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Simple Summary: Histopathological image analysis can be used for the detection of lung and colon
cancer by the investigation of microscopic images of tissue samples. Since manual diagnosis takes a
long time and is subjected to differing opinions of doctors, automated lung and colon cancer diagnosis
becomes necessary. Therefore, the purpose of the study is to develop a transfer learning approach
for lung and colon cancer detection on histopathological image analysis. It involves leveraging pre-
trained model to analyze histopathological images. In addition, the proposed model uses improved
ShuffleNet with deep convolutional recurrent neural network for feature extraction and classification,
respectively. Besides, Al-Biruni Earth Radius Optimization and coati optimization algorithm are
employed for hyperparameter tuning process. The experimental result analysis of the proposed
model on the LC25000 database shows its promising performance on lung and colon cancer diagnosis.

Abstract: An early diagnosis of lung and colon cancer (LCC) is critical for improved patient outcomes
and effective treatment. Histopathological image (HSI) analysis has emerged as a robust tool for
cancer diagnosis. HSI analysis for a LCC diagnosis includes the analysis and examination of tissue
samples attained from the LCC to recognize lesions or cancerous cells. It has a significant role in
the staging and diagnosis of this tumor, which aids in the prognosis and treatment planning, but
a manual analysis of the image is subject to human error and is also time-consuming. Therefore,
a computer-aided approach is needed for the detection of LCC using HSI. Transfer learning (TL)
leverages pretrained deep learning (DL) algorithms that have been trained on a larger dataset for
extracting related features from the HIS, which are then used for training a classifier for a tumor
diagnosis. This manuscript offers the design of the Al-Biruni Earth Radius Optimization with Transfer
Learning-based Histopathological Image Analysis for Lung and Colon Cancer Detection (BERTL-
HIALCCD) technique. The purpose of the study is to detect LCC effectually in histopathological
images. To execute this, the BERTL-HIALCCD method follows the concepts of computer vision (CV)
and transfer learning for accurate LCC detection. When using the BERTL-HIALCCD technique, an
improved ShuffleNet model is applied for the feature extraction process, and its hyperparameters
are chosen by the BER system. For the effectual recognition of LCC, a deep convolutional recurrent
neural network (DCRNN) model is applied. Finally, the coati optimization algorithm (COA) is
exploited for the parameter choice of the DCRNN approach. For examining the efficacy of the BERTL-
HIALCCD technique, a comprehensive group of experiments was conducted on a large dataset of
histopathological images. The experimental outcomes demonstrate that the combination of AER and
COA algorithms attain an improved performance in cancer detection over the compared models.
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1. Introduction

Cancer can affect any organ of the human body; the foremost areas to be commonly
affected are the brain, colon, skin, breasts, stomach, rectum, liver, prostate, and lungs.
The common tumors to cause death in females and males are lung and colon cancer
(LCC) [1]. When lung cells mutate uncontrollably, malignant cells appear, forming clusters
called cancers. Globally, lung and colorectal (rectum and colon) tumors are the general
kinds of tumors after breast cancer (BC) [2]. Moreover, colorectal and lung tumors have
resulted in death rates of 9.4% and 18% correspondingly among all tumors. Hence, to
explore the treatment options in the early phase of diseases, the precise detection of
these tumor subtypes are essential. The noninvasive approaches for detection involve
computed tomography (CT) imaging and radiography for flexible sigmoidoscopy and
lung cancer and CT colonoscopy for colon tumors [3], but dependable classifying of these
tumors is not probable utilizing noninvasive means at all times, and invasive processes
such as histopathology are essential for accurate disease detection and the enhanced
quality of treatments. As well, the manual grading of histopathologic images may be
annoying for pathologists [4]. Likewise, the precise grading of the colon and lung tumor
subtypes necessitates a trained pathologist, and manual grading can be prone to error. Now,
automatic image processing techniques are being applied for lung tumors [5].

Artificial intelligence (AI) methods are utilized in the medical domain, such as the
initial detection of biomedical images, health disasters, forecasts of diseases, etc. [6]. Deep
learning (DL) methods can examine data in anatomical representations, high-dimensional
images, and videos [7]. Likewise, DL methods derive hidden characteristics and features
from healthcare images that are invisible to the naked eye for the initial cancer recognition
and discrimination between its phases. DL refers to a subdivision of ML that eradicates the
necessity for manual feature engineering, and CNN-related DL methods present hierarchi-
cal mapping features for superior representations of input images [8]. However, enormous
data are needed for training large DL methods; transfer learning (TL) aids in adapting large
pretraining methods for downstream tasks. Therefore, TL decreases the necessity for an
enormous dataset for training that is rare in particular domains such as medicine [9]. TL
and DL execute a crucial role in healthcare in framing automatic diagnostic mechanisms
by utilizing healthcare images that include magnetic resonance images, histopathological
images, radiographs, retina images, etc. Such automatic mechanisms are mainly utilized
for classifier tasks and assist doctors in circumstances of automated quality checking and
rapid data acquisition [10].

