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Abstract
The phenomenon of self-induced stochastic resonance (SISR) requires a nontrivial scaling limit between the deterministic

and the stochastic timescales of an excitable system, leading to the emergence of coherent oscillations which are absent

without noise. In this paper, we numerically investigate SISR and its control in single neurons and three-neuron motifs

made up of the Morris–Lecar model. In single neurons, we compare the effects of electrical and chemical autapses on the

degree of coherence of the oscillations due to SISR. In the motifs, we compare the effects of altering the synaptic time-

delayed couplings and the topologies on the degree of SISR. Finally, we provide two enhancement strategies for a

particularly poor degree of SISR in motifs with chemical synapses: (1) we show that a poor SISR can be significantly

enhanced by attaching an electrical or an excitatory chemical autapse on one of the neurons, and (2) we show that by

multiplexing the motif with a poor SISR to another motif (with a high SISR in isolation), the degree of SISR in the former

motif can be significantly enhanced. We show that the efficiency of these enhancement strategies depends on the topology

of the motifs and the nature of synaptic time-delayed couplings mediating the multiplexing connections.

Keywords Self-induced stochastic resonance � Excitable neurons � Synapses � Autapses � Motif network �
Multiplex network

Introduction

Noise is ubiquitous in biological systems and in particular

in neural systems. Contrary to the intuitive perception of

noise as deteriorating signal quality (McDonnell and Ward

2011), several studies have shown the constructive effects

of noise on neural dynamics (Longtin 1993; Patel and

Kosko 2008; Gang et al. 1993; Gutkin et al. 2007), per-

ception and cognition (Krauss et al. 2016, 2017, 2018;

Schilling et al. 2020, 2021). The most remarkable of these

effects is the phenomenon of noise-induced resonance, in

which an optimal amount of noise enhances the detection

of weak oscillations and the coherence of these oscillations

in a neural systems.

There are several noise-induced resonance phenomena

with different emergent conditions and mechanisms, and

thus, may play different roles in information processing

under different settings of the neural system, see, e.g.,

Yamakou and Jost (2017), Yamakou and Jost (2019),

DeVille et al. (2005) and Zamani et al. (2020). These

include, amongst others, the well-known stochastic reso-

nance (SR) (Longtin 1993; Wiesenfeld and Moss 1995;

Lindner et al. 2004; Guo et al. 2017; Patel and Kosko

2008; Benzi et al. 1981; Gang et al. 1993), coherence

resonance (CR) (Xu et al. 2019; Gang et al. 1993;

Pikovsky and Kurths 1997; Lindner and Schimansky-Geier

1999; Gammaitoni et al. 1998; Zhou et al. 2001; Neiman

et al. 1997; Zhu 2020), inverse stochastic resonance (ISR)

(Gutkin et al. 2007, 2009; Uzuntarla et al. 2013; Yamakou

and Jost 2017, 2018), recurrence resonance (RR) (Krauss

et al. 2019), and self-induced stochastic resonance (SISR)

(Yamakou and Jost 2017; Freidlin 2001a, b; Muratov et al.

2005; DeVille et al. 2005; Muratov and Vanden-Eijnden
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2008; DeVille and Vanden-Eijnden 2007a, b; Yamakou

and Jost 2018, 2019).

In this work, we focus on SISR. Generically, SISR

occurs when a multiple-timescale excitable dynamical

system is driven by a noise of weak amplitude. During

SISR (see, e.g., Fig. 3b), the escape timescale of trajecto-

ries from one attracting region (e.g., the left monotonically

decreasing parts of the S-shaped nullcline in Fig. 3b) in

phase space to another (e.g., the right monotonically

decrease parts of the S-shape nullcline in Fig. 3b) is

exponentially distributed, and the associated transition rate

is governed by an activation energy (e.g., the energy bar-

riers DUl
iðweÞ and DUr

i ðwp;iÞ defined in Eq. (11)). If the

excitable system (e.g., a neuron) is placed out-of-equilib-

rium, and its activation energy decreases monotonically as

the neuron relaxes slowly to a stable quiescent state

(stable fixed point), then at a specific instant during the

relaxation, the timescale of escape due to noise and the

timescale of relaxation match, and the neuron fires almost

surely at this point. If this activation brings the neuron back

out-of-equilibrium, the relaxation stage can start over

again, and the scenario repeats itself indefinitely, leading to

a coherent spiking activity which cannot occur without

noise. SISR essentially depends on the interplay of three

different timescales: the slow and fast timescales in the

deterministic equation of the system, plus a third timescale

characteristic to the noise.

