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A B S T R A C T   

Postmenopausal osteoporosis is the most common type of osteoporosis in women. To date, little is 
known about their transcriptome signatures, although biomarkers from peripheral blood mono-
nuclear cells are attractive for postmenopausal osteoporosis diagnoses. Here, we performed bulk 
RNA sequencing of 206 samples (124 postmenopausal osteoporosis and 82 normal samples) and 
described the clinical phenotypic characteristics of postmenopausal women. We then highlighted 
the gene set enrichment analyses between the extreme T-score group and the heathy control 
group, revealing that some immune-inflammatory responses were enhanced in postmenopausal 
osteoporosis, with representative pathways including the mitogen-activated protein kinase (NES 
= 1.6, FDR <0.11) pathway and B_CELL_RECEPTOR (NES = 1.69, FDR <0.15) pathway. Finally, 
we developed a combined risk prediction model based on lasso-logistic regression to predict 
postmenopausal osteoporosis, which combined eleven genes (PTGS2, CXCL16, NECAP1, RPS23, 
SSR3, CD74, IL4R, BTBD2, PIGS, LILRA2, MAP3K11) and three pieces of clinical information (age, 
procollagen I N-terminal propeptide, β isomer of C-terminal telopeptide of type I) and provided 
the best prediction ability (AUC = 0.97). Taken together, this study filled a gap in the large-scale 
transcriptome signature profiles and revealed the close relationship between immune- 
inflammatory responses and postmenopausal osteoporosis, providing a unique perspective for 
understanding the occurrence and development of postmenopausal osteoporosis.   
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1. Introduction 

Osteoporosis (OP) is a systemic bone disease characterized by a damaged bone microstructure and decreasing bone mass, leading to 
an increased risk of fragility fractures [1,2]. OP is more common in women and is largely related to the rapid decrease in ovarian 
estrogen secretion that could cause 3–5% bone loss in postmenopausal women within 5–10 years, ultimately resulting in post-
menopausal osteoporosis (PMOP) [3,4]. Although the incidence of fractures displays variability across different countries, nearly 50 % 
of women with an average age exceeding 50 years exhibit susceptibility to fractures [5]. 

Understanding the molecular mechanisms of OP holds crucial significance for the advancement of therapeutic interventions [6,7]. 
Bone homeostasis is mainly maintained by the balance of osteoblasts and osteoclasts, which are the basis of the stability of the skeletal 
system [8]. Previous studies have shown that estrogen deficiency affects bone metabolism via the osteoprotegerin (OPG)-receptor 
activator of the NF-kB ligand (RANKL)-receptor activator of the NF-kB (RANK) axis, resulting in enhanced RANKL signaling and 
osteoclast differentiation while also inhibiting bone formation by reducing the induction of OPG [9,10]. In addition, several in-
flammatory and immune pathways are closely related to OP pathogenesis. The reduction in estrogen stimulates the production of 
inflammatory cytokines, i.e., IL-1, IL-6, and IL-7, which can act on osteoblasts and cause bone loss [11]. Estrogen receptors on the 
surface of T cells, osteoblasts, and osteoclasts can be directly activated through a classical receptor pathway [12]. However, most of 
these findings are based on ovariectomy models of inbred mouse strains and need to be carefully validated in humans. 