This manuscript offers the design of the Al-Biruni Earth Radius Optimization with
Transfer Learning-based Histopathological Image Analysis for Lung and Colon Cancer
Detection (BERTL-HIALCCD) technique. In the BERTL-HIALCCD technique, an improved
ShuffleNet model is applied for the feature extraction process, and its hyperparameters
are chosen by the BER algorithm. For the effectual detection of LCC, a deep convolutional
recurrent neural network (DCRNN) model is applied. At the final stage, the coati optimiza-
tion algorithm (COA) is exploited for the parameter selection of the DCRNN approach.
The design of BER and COA for the hyperparameter tuning of the improved ShuffleNet
and DCRNN models demonstrates the novelty of the work. To examine the result of the
BERTL-HIALCCD technique, a comprehensive group of experiments was conducted on a
large dataset of histopathological images.

2. Related Works

In [11], the authors utilized an Al-supported method and optimization approaches to
realize the categorization of histopathologic images of colon and lung tumors. In the pre-
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sented method, the image classes were trained with the DarkNet-19 technique, one of which
was the DL method. With the equilibrium and Manta Ray Foraging optimizer methods,
the selection of the ineffective attributes was attained. In the feature set mined from the
DarkNet19 method, the potential attributes gained by the two utilized optimization meth-
ods were classified and integrated with the SVM approach. In [12], a hybrid classification
method that included hog and daisy feature extraction modules and inception_v3 network
were built to categorize lung tumors and normal tissues from lung pathological imagery.
In [13], the authors presented a brief analysis of two feature extraction approaches for colon
and lung tumor classification. In one method presented, six handcrafted extracted features
methods dependent on shape, color, structure, and texture. The RF, Gradient Boosting
(GB), MLP, and SVM-RBF methods with handcrafted attributes were tested and trained for
lung and colon tumor categorization. In [14], the main intention of this case was to utilize
digital histopathology images and a multi-input capsule network for framing an enhanced
computerized diagnosis mechanism to find adenocarcinomas and squamous cell carcinomas
of the lungs, in addition to adenocarcinomas of the colon. During the presented multi-input
capsule network, two convolution layer blocks were utilized. The CLB (convolutional layer
blocks) considered unprocessed histopathologic images as the input.

The authors of [15] presented a hybrid ensemble extracted feature method to profi-
ciently find the LCC. It integrated ensemble learning and deep feature extraction with
high-performance filters for cancer image data. Hamida et al. [16] concentrated on the
usage of a DL structure for highlighting and classifying colon tumor regions in a sparsely
annotated histopathologic data context. Firstly, the authors compared and reviewed the
existing CNN that included the DenseNet, AlexNet, vgg, and ResNet Inception methods.
The authors resorted to the use of TL methods to cope with the lack of a rich WSI dataset.

Mangal et al. [17] aimed to devise a computer-aided diagnosis system to find squa-
mous cell carcinomas and adenocarcinomas of the lungs, in addition to adenocarcinomas
of the colon, utilizing CNN by assessing the digital pathology images for these cancers.
Ding et al. [18] designed FENet for genetic mutation estimation utilizing histopathologic
images of colon cancer. Different to traditional methods of analyzing patch-related features
alone without concerning their spatial connectivity, FENet incorporated feature enhance-
ments in convolutional graph NN to combine discriminatory attributes with the capture
gene mutation status.

In [19], a clinically comparable CNN structure-based approach to carry out an au-
tomated classifier of cancer grades and tissue infrastructures in hematoxylin and eosin-
stained colon HSI was presented. It contained Enhanced Convolutional Learning Modules
(ECLMs), a multi-level Attention Learning Module (ALM), and Transitional Modules (TMs).
In [20], the efficiency of an extensive variety of DL-based structures was measured for the
automatic tumor segment of colorectal tissue instances. The presented method demon-
strated the efficacy of integrating CNN and TL in the encoded part of the segmentation
structure for histopathology image diagnosis. In [21], the authors provided a systematic
examination of XAI with an initial concentration on the methods that are presently being
utilized in the domain of the healthcare system. In [22], the authors established a DL
technique to predict disease-specific survival for stage II and III colorectal cancer utilizing
3652 cases. In [23], a novel approach dependent upon GCN for the early detection of COPD
was presented that utilized lesser and weakly labeled chest CT image data in the openly
accessible Danish Lung Cancer Screening Trial database. Jain et al. [24] demonstrated
that lung cancer recognition depends on a histopathological image diagnosis utilizing DL
structures. Afterwards, the image features were extracted utilizing Kernel PCA combined
with CNN with KPCA (KPCA-CNN) utilized in the feature extracted layer of the CNN.