In 2005, Muratov et al. (2005) coined the term self-

induced stochastic resonance after they discovered the

mechanism behind this noise-induced resonance phenom-

ena in a chemical model equation. After the 2005 paper, a

series of papers on SISR in other models including neural

systems (DeVille et al. 2005; Muratov and Vanden-Eijn-

den 2008; Yamakou and Jost 2018, 2019; Yamakou et al.

2020), Brownian ratchets (DeVille and Vanden-Eijnden

2007b), cancer model (Shen et al. 2010), and even in

bearing faults model (Zhang et al. 2021a) were published,

each showing how generic the mechanism of SISR in a

slow-fast stochastic excitable system is, and how ubiqui-

tous it is in physical, biological, and chemical systems.

All previous studies have investigated SISR in isolated

oscillators, except in the case of neural systems, where only

two studies have investigated SISR in networks of coupled

neurons (Yamakou and Jost 2019; Yamakou et al. 2020). It

was shown in Yamakou and Jost (2019) that, in contrast to

SISR in a single isolated FitzHugh-Nagumo (FHN) neuron,

the maximum noise amplitude at which SISR can occur in

the network of coupled FHN neurons is not fixed (i.e., is

controllable), especially in the regime of strong synaptic

couplings and long time delays. And in Yamakou et al.

(2020), the performance of electrical and inhibitory

chemical synapses in the enhancement of the degree of

SISR in layer and multiplex networks of FHN neurons are

compared. It was shown that for each isolated layer net-

work, weaker electrical and chemical synaptic couplings

are better enhancers of SISR. It was also shown that,

regardless of the synaptic strengths, shorter electrical

synaptic delays are better enhancers of SISR than shorter

chemical synaptic delays, while longer chemical synaptic

delays are better enhancers than longer electrical synaptic

delays. Furthermore, it is found that electrical, inhibitory,

or excitatory chemical multiplexing of the two layers

having only electrical synapses at the intra-layer levels can

each enhance SISR. Additionally, only excitatory chemical

multiplexing of the two layers having only inhibitory

chemical synapses at the intra-layer levels can enhance

SISR. Furthermore, in Yamakou and Jost (2019) and

Yamakou et al. (2020), the enhancement of SISR is based

on the configuration of the electrical and chemical synapses

between the connected neurons within a layer network and

between layers in a multiplex network. No studies have

reported on the (in)efficiency of autapses—self-feedback

synapses—on the enhancement of SISR in neurons. The

current work aims at bridging this gap.

Moreover, in all previous studies of SISR in neural

systems, including isolated neurons (Yamakou and Jost

2017; DeVille et al. 2005; Muratov and Vanden-Eijnden

2008; Yamakou and Jost 2018; Yamakou and Tran 2020;

Zhu and Nakao 2021) and neural networks (Yamakou and

Jost 2019; Yamakou et al. 2020), the mathematically

simpler but biophysically less realistic FHN neuron model

has been used. In this work and for the very first time, we

study SISR and its control in a conductance-based neuron

model, i.e., in the more realistic Morris–Lecar (ML) model

(Morris and Lecar 1981). The mathematical structure of the

ML neuron model—low dimensional, existence of a (ex-

plicit) strong timescale separation between the dynamical

variables (conditions required SISR), and to some degree, a

tractable nonlinear vector field—makes it a perfect con-

ductance-based model for the analysis of SISR.

In information processing, networks take different tasks

of functionality (Markram 2012; Van Essen et al. 2013).