PMOP is the most common form of OP and skeletal disease in women. A better understanding of the transcriptome alterations 
associated with PMOP might provide new clues for the development of prevention and treatment strategies. To date, very few RNA 
sequencing (RNA-seq) studies have been conducted. According to the PubMed database, only 26 studies using the keywords “RNA 
sequencing” or “RNA-seq” and “postmenopausal osteoporosis” have been documented. In contrast, there are over 16,000 documented 
publications containing the keywords “RNA sequencing” or “RNA-seq” and "cancer". In addition, some studies of transcriptome 
changes in PMOP only included a small sample size to explore the expression pattern [13,14]. Di et al. [15] later identified the dif-
ferential expression profiles of multiple transcripts of a few peripheral blood mononuclear cell (PBMC) samples by RNA sequencing. 
These studies indicated that the immune system plays an important role in PMOP. Recent developments in massively parallel 
sequencing tools [16] make it possible to conduct a profound study of genome-wide transcriptome profiles in PBMC samples of PMOP 
patients in a large cohort. In particular, the relationship between the immune response and PMOP requires further investigation. 
Relevant research has also shown that larger improvements in BMD are associated with greater reductions in fracture risk, particularly 
for vertebral and hip fractures [17]. Vladyslav et al. found that the osteoporotic fracture probability in 50-year-old women with an 
extreme T-score (less than − 3.5) was 13 %, much higher than that in women with a T-score ≤ − 2.5 [18]. Dargent et al. used 6933 
EPIDOS study data points and found that elderly women with extreme T-scores (less than − 3.5) have a risk of hip fracture more than 
two times higher than women of the same age [19]. However, there is no systematic study on the transcriptome signatures of extreme 
T-score patients. Due to the possibility of severe clinical outcomes in these patients, we believe that conducting transcriptome research 
on them is also meaningful. 

In this study, we performed a transcriptome analysis on PMOP and healthy controls (CTL) in a large-scale data set using RNA-seq 
tools. We explored differentially expressed genes (DEGs) in all samples and focused on revealing the transcriptome signatures for the 
extreme T-score PMOP group. We also identified 137 DEGs that are closely associated with PMOP and are involved in some 
osteoporosis-related pathways. Interestingly, we further found that the immune and inflammatory pathways were enhanced in PMOP. 
Finally, we built a risk prediction model based on eleven risk genes and three pieces of clinical information, which exhibited high 
prediction ability (AUC = 0.97). This study further deepened our understanding of the potential mechanism of PMOP and provided 
effective research resources for the further development of therapeutic drugs or novel diagnostic methods. 

2. Materials and methods 

2.1. Participants and samples 

This prospective study was conducted utilizing a cohort of 206 women aged 50 and older. This cohort comprised 124 post-
menopausal osteoporosis PBMC samples (T-score ≤ − 2.5), and 82 normal bone mass PBMC samples serving as the controls (T-score ≥
− 1). All participants were treatment-naive, and their clinical information is summarized in the supplementary information. 

2.2. RNA extraction and library construction 

Total RNA was extracted from PBMCs using TRIzol (Ambion) according to the manual. DNase I was used to digest double-stranded 
and single-stranded DNA in total RNAs. Next, magnetic beads were purified to recover the reaction products, and the RNase H method 
was used to remove the rRNA. Through cDNA synthesis, end repair, A addition, adaptor ligation, and several rounds of PCR ampli-
fication with PCR mix were performed to enrich the cDNA fragments. Then, we heated and denatured the recovered double-stranded 
PCR products and cyclized them with the splint oligo sequence(5′-ACGTACTGAGAGGCATGGCGACCT-3′). The single-stranded circular 
DNAs were formatted as the final library. We also used an Agilent 2100 Bioanalyzer (Agilent DNA 1000 Agents) to detect the fragment 
size and RNA integrity (RIN >7). The final library was amplified with phi29 (Thermo) to make DNA nanoballs, which were loaded into 
the patterned nanoarray, and single-end 50-base reads were generated on the BGISEQ-500 platform. See more details: Supplementary 
Information 3–4. 
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2.3. Data processing 

Paired-end sequencing was carried out, and initial quality control of raw reads was conducted using fastp v0.23.1 software [20]. 
This encompassed filtering out low-quality bases (Q20 < 0.85), removal of adaptors and base correction. Subsequently, the clean reads 
were directly quantified by salmon v1.9.0 software [21] based on Homo_sapiens.GRCh38.100.gtf.gz. This method could ensure the fast 
quantification of transcripts. The study cohort was uniformly of a single gender, and the age ranged from 50 to 80 years old. To 
enhance the reliability of the results, we selected the higher genes that were expressed in at least 20 % of all samples, each with an 
average read count exceeding 1. Genes with lower expression were subsequently excluded from further analysis. 

