <0.001 Patient Responsibility
80+ 7.64 (7.39–7.90) <0.001 <USD 25 7.56 (7.39–7.74) <0.001

Gender USD 25–100 1.18 (1.17–1.20) <0.001
Female base base base USD 100–300 base base base
Male 0.99 (0.98–1.00) 0.004 USD 300–600 1.06 (1.04–1.07) <0.001

Out of State >USD 600 1.01 (1.00–1.03) 0.138
N base base base
Y 1.34 (1.32–1.36) <0.001

Table 4. Overall model results. RF performed the best in all metrics except specificity, where DT
performed best.

Experiment Accuracy Sensitivity Specificity PPV NPV

LR 71.3% 49.7% 85.3% 68.6% 72.4%
DT 71.7% 47.9% 87.2% 70.7% 72.1%
RF 72.4% 49.9% 86.9% 71.1% 72.9%
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4. Discussion

Developing a patient-oriented payment process in healthcare operations and finance
is one of the areas that has not been well-studied or investigated. The objective of this work
is to highlight this gap and provide an opportunity for forming data-informed strategies to
support patients and help strengthen healthcare systems’ financial resiliency. We aimed to
develop and compare ML models to better predict which patients may need assistance in
reducing the debt burden of their ED bills to help hospitals identify and connect patients in
need of additional resources. Computing the likelihood of successful payments can help a
practice to connect with patients more effectively and minimize system-wide inefficiencies.

Our results indicate that patients with larger financial responsibilities, especially
single young adults, are the most likely patients to struggle with paying their ED bills.
Most significant is that patients without insurance are not able to fully resolve their debt
88% of the time. This result highlights the critical gap in the American healthcare system,
where the same patients who do not have the financial resources to seek preventative
care must rely on the compassion of EPs, and subsequently face large bills which put
them further in economic distress. The findings in this work concur with previous studies
examining the reinforcing cycle of inadequate health coverage [6,8–14].

Our approach provides a holistic view of the systemic inability of many patients to
pay for healthcare services. Individuals who lack health insurance often end up relying
on EDs for necessary treatment and face large, unexpected medical bills later which they
do not have the financial capabilities to pay, creating a reinforcing cycle of worsening
credit and economic stress. By identifying patients who are likely to have difficulty paying
medical bills in advance, EDs can effectively target them with intervention strategies
meant to reduce their financial burden, ranging from early, transparent communication of
costs to flexible or simplified payment options, or enrollment in local or federally funded
programs. Furthermore, the likelihood of successful payments can be used to organize
patient outreach efficiently: instead of trying to maximize accuracy across all patients,
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the algorithms can be adjusted to maximize the relative weighted value of identifying
positives or negatives depending on the interest of the user.

At a macro level, this approach can also help investigate which social determinants of
health are more pronounced in a specific patient population, triggering frequent utilization
of ED medicine rather than establishing a primary care physician, which would not only im-
prove the patient’s health at the individual level but also positively contribute to improved
population health. This can also help inform policymakers and large purchasers on resource
allocations and support for nationally and state-funded patient navigation programs, allow-
ing for developing customized and patient-oriented payment plans. By applying predictive
modeling approaches, hospitals can take a proactive role in helping patients to benefit from
state-funded programs and navigate through the network restrictions, out-of-pocket costs,
and confusion surrounding healthcare costs and billing systems.

Solutions such as those proposed in this study can help ACA navigators or advisors
residing at hospitals or health systems to provide patients a clear picture of the insurance
options available to them. They can also help individuals or families apply for affordable
health insurance or state-funded programs and help them overcome obstacles to enroll-
ment. This assistance can be crucial for patients and healthcare systems as new Medicaid
enrollees can receive retroactive coverage for care received in the past 90 days in most
states. Furthermore, having health insurance coverage is known to increase the likelihood
that a patient will seek needed follow-up and preventative care, which at a systems level
can reduce healthcare costs and improve population health.

A potential limitation of this study is that all patient data were aggregated and
de-identified, and thus lacked potentially important information such as zip-code, visit
frequency, and payment history. This information would be readily available for hospitals,
social workers, and navigators, and can be incorporated in the utilized predictive models.
In addition, the insurance information was as collected, and not necessarily the true
insurance. As the billing cycle proceeds, it is not uncommon for a patient’s initial insurance
information to differ from the carrier eventually billed. This is a potentially confounding
variable in our analysis.

Future work should further explore the most effective methods to help patients who
are struggling financially, as well as applying the ML models to other ED processes. The in-
tegration of predictive models into the triage process could help to predict patients that
might leave without being seen, patients who could potentially be admitted to a higher level
of care, and patients who are likely to return within 72 h. Real-time data-driven operations
would support proactive patient outreach, bed management, and service recovery.

In summary, we achieved 72.4% accuracy in predicting successful ED payment by
applying three ML algorithms, thus highlighting those remaining patients in need of
additional resources. Patients with larger bills, no insurance, and young adults were at the
highest risk of facing significant healthcare debt burden which they were unable to resolve.
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