Thus, a better understanding of their structure and con-

nectivity should shed more light on the dynamics of the

phenomena occurring on them (Krauss et al. 2019). It is

well-known that large recurrent networks can be decom-

posed into smaller building blocks—the so-called motifs

(Milo et al. 2002), whereby three-neuron motifs are the

most basic motifs, which frequently appear in neural cir-

cuits and can be seen as basic computational units (Krauss

et al. 2019), each uniquely contributing to a large-scale

neural behavior (Li 2008; Song et al. 2005). Thus, in this

paper we focus on these basic computational units—three-

neuron motifs (3NMs). Another important class of net-

works is the so-called multiplex network. It consists of two
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or several layer networks connected to each other, with

each node in one layer connected only to its replica node in

another layer (Battiston 2017). This kind of inter-layer

coupling can induce complex behaviors, namely: the

emergence and suppression of chimera states (Maksimenko

et al. 2016; Ghosh et al. 2016; Ghosh and Jalan 2016), and

the formation of synchronization patterns (Sawicki et al.

2018; Goremyko et al. 2017), including intra-layer syn-

chronization effects (Goremyko et al. 2017; Singh et al.

2015). It has been shown that multiplexing of layer net-

works can be used to control the dynamics of one layer by

tuning the parameters of another layer. For example,

multiplexing of layer networks has been shown to be an

efficient strategy for improving CR in one layer of a two-

layer multiplex network by tuning the parameters of the

other layer Semenova and Zakharova (2018); Yamakou

and Jost (2019) network. In particular, it was found that

multiplexing can induce CR in a layer which does not

exhibit this phenomenon in isolation. Moreover, it has been

shown that the control of CR can be achieved even for

weak multiplexing. While these theoretical results are

intriguing, it remains an open question to which extent they

affect our understanding of the neural information pro-

cessing underlying perception, cognition, and behavior in

biological organisms. In the case of multiplexing, for

example, a fundamental question is where the required

point-to-point connections might be found in actual ner-

vous systems. Possible candidates are the nerve fibres

connecting the layers within cortical micro columns

(Kandel et al. 2000), or also the commissural fibers of the

corpus callosum, which are known to form point-to-point

connections between homologous cortex areas in the two

different hemispheres (Aboitiz et al. 1992; Schüz and

Preibl 1996). Even if these anatomical structures can be

interpreted as cases of multiplexing, it must however be

assumed that heterogeneous multiplex congurations, i.e.,

those between dierent types of motifs, are signicantly more

likely than homogeneous congurations of identical motifs.

We therefore consider in this work also the SISR phe-

nomenon in systems of two structurally different, but

mutually coupled motifs.

Due to the complexity of noise-induced resonance

phenomena, most existing studies are forced to consider

relatively small networks of idealized model neurons, and

they are typically based on assumptions that make an

extrapolation of the obtained results to larger neural net-

works quite difficult. For example, while many theoretical

works consider electrical synapses, chemical synapses are

by far the most common connections between neurons in

the brain (Pereda 2014), and particularly in the mammalian

central nervous system, their number exceeds that of

electrical synapses by several orders of magnitude (Kandel

et al. 2000). For this reason, we are considering both

electrical and chemical synapses in this work. Moreover,

we investigate the effect of so-called autapses (Van Der

Loos and Glaser 1972). Autapses are synaptic contacts of a

neuron’s axon onto its own dendrite and soma. In the

neocortex, self-inhibiting autapses in GABAergic

interneurons are abundant in number and play critical roles

in regulating spike precision and network activity (Lübke

et al. 1996; Yilmaz et al. 2016; Herrmann and Klaus 2004;

Guo et al. 2016; Yin et al. 2018; Bacci and Huguenard

2006). Anatomical observations suggest that autapses

might be used as compensatory replacements for injured

axons (Wang et al. 2017), or to enhance persistent neural

activity (that is supposed to be) elementary for short-term

memory storage (Seung et al. 2000). Some research papers

have shown that autapses can significantly influence the

dynamics of single-neurons (Wang et al. 2014; Liu and

Yang 2018) and neural networks, including synchroniza-

tion (Protachevicz et al. 2020; Fan et al. 2018), SR (Yang

et al. 2017), CR (Yilmaz et al. 2016; Song et al. 2018; Jia

et al. 2021), and ISR (Zhang et al. 2021). However, as we

pointed out earlier, no study have investigated the effects

of autapses on SISR and how these effects can be com-

bined with the network topology to enhance the coherence

of oscillations induced by SISR—this is one objective of

the current paper.