2.4. Gene set enrichment analysis 

Gene set enrichment analysis was conducted using the clusterProfiler R package [22]. It involved preranked gene set enrichment 
analysis based on log2-fold change (log2FC). In addition, the functional pathways were determined through KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) enrichment analysis applied to the candidate DEGs. The KEGG pathways exhibiting a P (adjusted) < 0.05 
were considered to be significantly enriched. 

2.5. GEO data source 

The gene microarray expression data from GSE56815 were procured, including the gene expression data of blood monocytes 
originating from 20 postmenopausal women with a high BMD and 20 postmenopausal women with a low BMD. Additionally, the study 
incorporated data from GSE149938, comprising single-cell RNA sequencing data spanning 32 human blood cells sourced from 21 
healthy donors. These datasets were downloaded from the Gene Expression Omnibus (GEO) database, and our application complied 
with the guidelines and policies of each database. 

2.6. Risk prediction model 

To further evaluate the proportional impact of risk genes on PMOP, these genes were used as dependent variables in constructing a 

Fig. 1. Description of the postmenopausal osteoporosis (PMOP) transcriptome cohort and characteristics of clinical information. (A) Workflow for 
transcriptome profiling in the PMOP cohort. (B) Boxplot of age comparison between the PMOP and normal groups (with median and quartile). (C) 
Boxplot of body mass index (BMI) comparison between the PMOP and normal groups (with median and quartile). (D) Boxplot of Procollagen I N- 
Terminal propeptide (PINP) comparison between the PMOP and normal groups (with median and quartile). (E) Boxplot of β isomer of C-terminal 
telopeptide of type I (β.CTX) comparison between the PMOP and normal groups (with median and quartile). 
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lasso-logistical regression model, adhering to the minimalist model principle. The optimal variables were identified using the lasso R 
package. Subsequently, a risk prediction model was formulated, incorporating a linear combination of the risk gene expression levels 
and the corresponding regression coefficients (β) determined from the lasso-logistical regression model. The formula for the risk score 
calculation was as follows: risk score = expression of gene1 × β1(gene1) + expression of gene2 × β2(gene2) + … expression of gene n 
× βn (gene n) [23]. Finally, the risk prediction model was established, and the predictive accuracy was evaluated through the con-
struction of a receiver operating characteristic curve (ROC) using the ROCR package within R software. 

2.7. Statistics analysis 

All statistical analyses were performed using R version 4.0.3. The Wilcoxon test was predominantly employed to analyze differ-
ences in gene expression, and the false discovery rate (FDR) was rigorously controlled for multiple comparisons. Gene read counts were 
standardized as transcripts per kilobase of exon model per million mapped reads (TPM). The DEseq2 package (v1.36.0) was used to 
identify DEGs [24], with a threshold of P < 0.05 (corrected P value by FDR) and |log2FC| > 1. Univariate logistical analysis was 
conducted to assess the correlation between gene predictors and PMOP within our cohort. Odds ratios exceeding 1 were indicative of 
risk genes, while OR values below 1 indicated protective genes. The diagnostic accuracy of potential biomarkers was evaluated by ROC 
curves, with the corresponding area under the curve (AUC) computed. ComplexHeatmap and ggplot2 packages were used for visu-
alization of the results. 

3. Results 

3.1. Description of the PMOP transcriptome cohort and phenotypic analysis 

The discovery cohort consisted of 206 women ranging in age from 45 to 80, including 124 PMOP patients (T-score ≤ − 2.5) and 82 
normal individuals (T-score ≥ − 1), based on the traditional T-score standard (Fig. 1A; Supplementary table 1). We collected PBMC 
samples and basic clinical information (age and BMI), and we measured the T-score of the lumbar vertebra (L1-L4), calcium (Ca2+), 
magnesium (Mg2+), phosphate (Pi), cholesterol (CHOL), triglyceride (TG), high-density lipoprotein (HDL), and low-density lipopro-
tein (LDL) for each participa nt (Supplementary table 2). We also analyzed two plasma auxiliary biomarkers: procollagen I N-terminal 
propeptide (PINP) and the β isomer of C-terminal telopeptide of type I (β.CTX), which are important biomarkers reflecting the level of 
bone turnover [25,26]. 