Although several LCC classification models are available in the literature, it is still
required to enhance the detection performance. Most of the existing works did not focus
on the hyperparameter optimization process. Generally, hyperparameter optimization
helps in the identification of an optimal combination of hyperparameters for a given
model architecture and dataset. It proficiently searches the hyperparameter space for the
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detection of the optimal configuration, which saves time and computational resources
by automatically exploring different combinations rather than relying on manual trial-
and-error approaches. It helps in quickly finding a good set of hyperparameters without
exhaustively evaluating every possible combination. Therefore, in this work, the BER and
COA are used for the hyperparameter tuning process.

3. Materials and Methods

In this manuscript, we developed a novel LCC detection model named the BERTL-
HIALCCD technique. The study aims to find LCC effectually on histopathological images.
To achieve this, the BERTL-HIALCCD approach follows a series of subprocesses, namely
improved ShuffleNet feature extraction, BER-based parameter optimization, DCRNN-
based classification, and COA-based hyperparameter tuning. Figure 1 signifies the overall
flow of the BERTL-HIALCCD system.

Input: Training Images

Feature Extraction Process
using
Improved ShuffleNet Model

Hyperparameter Tuning Process
using
Al-Biruni Earth Radius Optimization Algorithm

L

Lung and Colon Cancer Detection Process
using
Deep Convolutional Recurrent Neural Network

Hyperparameter Tuning Process
using
Coati Optimization Algorithm

Performance Measures:
Accuracy, Precision
Recall, F-Score, MCC

Figure 1. Overall flow of the BERTL-HIALCCD approach.

3.1. Dataset Used

The LC25000 dataset comprises 25,000 color images with 5 class labels of 5000 images
each. The dataset is available at https:/ /www.kaggle.com/datasets/andrewmvd /lung-
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and-colon-cancer-histopathological-images (accessed on 12 June 2023). Every image is
768 x 768 pixels and in jpeg file format. The 5 class labels can be lung squamous cell
carcinomas, colon adenocarcinomas, lung adenocarcinomas, and benign lung and benign
colonic tissues.

3.2. Feature Extraction Using Improved ShuffleNet

In this work, the improved ShuffleNet method extracts features from histopathological
images. Depthwise convolution (DW-Conv) is a special case of gathering convolutions in
general and then evaluating a typical convolution with 1 x 1 dimensions for the depthwise
convolutional procedure [25]:

W,H
Gi,j,m = Z Kw,h,m ' Xi+w,j+h,m (1)
w,h

In Equation (1), G and K represent the resultant feature matrix and convolutional
kernel weighted matrix, correspondingly. i, j, w, and & represents the coordinates of the
related matrix. The depthwise separable convolution replaces the typical convolution, has
lesser computations, and is typical for lightweight methods:

Qi = D}D¢M + DM 2)

Q; = DFDEMN ®)

o D?D¢M + D?MN 11

= =<+
2712 2
Q2 D?D{MN N D?

4)

where Dy and Dy show the side size of the feature matrix and convolutional kernels, and
Q1 and Q> denote the computation count of depthwise convolutional and typical convo-
lution correspondingly. M and N signify the number of channels in the output and input
feature maps. Thus, the computation amount of the depthwise convolution is 1/9 of the
typical convolution.

The channel shuffle method is a significant innovation point developed by ShuffleNet
that realizes the data interchange of channels from the extracted feature method with
smaller computation costs. In this work, effective channel attention (ECA) was established
to suppress the relevant attributes and accomplish the weighting method of the features
for succeeding the classifier models. However, when retaining the lightness, the LSR loss
function can be performed when considering the multi-dimensional loss computation and
enhances the model noise immunity.

The visual attention modules are drawn from human visual features to emphasize
crucial data in images that are advantageous for enhancing the performance of the model.
Visual attention mechanism brings accuracy improvements to CNNs by weighting the
outcome features but mainly at the cost of enhancing the difficulty, namely convolution
block attention mechanism (CBAM) SE. ECA refers to a lightweight attention model that
borrowed the idea from SE to construct a channel attention module that is established
in CNN to have participated during the end-to-end trained model. ECA exploits 1D
convolutions for an extracted feature that prevents feature downscaling and efficiently
captures cross-channel data interactions.