Furthermore, Fries (2005) suggested that coherence of

neural activity is conducive to neural communication. For

instance, it was demonstrated that coherence is advanta-

geous for the signal transmission between spatially sepa-

rated active brain regions (Benchenane et al. 2010). This

communication can be achieved simultaneously at different

ranges of oscillation frequency (Fries 2015), which would

not be possible if they show incoherent behavior. Moti-

vated by these studies, in this work, we focus on SISR in

single ML neurons, 3NMs of time-delayed coupled neu-

rons, and how it can be controlled through autapses (Van

Der Loos and Glaser 1972; Lübke et al. 1996) and multi-

plexing (Battiston 2017). In this paper, we address the

following four main questions:

1. How does the type of autaptic connections affect the

degree of SISR in a single-ML neuron?

2. How does the type of synaptic connections and

topology of a motif affect SISR?

3. Can a poor degree of SISR in a motif be enhanced by

autapses?

4. Can a poor degree of SISR in a motif be enhanced by

multiplexing?

The rest of the paper is organized as follows: In Sect. 2, we

introduce the model equations. In Sect. 3, we represent the

analytical conditions necessary for the occurrence of SISR

in the model. In Sect. 4, we represent the numerical

methods used in our simulations. In Sect. 5, we present and
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discuss the simulation results and in Sect. 6, we have a

summary with concluding remarks.

Model description

Different neural models have been used to investigate

several dynamical behaviors ranging from synchronization

(Wouapi et al. 2020, 2021; Boaretto et al. 2021; Yu et al.

2021) to resonance (Masoliver et al. 2017; Liu and Yang

2018; Lu et al. 2020; Wang et al. 2021). In this paper, we

consider a network of ML neurons with type-II excitability

and driven by Gaussian processes to investigate SISR. The

network is described by the following coupled stochastic

delayed differential equations:

dvp;i
dt

¼ f ðvp;i;wp;iÞ þ rp;i
dWp;i

dt
ð1aÞ

þjae f
a
e ðvp;iÞ þ jacf

a
c ðvp;iÞ ð1bÞ

þjef
G
e ðvp;i; vp;jÞ þ jcf Gc ðvp;i; vp;jÞ ð1cÞ

þjme f
m
e ðvp;i; vq;iÞ þ jmc f

m
c ðvp;i; vq;iÞ; ð1dÞ

dwp;i

dt
¼ egðvp;i;wp;iÞ: ð1eÞ

8
>>>>>>>>>>><

>>>>>>>>>>>:

Here, the membrane potential and the recovery current

variables of neuron i in the motif layer p are given by

vp;i 2 R and wp;i 2 R, respectively. To avoid confusion,

one may keep in mind that the first indices, i.e., p; q 2
f1; 2g (p 6¼ q), denote the motif layer in which the neuron

is located, while the second indices, i.e., i; j 2 f1; 2; 3g
(i 6¼ j), denote the ith and jth neuron within a given layer:

p or q.

Eq. (1) in the absence of Eqs. (1b), (1c), and (1d), rep-

resents a single isolated stochastic ML neuron without

autapses, where the deterministic nonlinear vector fields

f ðvp;i;wp;iÞ in Eq. (1a) and gðvp;i;wp;iÞ in Eq. (1e) are, after

dropping the indices, given by

f ðv;wÞ ¼ gcm1ðvÞð1 � vÞ þ glðvl � vÞ

þ gkwðvk � vÞ;

gðv;wÞ ¼ cosh
v� v3

v4

� �

w1ðvÞ � wð Þ;

8
>>>><

>>>>:

ð2Þ

where the nonlinearities get in via m1ðvÞ and w1ðvÞ, each

given by

m1ðvÞ ¼ 1

2
1 þ tanh

v� v1

v2

� �� �

;

w1ðvÞ ¼ 1

2
1 þ tanh

v� v3

v4

� �� �

;

8
>>><

>>>:

ð3Þ

with gc ¼ 1:0, gk ¼ 1:0, and gl ¼ 0:1 representing the

conductances; and vk ¼ �2:0, v1 ¼ 0:0, v2 ¼ 0:36,

v3 ¼ �0:2, and v4 ¼ 0:52 representing constant parameters

(Liu et al. 2014). The excitability parameter vl is a codi-

mension-one Hopf bifurcation parameter for the ML neu-

ron. And 0\e � 1 is a small positive parameter that sets

the timescale separation between the fast membrane

potential and the slow recovery current variables.

dWp;i=dt are uncorrelated Gaussian white noises, that is

the formal derivative of Brownian motion with

hdWp;iðtÞ; dWp;iðt0Þit ¼ dðt � t0Þ and variance (intensity)

rp;i. For the sake of simplicity, we assume that the noise

intensities rp;i within a given layer p are all the same, i.e.,

we choose rp;1 ¼ rp;2 ¼ rp;3. The parameters rp;i and e are

crucial for the occurrence of SISR.

Figure 1 shows the specific motif layer networks and the

multiplex network configurations, including isolated neu-

rons, that will be considered in this work. In Eq. (1b),

jae f
a
e ðvp;iÞ and jacf

a
c ðvp;iÞ respectively represent the electri-

cal and chemical autaptic terms of the ith neuron in the pth

layer. Here, jae represents the strength of the electrical

autapse and jac the strength of the chemical autapse. Fur-

thermore, f ae ðvp;iÞ and f ac ðvp;iÞ are respectively given by the

well-known (Iqbal et al. 2017; Wang et al. 2006; Xu et al.

2017; Destexhe et al. 1994, 1998; Greengard 2001) forms

of the electrical and chemical autapses:

f ae ðvp;iÞ ¼
�
vp;iðt � saeÞ � vp;iðtÞ

�
;

f ac ðvp;iÞ ¼
�
vp;iðtÞ � vsyn

�

1 þ e�k
�
vp;iðt�sacÞ�hsyn

	:

8
>><

>>:

ð4Þ

In Eq. (1c), jef
G
e ðvp;i; vp;jÞ and jcf Gc ðvp;i; vp;jÞ respectively

represent the electrical interaction (gap junctions) between

the ith and jth neurons in layer p and the chemical inter-

action from the ith to the jth neurons in the pth layer. Here,

je and jc represents the strength of the electrical and

chemical couplings, respectively. The terms f Ge ðvp;i; vp;jÞ
and f Gc ðvp;i; vp;jÞ are given by

f Ge ðvp;i; vp;jÞ ¼
P

j 6¼i

Gij

�
vp;iðt � seÞ � vp;jðtÞ

�
;

f Gc ðvp;i; vp;jÞ ¼
P

j 6¼i

Gij

�
vp;iðtÞ � vsyn

�

1 þ e�k
�
vp;jðt�scÞ�hsyn

	:

8
>>><

>>>:

ð5Þ

In Eq. (1d), jme f
m
e ðvp;i; vq;iÞ and jmc f

m
c ðvp;i; vq;iÞ respectively

represent the electrical and chemical interactions (multi-

plexing) between the ith neuron in layer p and the ith

neuron in layer q. That is, in multiplex networks, connec-

tions exist only between replica neurons. Similarly, jme and

jmc represent the strengths of the electrical and chemical

multiplexing, respectively. Here, f me ðvp;i; vq;iÞ and

f mc ðvp;i; vq;iÞ are given by
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f me ðvp;i; vq;iÞ ¼
�
vq;iðt � sme Þ � vp;iðtÞ

�
;

f mc ðvp;i; vq;iÞ ¼
�
vp;iðtÞ � vsyn

�

1 þ e�k
�
vq;iðt�smc Þ�hsyn

	:

8
>><

>>:

ð6Þ

It is worth noting from Fig. 1 and Eqs. (5) and (6) that the

electrical synapses are always bidirectional (represented in

Fig. 1b by the blue links with double arrow going from the

ith to the jth neuron and also back, i.e., from the jth to the

ith neuron). On the other hand, chemical synapses can

either be (1) a single unidirectional connection (i.e., for

Eq. (5), it is represented in Fig. 1c by the yellow links with

a single arrow from the ith to the jth neuron; and for

Eq. (6), it is represented in Fig. 1e by the single yellow

links with a single arrow going from the ith neuron in the

pth layer to the ith neuron in the qth layer) or (2) a double

unidirectional connection (i.e., for Eq. (5), it is represented

in Fig. 1d by two yellow links each representing a single

unidirectional chemical connection, one going from the ith

to the jth neuron and the other from the jth to the ith

neuron. This kind of reciprocal connection is a very com-

mon and universal design principle of biological nervous

systems (Markram 1997; Pitkänen et al. 2000; Song et al.

2005; Zupanc and Corrêa 2005; Perin et al. 2011; Bastos

et al. 2012). For Eq. (6) (i.e., the coupling terms between

two motif layers) we consider one chemical unidirectional

connection from the ith neuron in the pth layer to the ith

neuron in the qth layer and the other from the ith neuron in

the qth layer to the ith neuron in the pth layer). The elec-

trical and chemical autapses given by Eq. (4) are self-loops

(a)

(c)

(e)

(d)

(b)

Fig. 1 Schematic representations of the network topologies investigated in this work, indicating the types and configurations of the synaptic

connections
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on each neuron and are represented in Fig. 1a by the blue

and yellow loops, respectively.

In Eq. (4), sae and sac respectively represent the electrical

and chemical autaptic time delays. In Eq. (5), se and sc
respectively represent the time delays involved in the

electrical and chemical interactions between neurons

within the same layer. While in Eq. (6), sme and smc repre-

sent the electrical and chemical multiplexing time delays,

respectively. Moreover, the parameter k (which is fixed at

k ¼ 5:0 in this work) determines the slope of the sigmoidal

input-output function CðvÞ ¼ 1=ð1 þ e�kðv�hsynÞÞ, where

hsyn represents the synaptic firing threshold (which is fixed

at hsyn ¼ 0:0 in this work). And vsyn represents the synaptic

reversal potential.

When vsyn\vp;i, the chemical interaction has a depo-

larizing effect which makes the synapse inhibitory, and

when vsyn [ vp;i, the chemical interaction has a hyper-po-

larizing effect, making the synapse excitatory. This means

that we can choose a value for vsyn such that the inhibitory

and excitatory nature of the chemical synapse is deter-

mined only by the sign in front of the chemical coupling

strengths jac , jc, and jmc . For the ML neuron model used in

this study, the membrane potential variables are certainly

bounded as: �1:4\vp;iðtÞ\2:5 (p ¼ 1; 2; i ¼ 1; 2; 3) for

all time t. We fix vsyn ¼ �1:5 (maintained throughout our

computations), a value with which the term ðvp;iðtÞ � vsynÞ
is always positive. In this way, a positive sign in front of

jac , jc and jmc will always make these chemical synapses

excitatory, represented by jac;exc, jc;exc, and jmc;exc, respec-

tively. While a negative sign in front of jac , jc and jmc will

always make these chemical synapses inhibitory, repre-

sented jac;inh, jc;inh, and jmc;inh, respectively.

The matrix G in Eq. (5) represents the adjacency matrix

of a motif layer network. The entry Gij is 1 if the ith neuron

is connected to the jth neuron and 0 otherwise.

Deterministic predisposition and necessary
conditions for SISR

A ML neuron with a unique and stable fixed point and in

the complete absence of random perturbations (or even in

the presence of a sub-threshold deterministic perturbation)

cannot maintain a self-sustained oscillation (i.e., no limit

cycle solution can emerge). One says in this case that the

neuron is in the excitable regime (Izhikevich 2000). The

predisposition state for the occurrence of SISR in an iso-

lated neuron and in a network of neurons is precisely

excitability. In an excitable state, choosing an initial con-

dition in the basin of attraction of the unique and

stable fixed point will result in at most one large non-

monotonic excursion in the phase space after which the

trajectory returns exponentially fast to this fixed point and

stays there until a disturbance like a random perturbation is

introduced in the neuron model.