Clinical phenotypic information revealed clear phenotypic differences between the PMOP and normal groups (Table 1). The 
average age of the PMOP group was significantly higher than that of the normal group (Wilcoxon test, p = 2.4e-09) (Fig. 1B), and we 
also found that the PMOP group had a lower BMI value (Wilcoxon test, p = 4.0e-07) (Fig. 1C). Interestingly, the two bone turnover 
biomarkers (PINP and β.CTX) were significantly different in the two groups of middle-aged and elderly women. The changes were 
consistent with the PMOP group showing higher values than the normal group (Wilcoxon test, p = 0.003 for PINP, p = 0.001 for β.CTX) 
(Fig. 1D and E). The T-scores of different parts of the lumbar spine (L1-L4) and cervical spine were different, and the T-score of the 
PMOP group was significantly lower than that of the control group. In addition, we also found that the plasma Ca2+, Mg2+, Pi, CHOL, 
and other indicators in the PMOP population were not significantly changed compared with the controls, which may indicate that bone 
metabolism activity has little effect on these plasma clinical indicators and that their clinical diagnostic significance is not clear. 

Table 1 
Clinical characteristics of patients in the cohort.  

Clinical features The postmenopausal osteoporosis transcriptome cohort (n = 206, mean ± SD)  

PMOP (n = 124) Control (n = 82) P value (PMOP vs CTL) 

Age (years) 63.00 ± 5.35 58.28 ± 5.18 2.391e-09 
BMI (kg/m2) 22.68 ± 2.59 24.64 ± 3.95 3.969e-07 
PINP (ng/mL) 61.81 ± 24.00 53.29 ± 9.71 0.003 
β.CTX (pg/mL) 557.7 ± 206.4 476.6 ± 207.9 0.001 
Lumbar vertebra 
L1 − 2.41 ± 1.07 0.00 ± 0.71 2.2e-16 
L2 − 2.88 ± 0.65 0.19 ± 0.77 2.2e-16 
L3 − 2.61 ± 0.88 0.49 ± 0.88 2.2e-16 
L4 − 2.41 ± 0.91 0.71 ± 1.02 2.2e-16 
Cervical vertebra − 1.97 ± 0.76 − 0.01 ± 0.65 2.2e-16 
T-score − 3.20 ± 0.50 − 0.38 ± 0.50 2.2e-16 
Ca2+ (mmol/mL) 2.32 ± 0.1 2.32 ± 0.10 0.71 
Mg2+ (mmol/mL) 0.87 ± 0.07 0.86 ± 0.06 0.91 
P3+ (mmol/mL) 1.16 ± 0.12 1.13 ± 0.12 0.05 
CHOL 5.40 ± 1.08 5.46 ± 1.06 0.59 
TG 1.44 ± 0.89 1.51 ± 0.88 0.44 
HDL 1.44 ± 0.33 1.37 ± 0.28 0.16 
LDL 2.94 ± 0.85 3.03 ± 0.75 0.22  
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3.2. Transcriptome profiling in extreme T-score PMOP and control groups 

In this study, we first performed DEG analysis comprising all PMOP and controls. Age batch effects were removed, but no significant 
DEGs were identified, and the sample PCA showed that the first two principal components could only explain the lower variatio n 
(Supplementary fig. 1). Reasoning that the transcription level in PBMCs may be interfered with by many factors, such as individual 
heterogeneity and physiological and biochemical indicators beyond PMOP [27], it was not unexpected that a base-control comparison 
failed to capture any DEGs. Considering the clinical significance of the extreme T-score group, we next focused on the transcriptome 
signatures in the extreme T-score group based on the above facts of increased clinical fracture risk. 