Assume the input feature matrix is F € REXHXW "and W, C, and H characterize
the width, channels, and height of the input features, correspondingly. First, the input
matrix can be processed via a global average pooling layer that leads to the channel feature
description matrix F € RE*1x1 Next, feature extraction can be executed utilizing a 1D
convolutional layer, and the output can be processed via a nonlinear activation function:

Mc(F) = O'(fld (Fuvg)) %)
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In Equation (5), o represents the sigmoid activation function, and f1; designates the
1D convolutional process. Lastly, the input feature is multiplied with the attention weight
for the channel size:

F'=F® M, (6)

In Equation (6), ® represents elemental multiplication, M, is copies within the spatial
size to attain C x H x W feature matrices that are later point multiplied with another matrix.
The ECA belongs to the channel attention that enables the allocation of the weight to the
channel of the feature maps, which makes the network focus on the most crucial channels.
Thus, after this layer, the ECA module is embedded.

3.3. BER-Based Hyperparameter Optimization

For the effectual identification of the hyperparameter values of the improved Shuf-
fleNet method, the BER algorithm is used. The optimizer technique aims to find the
optimum solution for the problem with a set of constraints [26]. In this work, an individual

from the population is characterized by the vector E = {51, S, ..., S4} € Ry, where d
represents the searching space size, and S; indicates the feature or parameter from the
optimizer problems. The fitness function f is used for determining how well an individual
performs up to the provided point. The optimization process exploits the subsequent phase
to search through the population for the certain optimal vector S*, which increases the FF.
This technique starts with a set of solutions. The following parameters are used for the
optimization process: the population size, the FF, the dimension, and the lower and upper
boundaries for the solution space.

In the proposed AER algorithm, the population is split into subgroups. The number of
individuals in every group can be adapted to enhance the balance between the exploration
and exploitation processes. Moreover, to assure the convergence of optimization techniques
for the population, the elitism approach can be applied by keeping the leading solution
when no best solution is found. If the fitness of the solution does not increase dramatically
for 3 iterations, this is the local optima, and subsequently, other exploration individuals are
produced by using the mutation process.

Exploration avoids local optimal stagnation by movement towards a better solution
and is responsible for finding exciting locations in the search space.

Heading towards the best solution strategy is used to search for prospective regions around
its existing location in the search space. This could be obtained by repetitively searching amongst
near promising alternatives for a better option with respect to the fitness value:

. cos(x)
' hl —cos(x) @
D — Z.(E(t) 1) ®)
S(t+1) = S(t)+D-(2r3 1) )

—
where D denotes the diameter of the circle where the searching agent finds the potential
area. If 0 < x < 180, I denotes a random number within [0,2], and r_{ and r_2> show the

coefficient vector which value was measured by E(t)

The exploitation team is responsible for improving the present solution. The BER
evaluates every individual fitness value at all the cycles and differentiates the optimal
individual. The BER applies two dissimilar strategies to accomplish exploitation, as follows.

The following equation is used for moving the searching agent towards the better solution:

— —

S(t+1) = 2(S(t) + D) (10)



Cancers 2023, 15, 3300

7 of 19

B=n(L-30) (1)

N
where S () indicates the solution vector at ¢ iteration, r3 Denotes a random vector that

controls the movement steps near the better solution, B denotes the distance vector, and Z
shows the better solution vector.

The most potential is the area surrounding the lead (better solution). Consequently, some
individuals hunt in the surrounding area for a better solution with the possibility of finding the
best solution. The BER exploits the subsequent formula to realize these operations.

— — —

S(t+1) = r(SK() + K) (12
N 2
k=z+ 2;\;; (13)

—
From the expression, S represents the better solution, z denotes the random value

within [0, 1], ¢ indicates the iteration value, and N indicates the overall number of iterations.

A mutation is an alternative approach applied by the BER. It can be a genetic operator
used for creating and sustaining population diversity. It avoids an earlier convergence
by assisting in avoiding the local optima, such as a modification of the searching space
as a springboard to other interesting topics. The mutation is crucial for the remarkable
exploration of the BER.

= _ 7.2 ., cos(x)
S(t+1) =k xz hil—cos(x)

(14)

The BER selects the better performance for the following iteration to guarantee the
quality of the defined solution. Even though the elitism technique improves the efficacy,
it causes an early convergence when using a multi-modal function. Note that the BER
gives impressive exploration abilities by applying a mutation method and searching nearby
individuals to the exploration group. Due to its strong exploration abilities, the BER could
prevent early convergence.

3.4. Detection Using Optimal DCRNN Model

At this stage, the features are passed to the DCRNN model for classification. Recently,
a CNN was investigated and proved efficient in high-dimensional and large-scale data
learning [27]. Additionally, a RNN is robust in long-term dependency capturing and
temporal sequence learning. Here, the CNNs and RNNs are combined to implement feature
learning on a MFCC-based representation depending on heart sounds that exploit the long-
term dependency captured by the RNN and the encoded local features extracted from the
CNN. The learnable kernel size in all the layers is fixed to 3 x 3, and the renowned ReLU
function is exploited in all the convolution layers. A max-pooling is employed, followed by
each convolutional layer, where 2 x 2 windows are exploited, and the stride is 2 x 2.