In a single isolated ML neuron without autapses, the

excitability parameter is vl. Figure 2a shows a bifurcation

diagram of a single ML neuron without autapses at a fixed

timescale separation parameter e ¼ 0:0005. It is worth

noting that the real part of the eigenvalue of the Jacobian

matrix associated to a single isolated ML without autapses

depends on the timescale separation parameter e. Hence,

the Hopf bifurcation value of the isolated ML neuron

without autapses also depends on e. We observe that by

varying the Hopf bifurcation parameter vl in the interval

[1.50, 1.52010), the membrane potential v stays at a con-

stant value (i.e., at the unique and stable fixed point ve)

represented by the blue horizontal line. At the Hopf

bifurcation value vl ¼ vHðe ¼ 0:0005Þ ¼ 1:52010, the

(a) (b)

(c)

(d)

Fig. 2 Panel a: Bifurcation diagram of a single isolated ML neuron

without autapses against the excitability parameter vl at a fixed

timescale separation parameter e ¼ 0:0005. The Hopf bifurcation

value separating the excitable regime (blue line) and oscillatory

regime (orange line) is indicated by the dashed-gray vertical line

located at vl ¼ vHðe ¼ 0:0005Þ ¼ 1:52010. Panel b: Variation of the

Hopf bifurcation value with the timescale parameter e. To avoid

oscillatory regime due to Hopf bifurcation, we fixed vl ¼ 1:515 in all

simulations. Panels c and d show, each, a time series (left) and the

associated phase portrait (right) of a trajectory in the excitable regime

vl ¼ 1:515\vH and in the oscillatory regime vl ¼ 1:525[ vH,

respectively. (Color figure online)
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stable and unique fixed point bifurcates into a stable limit

cycle, represented by the dashed-gray vertical line. The top

and bottom orange horizontal lines represent the maximum

and the minimum values of the limit cycle oscillation,

respectively.

Figure 2b shows the variation of the Hopf bifurcation

value vH with timescale separation parameter e. We

observe that the Hopf bifurcation value is non-linearly

proportional to e � 1, and for 10�6 � e� 10�5, the Hopf

bifurcation value remains constant at vH ¼ 1:524. For this

reason, we keep the isolated ML neuron without autapses

in the excitable regime by fixing vl at vl ¼ 1:515

throughout this work, so that we are sure that coherent

oscillations due to a Hopf bifurcation cannot occur in our

simulations. Figure 2c and d show the time series and the

corresponding phase portrait of a trajectory when we

choose vl in the excitable regime and in the oscillatory

regime, respectively. In the phase portraits, the S-shaped

curve corresponds to the v-nullcline which intersects the w-

nullcine at a single point, i.e., the unique and stable (un-

stable in Fig. 2d) fixed point.

It is worth pointing out that in the deterministic single

isolated ML neuron with autapse and the deterministic

networks of ML neurons with and without autapses, pairs

of new parameters, i.e., ðjae ; saeÞ, ðjac ; sacÞ, ðje; se), ðjc; scÞ,
ðjme ; sme Þ, ðjmc ; smc Þ, enter the bifurcation dynamics. It is

therefore very important to also check that, after fixing

vl ¼ 1:515, these additional set of parameters does not shift

the deterministic system into the oscillatory regime via

Hopf or saddle-node onto limit cycle bifurcations (Schöll

et al. 2009; Yamakou and Jost 2019; Yamakou et al.

2020).

We recall that SISR is the occurrence of a limit cycle

behavior (coherent oscillations) due to solely the presence

of noise and not because of the occurrence of deterministic

bifurcations onto limit cycles. To avoid such deterministic

oscillatory regimes, we will always first check that the

values of all autaptic, intra-motif, and inter-motif delayed

coupling parameters keep the considered system in the

excitable regime.

The adiabatic limit e ! 0 in Eq. (1) reduces Eq. (1e) to

dwp;i=dt � 0. This means that in this limit, the wp;i-vari-

ables of neurons are frozen, reducing Eq. (1) into a set of

coupled Langevin equations given by

dvp;i
dt

¼ � oUðvp;i;wp;iÞ
ovp;i

þ rp;i
dWp;i

dt
; ð7Þ

where Uðvp;i;wp;iÞ is the double well potential defined in

Eq. (9), and in which wp;i is essentially constant.