To enrich PMOP transcriptome signatures, we screened 27 extreme PMOP samples from 124 PMOP samples according to the 
extreme T-score standard (T-score < − 3.5), which were compared with the 22 normal samples (T-score>0) for 82 controls (Sup-
plementary table 3). The PCA showed that the first two principal components could explain 44.8 % of the variation, which means that 
the extreme T-score had good performance (Supplementary fig. 2). We performed a differentially expressed gene analysis and iden-
tified 137 DEGs in extreme T-score PMOP compared to the controls (Fig. 2A; Supplementary table 4). A gene ontology analysis with 
these 137 DEGs identified 56 significantly upregulated and 3 downregulated pathways, of which 3 upregulated pathways are known to 
be associated with PMOP, including the osteoclast differentiation pathway, IL-17 signaling pathway, and mitogen-activated protein 
kinase (MAPK) signaling pathway (Fig. 2B; Supplementary table 5) [28–30]. Interleukin-17 (IL-17) is a typical cytokine that plays an 
important role in resistance to extracellular bacterial and fungal infections and the pathogenesis of various autoimmune diseases [31]. 
In addition, several immune-associated pathways, such as B-cell receptor signaling, Th17 cell differentiation, and Toll-like receptor 
signaling, were also regulated in PMOP. 

Significant changes in transcriptome profiles between the extreme T-score group and the control group accounted for these 
pathways, which may be closely related to the progression of PMOP. For the five representative genes with significant differences 
between the three pathways, gene expression levels tended to be upregulated in PMOP (Fig. 2C–E), which indicates that these genes 
may enhance osteoclastic differentiation or weaken osteogenic differentiation, such as significant and common PMOP-associated 
genes. To validate how the JUN gene changes during PMOP progression, we performed an integrated microarray analysis using 
public GEO data (GSE56815, n = 40). JUN was upregulated in cases of PMOP progression, which was consistent with our bulk RNA-seq 

Fig. 2. Genome-wide transcriptome profiling and functional enrichment analysis in the extreme T-score PMOP and normal groups (n = 49). (A) The 
heatmap representing heterarchical clusters based on differential expression genes. (B) The top 20 upregulated KEGG pathways based on differential 
genes. (C) Comparison of expression levels of five representative genes in the osteoclast differentiation pathway. (D) Comparison of expression levels 
of five representative genes in the IL-17 signaling pathway. (E) Comparison of expression levels of five representative genes in the MAPK 
signaling pathway. 
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results (Supplementary fig. 3). In addition, we also explored the expression patterns of the JUN gene in the blood scRNA-seq data 
(GSE149938). The results showed that the JUN gene was highly expressed in all subclusters of monocytes compared with other cell 
types, as well as higher expression in classical monocytes and interM (intermediate) (Supplementary fig. 4). 

3.3. Gene set enrichment analysis highlights immune and inflammatory pathways in PMOP 

To further gain a system level understanding of the relationship between gene sets and the extreme T-score PMOP, we applied gene 
set enrichment analysis (GSEA) to identify differential gene sets (Fig. 3A). We identified 1402 gene sets that were enriched in cases of 
T-score PMOP at a false discovery rate (FDR) < 0.25. Thirty-eight eligible gene sets were obtained from KEGG databases (Fig. 3B). The 
results show that many active genes in the controls were downregulated in the extreme T-score PMOP group and vice versa. The most 
highly enriched terms were inflammatory and immune gene sets, concordant with their promotion of PMOP. A similar pattern was also 
observed for other gene sets, such as FC_EPSILON_RI (NES = 1.65, FDR<0.12), NOD_LIKE_ RECEPTOR (NES = 1.58, FDR<0.11), and 
CHEMOKINE (NES = 1.57, FDR<0.11), which may mediate inflammatory responses. This suggests that the changed phenotype 
observed in the extreme T-score PMOP group and the controls was related to inflammatory effects (Fig. 3C–E). The most highly 
enriched inflammatory terms in extreme T-score PMOP indicate that the occurrence of PMOP is accompanied by the enhancement of 