The BN layer standardizes the mini-batch via the whole network, which reduces the
internal covariate shift caused by progressive transform, and the dropout layer might
prevent overfitting and decrease the amount of neurons. Therefore, for all the input
samples, a feature map is attained. After the max-pooling and convolutional layers, an
LSTM layer is exploited for learning the temporal characteristics amongst the attained
mapping features, and an FC layer with sixty-four neurons is effectuated to learn the global
features. Eventually, a softmax layer is executed for deriving the probability distribution
through two classes respective to normal and abnormal heart sound signals. Figure 2
depicts the infrastructure of the CRNN.
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Figure 2. Framework of the CRNN.

To improve the detection rate, the COA is used for hyperparameter tuning. The

updating method of a candidate solution (coatis place) from the COA dependent upon
modeling 2 basic performances of coatis are given below [28]:

)
(ii)

Coatis’” escape strategy from the predator.
Coatis’ strategy while attacking iguanas.

Consequently, the COA population was upgraded 2 stages.

The primary stage of updating the coatis’ population is modeled by simulating the

strategy while attacking the iguanas. Here, a set of coatis climb trees to attain an iguana
and scare it. This approach leads the coatis to move toward dissimilar locations in the
searching space, which illustrates their exploration capability in a global searching space.
Here, the location of the fittest member of the population is considered the location of the
iguana. Thus, the rise in the coatis’ location in the tree can be a mathematical formula:

N
5]1 =Xjj+71- (Iguanaj—fxi,]-), fori=1,2,..., {ZJ andj=1,2,..., m.

(15)

Once the iguana falls to the ground, it can be positioned at an arbitrary location from

the searching space. As per the arbitrary location, the coatis on the ground moves from the
searching space, which can be given as follows:

IguanaC : Iguana]G =Ibj+rg(ubj. —.1b;), j=1,2,..., m,

Ply. .P1 _
X; I.xi’j—{

Xjj +7r- (Iguona]-G — I'xi,]')/ FIguasz < F,
Xij+re (%) — Iguono].c),else

(16)

(17)
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N N
fori= {ZJ +1, {ZJ +2,...,Nandj=1,2, ..., m
The new location evaluated for all the coatis is acceptable for the updating procedure
once it enhances the value of the main function or the coatis remain in the prior location.
XM, FPl<F
e [ i 24
Xi { X;, else. (18)

Now, r represents a random real number within [0, 1], X! denotes the new location
evaluated for the ith coatis, xf ]-1 indicates the jth dimension, FZ-P 1 shows the objective function
value, Iguana shows the iguana’s location in the search space that represents the location
of the fittest member, Iguana; refers to the jth dimension, Iguana® shows the location of the
iguana on the ground that is produced at random, I I guana]G stands for the j dimension,
|- | shows the floor function, and Frouanqc denotes the value of the main function.

The second stage is to update the location of the coatis from the searching space using
a mathematical process according to the natural behaviors of the coatis while encountering
predators and escaping from them. Once the predator attacks a coati, the animal escapes
during the locating. The coatis’ moves during these strategies result in a safer location
closer towards the existing location that represents the exploitation capability during a
local search.

To simulate these behaviors, a random location is produced nearby the location where
every coati is located as follows:

Ib; ub;
lb;-"‘:“l = T],ubj-“”l = T],where t=1,2, ..., T. (19)
xP? . xlp]2 =xjj+(1—-2r)- (lb;““l +7- (ub}ml - lb}“”l)), (20)

i=1,2...,Nj=12 ..., m,

A recently estimated location is suitable once it enhances the value of the main function
as follows:

P2 P2 :
X,:{ xP2, FP2 <F, 1)

X;, else,

In Equation (21), le 2 denotes the newest location evaluated for the ith coatis, le ]2 shows

the j dimension, F/? indicates the objective function values, r refers to the randomly gener-
ated values within [0, 1], t shows the iteration counter, Iptocal and ub'oce! denote the local lower,
as well as upper, boundaries of the j search space correspondingly, and ! bj and ub; indicate
the lower boundaries, as well as upper boundaries, of the j search space, respectively.

The COA iteration is completed after the location of the coatis when the decision
variable is updated. The updating process is based on Equations (15)—(21) and reiterated
until it attains the maximum iteration.