Fig. 3. Gene set enrichment analysis based on the extreme T-score PMOP and the controls (n = 49). (A) Heatmap of ranked gene list between the 
extreme T-score PMOP and normal samples. (B) Number of total key gene sets in the extreme T-score group and the controls (FDR <0.25). (C–G) 
GSEA of up-regulated genes in the extreme T-score group for FC-EPSILON_RI, NON_LIKE_RECEPTOR, CHEMOKIN, MAPK and ERBB related to 
inflammatory response. (H) GSEA of up-regulated genes in the extreme T-score PMOP for B_CELL_ RECEPTOR related to immunity response. 
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inflammatory responses. 
MAPK (NES = 1.6, FDR<0.11) and ERBB (NES = 1.6, FDR<0.10) were also affected (Fig. 3F and G). The deletion of MAPK-, p38a-, 

or p38b-encoding genes of MAPK pathway members results in a degree of bone loss due to osteoblast differentiation defects in mice 
[32]. Our results show that the MAPK pathway was upregulated in extreme T-score cases, which is consistent with the results of 
previous pathway enrichment analyses. Our study further revealed a positive effect of the MAPK cell differentiation function on 
extreme T-score PMOP. It was interesting to find that the B_CELL_RECEPTOR (NES = 1.69, FDR<0.15)-related gene set members were 
upregulated in cases (Fig. 3H), implying that osteoporosis in postmenopausal women may lead to the significant expansion of the B-cell 
population. This is in agreement with early research and further supports the concept that humoral immunity plays a positive role in 
PMOP [33]. Our study may provide additional evidence that B cells positively promote estrogen-deficient osteoporosis based on 
large-scale RNA-seq data. 

3.4. Assessment of immune cell ratios between the PMOP and normal groups 

We analyzed the infiltration of immune cells between the PMOP and normal groups. The CIBERSORT algorithm was used to assess 
the data, and we drew a proportional component diagram of 22 representative immune cells in all the samples (Fig. 4A). The results 
showed that the largest proportions of the three cell types were NK cells, monocytes, and T cells, which basically conformed to the 
composition features of PBMCs. Furthermore, we also compared the proportion of different cell types in different samples (Fig. 4B), 

Fig. 4. Profiling peripheral blood mononuclear cells (PBMCs) with CIBERSORT based on all samples (n = 206). (A) Composition of 22 immune cell 
types in the PMOP and normal samples. (B) Comparison of the proportion of 22 cell types in different samples. 
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and we found a significant difference in the proportion of Treg cells between the normal group and PMOP group (P = 0.04). There was 
no significant change in the proportion of other T-cell types from the normal group to the PMOP group. In addition, there was no 
significant difference in the proportion of other cell types between the PMOP group and the normal group. 

3.5. A risk prediction model with a good effect for PMOP 

To generate a better PMOP risk model, we started with the top 15 differential genes (between extreme T-score PMOP and the 
controls), which were selected as the potential disease predictors in our cohort. In addition, we also included representative genes of 
the MAPK, B_CELL_RECEPTOR, IL-17, and NOD_LIKE_RECEPTOR pathways in our regression equation. A univariate logistical 
regression and cross validation analysis determined that eleven genes were significantly associated with PMOP: PTGS2 (OR = 1.3, CI =
1.06–1.72, p = 0.03), CXCL16 (OR = 1.32, CI = 1.08–1.71, p = 0.02), NECAP1 (OR = 1.66, CI = 1.17–2.58, p = 0.01), RPS23 (OR =
0.42, CI = 0.15–0.79, p = 0.03), SSR3 (OR = 0.78, CI = 0.61–0.97, p = 0.03), CD74 (OR = 1.03, CI = 1.01–1.07, p = 0.01), IL4R (OR =
1.38, CI = 1.08–1.89, p = 0.02), BTBD2 (OR = 1.16, CI = 1.03–1.33, p = 0.03), PIGS (OR = 1.94, CI = 1.18–4.62, p = 0.04), LILRA2 
(OR = 1.34, CI = 1.08–1.75, p = 0.02), MAP3K11 (OR = 7.12, CI = 1.23–3409.1, p = 0.09) (Fig. 5A). These eleven genes were regarded 
as potential risk genes related to PMOP. To further evaluate the relative contribution of risk genes affecting PMOP, the lasso regression 
algorithm was applied to analyze these risk genes. The eleven remarkable risk genes were chosen as dependent variables to construct a 
risk predictive model based on the minimum criteria. The regression coefficient (β) represented the hazard contribution to disease and 
was used to calculate the risk score for each sample. The risk score was calculated using the following formula: risk score = (0.013 ×
PTGS2) + (0.039 × CXCL16) + (0.065 × NECAP1) + (− 0.154 × RPS23) + (− 0.056 × SSR3) + (0.001 × CD74) + (0.005 × IL4R) +
(0.020 × BTBD2) + (0.064 × PIGS) + (0.002 × LILRA2) + (0.001 × MAP3K11). 