The COA method uses a fitness function (FF) to obtain a superior efficiency of the
classifier. It describes a positive integer to suggest the finest outcome of the candidate
solutions. The decline of the classifier rate of errors is assumed in the FE.

fitness(x;) = ClassifierErrorRate(x;)
no. of misclassified instances +100 (22)

Total no. of instances
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4. Performance Validation

In this section, the cancer detection outcomes of the BERTL-HIALCC technique are
validated using the LC25000 database [29]. The database contains 25,000 instances with
five classes, as provided in Table 1. Figure 3 demonstrates the sample images.

Table 1. Details of the database.

Class Name Description No. of Instances
Col-Ad Colon Adenocarcinoma 5000
Col-Be Colon Benign Tissue 5000
Lun-Ad Lung Adenocarcinoma 5000
Lun-Be Lung Benign Tissue 5000
Lun-SC Lung Squamous Cell 5000
Carcinoma
Total No. of Samples 25,000

Figure 3. Sample images. (a) Lung cancer (b) Colon cancer.

The confusion matrices of the BERTL-HIALCC method in the LCC detection results are
depicted in Figure 4. The results identified that the BERTL-HIALCC technique recognized
lung and colon cancers effectually.
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Training Phase (80%) - Confusion Matrix Testing Phase (20%) - Confusion Matrix

Lun-SC Lun-Be Lun-Ad Col-Be Col-Ad

Actual
Lun-SC Lun-Be Lun-Ad Col-Be Col-Ad

©
=
o
<

Col-Ad Col-Be Lun-Ad Lun-Be Lun-SC Col-Ad Col-Be Lun-Ad Lun-Be Lun-SC

Predicted Predicted
(a) (b)

Training Phase (70%) - Confusion Matrix Testing Phase (30%) - Confusion Matrix
©
-
]
<

Lun-SC Lun-Be Lun-Ad Col-Be Col-Ad
Actual
Lun-SC Lun-Be Lun-Ad Col-Be Col-Ad

Col-Ad Col-Be Lun-Ad Lun-Be Lun-SC Col-Ad Col-Be Lun-Ad Lun-Be Lun-SC
Predicted Predicted
(c) (d)

Figure 4. Confusion matrices of the BERTL-HIALCC system: (a,b) 80:20 of TRP/TSP and (c,d) 70:30
of TRP/TSP.

In Table 2, the LCC recognition outcomes of the BERTL-HIALCC method under 80:20
of TRP /TSP are reported. In Figure 5, the recognition outcomes of the BERTL-HIALCC
method are investigated under 80% of TRP. The figure indicates that the BERTL-HIALCC
system identified the five classes proficiently. In the Col-Ad class, the BERTL-HIALCC
technique provides accuy, precy, reca;, Fscore, and AUCscore 0f 99.19%, 98.98%, 96.92%,
97.94%, and 98.34%, respectively. Likewise, in the Col-Be class, the BERTL-HIALCC
technique provides accuy, precy, recaj, Fscore, and AUCscore of 99.27%, 97.85%, 98.51%,
98.18%, and 98.98%, respectively. Similarly, in the Lun-SC class, the BERTL-HIALCC
method provides accuy, precy, recaj, Fscore, and AU Cscore of 98.99%, 97.05%, 97.93%, 97.49%,
and 98.59%, correspondingly.
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Table 2. LCC recognition outcomes of the BERTL-HIALCC system on 80:20 of TRP/TSP.

Class Accuy Prec, Recay Fscore AUCscore
Training Phase (80%)

Col-Ad 99.19 98.98 96.92 97.94 98.34
Col-Be 99.27 97.85 98.51 98.18 98.98
Lun-Ad 99.05 97.54 97.66 97.60 98.52
Lun-Be 99.27 97.98 98.35 98.17 98.92
Lun-SC 98.99 97.05 97.93 97.49 98.59
Average 99.15 97.88 97.87 97.87 98.67
Testing Phase (20%)

Col-Ad 99.28 99.08 97.30 98.18 98.54
Col-Be 99.38 98.27 98.57 98.42 99.07
Lun-Ad 99.14 97.95 97.85 97.90 98.66
Lun-Be 99.32 98.39 98.19 98.29 98.90
Lun-SC 99.00 96.65 98.40 97.52 98.77
Average 99.22 98.07 98.06 98.06 98.79

Training Phase (80%)

100.0 - : . I Col-Ad [ Lun-Be
=3 Col-Be B Lun-SC

99 . 5 ] — Lun-Ad

99.0 -
98.5 -

98.0 -

Values (%)

97.5

97.0

96.5 -

96.0 -

Accuracy Precision Recall F-Score AUC Score
Figure 5. LCC recognition outcomes of the BERTL-HIALCC system on 70% of TRP.