Next, univariate and multivariate logistical regression analyses were used to determine whether the risk score was an independent 
indicator as well as the role of multiple clinical information in the diagnosis of PMOP. The univariate logistical analysis showed that 
age (OR = 1.32, CI = 1.14–1.62; p < 0.01), PINP (OR = 1.04, CI = 1.01–1.08, p = 0.009), β.CTX (OR = 1.01, CI = 1.0–1.01; p = 0.004), 

Fig. 5. The transcriptome signatures based on deferential genes could predict PMOP. (A) The cross validation for selecting the best genes. (B) 
Univariate logistical regression analyses of the associations between clinical factors and PMOP. (C) ROC derived from three models incorporating 
different numbers of predictive variables. The three model components include risk score, clinical information (age, PINP, β.CTX), and a combined 
risk score (risk score, age, PINP, β.CTX), respectively. (D–K) The independent prediction effect of eleven risk genes. 
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and risk score (OR = 62.58, CI = 8.13–1220.80, p = 0.001) were significantly correlated with PMOP (Fig. 5B). Therefore, multiple 
predictors were included in the multivariate logistical regression model, which included three types of model components: risk score, 
clinical information (age + PINP + β.CTX), and a combined risk score (risk score + age + PINP + β.CTX). Then, the prediction effects 
(sensitivity and specificity) of these models were described by ROC. The AUCs of the independent risk score and the clinical infor-
mation were 0.88 and 0.87, respectively. However, the AUC of the combined risk model, including the transcriptome signature and 
clinical information, was 0.97 (Fig. 5C). In addition, we also explored the prediction effects of the representative genes alone, such as 
PTGS2 (AUC = 0.70), CXCL16 (AUC = 0.66), NECAP1 (AUC = 0.71), RPS23 (AUC = 0.67), SSR3 (AUC = 0.65), CD74 (AUC = 0.71), 
LILRA2 (AUC = 0.72) and MAP3K11 (AUC = 0.61) (Fig. 5D–K). The results of the risk prediction model showed that the transcriptome 
signatures had a good predictive effect on PMOP and that the predictive power was close to that of classical clinical diagnostic in-
formation. Furthermore, the combined risk model performed better, which can further improve prediction accuracy compared with 
the risk score model component using eleven genes. 

4. Discussion 

Normal bone remodeling maintains a constant bone mass by breaking the dynamic balance between the destruction of bones by 
osteoclasts and rebuilding by osteoblasts [34]. The disorder of bone metabolism causes bone-related diseases such as PMOP, which is 
mainly caused by estrogen deficiency. Since PMOP is common, it attracts widespread attention [35,36]. The dysregulation of mRNAs 
has been described in many bone metabolism diseases [37]. However, many transcriptome studies in osteoporosis have mainly focused 
on wet experiments or a few sequencing data, which cannot show the panorama of transcriptome changes on a large scale [38]. In this 
study, the transcriptome profiles of PBMCs in PMOP were determined using bulk RNA-seq data. We studied gene expression changes 
between the extreme T-score cases and the controls. Moreover, comparative analyses and annotations of gene set levels were 
completed and further corroborated immune and inflammatory responses in PMOP. 

Vitamin D deficiency and reduced calcium absorption are common in elderly individuals, and osteoporosis is an age-related bone 
disease [39]. Age-related osteoporosis often coexists with multiple other comorbidities (e.g., atherosclerosis, diabetes) that share aging 
as a major risk factor [40]. In this study, it was also found that the average age of postmenopausal osteoporosis patients was also higher 
than that of the control group, and we can speculate that aging is also one of the reasons for the disease in women. In addition, chronic 
complex diseases are controlled by multiple genetic and environmental factors, and several minor effect genes may work together to 
contribute to common diseases [41]. No significant differentially expressed genes were found based on the differential expression 
analysis under traditional grouping conditions for all samples. Given that PMOP with an extreme T-score has a higher probability of 
fracture, we provided unique and comprehensive transcriptome profiles for the extreme T-score group. 

Numerous studies have established a correlation between immune-inflammatory responses and multiple complex diseases, 
including osteoporosis [42]. Th17 cell-produced IL-17 is involved in the pathogenesis of bone loss, and blocking IL-17 action in a 
mouse model of rheumatoid arthritis reduces disease symptoms [43]. Prior research has also highlighted that inflammation is closely 
related to bone metabolism and that its environment contributes to the reduction in BMD [44]. For example, Melda et al. clarified that 
mice lacking RANKL in B lymphocytes were partially protected from the bone loss caused by ovariectomy [45]. Kim et al. demon-
strated that TNF-α in T lymphocytes could promote bone loss in conditions such as inflammatory osteolysis and postmenopausal 
osteoporosis [46]. In this study, we found that some pathways associated with immune responses were also associated with PMOP, 
such as B-cell receptors, Th17 cell differentiation, and Toll-like receptor signaling. This may reflect the functional changes in humoral 
immunity, autoimmune function, and nonspecific immunity, which may contribute to PMOP. Furthermore, we show that the B-cell 
receptor signaling pathway was upregulated by enrichment analysis, which may indicate that the extreme T-score group is accom-
panied by the enhancement of humoral immunity. Our large-scale bulk RNA-seq data provided evidence that the immune response is 
related to PMOP, which can also provide abundant data resources for future studies. In the future, researchers can use these data in 
combination with other omics data to find more biological mechanisms. 

Predictive methods may contribute to therapeutic strategies. For many years, the aberrant metabolism of estrogen has been 
considered to be one of the causes of PMOP. In the current circumstances where PMOP is a chronic progressive disease that easily 
causes fractures and other risks, early intervention and prevention may be the other approach for PMOP treatment. However, 
circulating risk biomarkers targeting this disease are still unsuccessful. In this study, we explored the predictive effect of transcriptome 
signatures and clinical information in PMOP through a Lasso regression model. The eleven genes constructed by our risk prediction 
model increased predictive sensitivity and specificity in PMOP, which can also provide reference value for clinical auxiliary diagnosis. 
The findings may provide a low-cost, noninvasive predictive method for PMOP screening in a general population of older women, 
contributing to disease prevention. 

5. Limitations 

This study had some limitations that should be noted. First, we did not conduct further experiments to investigate how immune- 
inflammatory responses mediate PMOP. Second, the sample size enrolled in this study was relatively small, and a larger sample size is 
needed to validate the predictive effect of these transcriptome signatures. Third, our current study is limited to the transcriptional level 
and has not yet collected other omics data. In the future, multi-omics data analysis will help us further explore the genetic charac-
teristics of PMOP. 
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6. Conclusions 

In summary, the results of this study suggest that the immune-inflammatory response pathways are enhanced in PMOP, revealing 
potential new evidence of the relationship between immunity and osteoporosis. In addition, a panel of eleven transcriptome signatures 
may be a potential blood biomarker for PMOP, and interestingly, the combination of eleven transcriptome signatures and clinical 
information in the risk model can further improve the prediction effect of PMOP. This study provides a unique resource for the 
comprehensive transcriptome expression profile of PBMCs in PMOP, laying a new foundation for understanding the pathogenesis and 
development of the disease. 
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RANK receptor activator of the NF-kB 
PBMC peripheral blood mononuclear cell 
DEG differentially expressed genes 
BMD bone mineral density 
FDR the false discovery rate 
TPM transcripts per kilobase of exon model per million mapped reads 
OR odds ratios 
ROC: receiver operating characteristic curve 
AUC the area under curve 
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