In Figure 6, the recognition results of the BERTL-HIALCC technique are investigated
under 20% of TRP. The figure revealed that the BERTL-HIALCC technique identified the
five classes proficiently. In the Col-Ad class, the BERTL-HIALCC approach provided accuy,
precy, recay, Fscore, and AU Cseore 0f 99.28%, 99.08%, 97.30%, 98.18%, and 98.54%, correspond-
ingly. Similarly, in the Col-Be class, the BERTL-HIALCC method provided accuy, precy,
recay, Fscore, and AUCscore of 99.38%, 98.27%, 98.57%, 98.42%, and 99.07%, correspondingly.
Similarly, in the Lun-SC class, the BERTL-HIALCC algorithm provides accu,,, precy, reca;,
Fscore, and AUCscore 0of 99%, 96.65%, 98.40%, 97.52%, and 98.77%, respectively.
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Figure 6. LCC recognition outcomes of the BERTL-HIALCC system on 30% of TSP.

In Table 3, the LCC recognition results of the BERTL-HIALCC method under 80:20
of TRP/TSP are reported. In Figure 7, the recognition outcomes of the BERTL-HIALCC
method are investigated under 80% of TRP. The results point out that the BERTL-HIALCC
system identified the five classes proficiently. In the Col-Ad class, the BERTL-HIALCC
technique provides accuy, precy, reca;, Fscore, and AUCscore of 99.42%, 98.98%, 98.25%,
98.57%, and 98.98%, respectively. Likewise, in the Col-Be class, the BERTL-HIALCC
approach offers accuy, precy, reca;, Fscore, and AU Cscore 0f 98.77%, 95.66%, 98.35%, 96.99%,
and 98.61%, correspondingly. Additionally, in the Lun-SC class, the BERTL-HIALCC
technique provides accuy, precy, reca;, Fscore, and AUCscore 0f 98.67%, 96.33%, 97.05%,
96.69%, and 98.06%, correspondingly.

Table 3. LCC recognition outcomes of the BERTL-HIALCC system on 70:30 of TRP/TSP.

Class Accuy Prec, Reca; Fscore AUCscore
Training Phase (70%)

Col-Ad 99.42 98.89 98.25 98.57 98.98
Col-Be 98.77 95.66 98.35 96.99 98.61
Lun-Ad 98.95 98.38 96.31 97.34 97.96
Lun-Be 98.92 97.68 96.87 97.28 98.15
Lun-SC 98.67 96.33 97.05 96.69 98.06
Average 98.95 97.39 97.37 97.37 98.35
Testing Phase (30%)

Col-Ad 99.40 98.56 98.36 98.46 99.01
Col-Be 98.97 96.61 98.24 97.42 98.70
Lun-Ad 99.28 98.62 97.84 98.23 98.75
Lun-Be 99.08 98.07 97.36 97.72 98.44
Lun-SC 98.89 97.22 97.29 97.25 98.29
Average 99.13 97.82 97.82 97.82 98.64
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Training Phase (70%)

1004 N I . [ Col-Ad [ Lun-Be

=3 Col-Be Em Lun-SC
I Lun-Ad

994 et

98 1
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Values (%)

961

Accuracy Precision Recall F-Score AUC Score

Figure 7. LCC recognition outcomes of the BERTL-HIALCC system on 80% of TRP.

In Figure 8, the recognition results of the BERTL-HIALCC technique are inspected
under 20% of TRP. The results demonstrate that the BERTL-HIALCC technique identified
the five classes proficiently. In the Col-Ad class, the BERTL-HIALCC technique provides
accuy, precy, recaj, Fscore, and AU Cscore of 99.40%, 98.56%, 98.36%, 98.46%, and 99.01%,
respectively. Additionally, in the Col-Be class, the BERTL-HIALCC method offers accu,;,
precy, recay, Fscore, and AU Cscore 0f 98.97%, 96.61%, 98.24%, 97.42%, and 98.70%, respectively.
Likewise, in the Lun-SC class, the BERTL-HIALCC approach presents accu,, precy, recaj,
Fscore, and AUCscore of 98.89%, 97.22%, 97.29%, 97.25%, and 98.29%, respectively.

Testing Phase (30%)

1004 P . @ Col-Ad [ Lun-Be
; . @ Col-Be B Lun-SC
I Lun-Ad
991
9
Ef 98- :
0
(]
=
©
> 974
96 1
95 -

Accuracy Precision Recall F-Score AUC Score

Figure 8. LCC recognition outcomes of the BERTL-HIALCC system on 30% of TSP.
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Figure 9 inspects the accuracy of the BERTL-HIALCC method in the training and vali-
dation on 80:20 of TRP/TSP. The figure specifies that the BERTL-HIALCC approach reaches
greater accuracy values with higher epochs. In addition, the greater validation accuracy
over training accuracy shows that the BERTL-HIALCC method learns productively on

80:20 of TRP/TSP.
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Figure 9. Accuracy curve of the BERTL-HIALCC system on 80:20 of TRP/TSP.

The loss analysis of the BERTL-HIALCC algorithm at the time of training and val-
idation is validated on 80:20 of TRP/TSP in Figure 10. The results point out that the
BERTL-HIALCC technique reaches similar values for the training and validation loss. The

BERTL-HIALCC method learns productively on 80:20 of TRP /TSP.
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Figure 10. Loss curve of the BERTL-HIALCC system on 80:20 of TRP/TSP.
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A detailed precision-recall (PR) curve of the BERTL-HIALCC method is shown on
80:20 of TRP /TSP in Figure 11. The results show that the BERTL-HIALCC method results
in increasing values of PR. In addition, the BERTL-HIALCC approach reached higher PR
values in all the classes.

Precision-Recall Curve - (80:20)
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Figure 11. PR curve of the BERTL-HIALCC system on 80:20 of TRP/TSP.

In Figure 12, a ROC study of the BERTL-HIALCC technique is revealed on 80:20 of TRP/TSP.
The figure highlights that the BERTL-HIALCC method results in improved ROC values. In
addition, the BERTL-HIALCC algorithm extends enhanced ROC values in all the classes.
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Figure 12. ROC curve of the BERTL-HIALCC system on 80:20 of TRP/TSP.
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To illustrate the improved cancer recognition results of the BERTL-HIALCC technique,
a brief comparison study is carried out in Table 4 [30]. The results point out that the
BERTL-HIALCC technique has improved results. Based on accu,, the BERTL-HIALCC
technique gains increasing accuy of 99.22%, while the MPADL-LC3, mSRC, Faster R-CNN,
DAELGNN, ResNet50, CNN, and DL models accomplish decreasing accuy of 99.09%,
88.21%, 98.79%, 98.73%, 93.64%, and 97.11%, respectively.

Table 4. Comparative outcomes of the BERTL-HIALCC approach with other methods [30].

Methods Accuy (%) Precy, (%) Reca; (%) Fscore (%)  CT (s)
BERTL-HIALCC 99.22 98.07 98.06 98.06 45
MPADL-LC3 Algorithm ~ 99.09 98.01 97.20 97.07 52
mSRC Algorithm 88.21 85.21 91.78 86.78 64
Faster R-CNN Model 98.79 96.53 97.63 97.32 58
DAELGNN Model 98.73 97.95 96.39 96.80 55
RESNET-50 93.64 96.12 97.49 96.94 60
CNN Model 97.11 97.07 97.44 97.61 54
DL Algorithm 96.32 96.86 96.44 97.08 57

Additionally, based on prec,, the BERTL-HIALCC technique has an increasing prec;
of 98.07%, while the MPADL-LC3, mSRC, Faster R-CNN, DAELGNN, ResNet50, CNN, and
DL algorithms accomplish decreasing prec,, of 98.01%, 85.21%, 96.53%, 97.95%, 96.12%, and
97.07%, respectively. Last, based on reca;, the BERTL-HIALCC method has an increasing
reca; of 98.06%, while the MPADL-LC3, mSRC, Faster R-CNN, DAELGNN, ResNet50,
CNN, and DL approaches accomplish decreasing reca; of 97.20%, 91.78%, 97.78%, 97.63%,
96.39%, and 96.44%, correspondingly. In addition, the computation time (CT) analysis
reported that the BERT-HIALCC technique results in the minimal CT value compared
to the other models. Therefore, the proposed model can be employed for accurate LCC
detection and classification.

5. Conclusions

In this study, we developed a novel LCC detection model named the BERTL-HIALCCD
technique. This study aimed to identify LCC effectually on HSI. To achieve this, the BERTL-
HIALCCD method followed a series of subprocesses, namely improved ShuffleNet feature
extraction, BER-based parameter optimization, DCRNN-based classification, and COA-
based hyperparameter tuning. Finally, a COA-based parameter selection process was
carried out for the DCRNN model. To examine the performance of the BERTL-HIALCCD
technique, a detailed set of experiments was conducted on a large dataset of HSI. The
experimental results demonstrated that the combination of AER and COA algorithms
attained an improved performance for cancer detection compared to the other models.
In the future, the performance of the BERTL-HIALCDD method can be improved with
multimodal fusion approaches. In addition, a histopathological image analysis can be
integrated with clinical data, such as patient demographics, medical history, and genetic
information, which can offer a better holistic understanding of cancer detection. It can
significantly enhance the accuracy and reliability of the detection system and enable person-
alized medicine approaches. In addition, methods such as attention mechanisms, saliency
maps, or feature visualization can assist in the identification of the important regions in
histopathological images and provide insights into the decision-making process.
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