The conditions (based on large deviation theory Freidlin

2001b, a and Kramers’ law 1940) necessary for the

occurrence of SISR in stochastic slow-fast dynamical

systems in the form of Eq. (1) (the so-called standard form

Kuehn 2015) are well established (Muratov et al. 2005;

DeVille and Vanden-Eijnden 2007a; Lee DeVille et al.

2005; Yamakou and Jost 2019; Yamakou et al. 2020) and

are quite generic for Gaussian noise.

In Eq. (8), we write down these conditions (see, e.g.,

Yamakou and Jost 2019) for the motif layer p of Eq. (1):

vl � vH\0;

lim
ðrp;i;eÞ!ð0;0Þ

�
r2
p;i

2
lnðe�1Þ

�

2
h
DUl

iðweÞ;Fpð�Þ
i
;

lim
ðrp;i;eÞ!ð0;0Þ

�
r2
p;i

2
lnðe�1Þ

�

¼ Oð1Þ;

8
>>>>>>><

>>>>>>>:

ð8Þ

where Fp, defined in Eq. (10), is a function of the param-

eters ðjae ; saeÞ, ðjac ; sacÞ, ðje; seÞ, ðjc; scÞ, ðjme ; sme Þ, ðjmc ; smc Þ;
and DUl

iðweÞ, defined in Eq. (11), is the left energy barrier

(as opposed to the right energy barrier Ur
i ðwp;iÞ, both

obtained in the adiabatic limit e ! 0) of a double well

potential Uðvp;i;wp;iÞ (see Eq. (9)) at the wp;i-coordinate of

the unique and stable fixed point ðve;weÞ of Eq. (1), in the

absence of noise.

Uðvp;i;wp;iÞ ¼ �
Z h

f ðvp;i;wp;iÞ þ jae f
a
e ðvp;iÞ

þ jacf
a
c ðvp;iÞ þ jef

G
e ðvp;i; vp;jÞ

þ jcf
G
c ðvp;i; vp;jÞ þ jme f

m
e ðvp;i; vq;iÞ

þ jmc f
m
c ðvp;i; vq;iÞ

i
dvp;i:

ð9Þ

Fp :¼
n
ðjae ; saeÞ; ðjac ; sacÞ; ðje; seÞ; ðjc; scÞ;

ðjme ; sme Þ; ðjmc ; smc Þ : DUl
iðwp;iÞ ¼ DUr

i ðwp;iÞ
o
;

ð10Þ

where

DUl
iðwp;iÞ :¼ U

�
v�0ðwp;iÞ;wp;i

�
� U

�
v�l ðwp;iÞ;wp;i

�
;

DUr
i ðwp;iÞ :¼ U

�
v�0ðwp;iÞ;wp;i

�
� U

�
v�r ðwp;iÞ;wp;i

�
;

(

ð11Þ

with

v�l;0;rðwp;iÞ :¼
n
vp;i : f ðvp;i;wp;iÞ þ jae f

a
e ðvp;iÞ

þ jacf
a
c ðvp;iÞ þ jef

G
e ðvp;i; vp;jÞ

þ jcf
G
c ðvp;i; vp;jÞ þ jme f

m
e ðvp;i; vq;iÞ

þ jmc f
m
c ðvp;i; vq;iÞ ¼ 0

o
:

ð12Þ

The sets of solution v�l ðwp;iÞ, v�0ðwp;iÞ, and v�r ðwp;iÞ in

Eq. (12) are such that v�l ðwp;iÞ\v�0ðwp;iÞ\v�r ðwp;iÞ, define

the left stable, middle unstable, and right stable branches of
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the S-shaped v-nullcline of the ML neuron model,

respectively.

The theoretical result given in Eq. (8) can briefly be

interpreted as follow: the first expression (i.e.,

vl � vH \ 0) requires the system to be in the

excitable regime, i.e., a parameter regime where the zero-

noise (deterministic) dynamics does not display a limit

cycle nor even its precursor. This condition means that

SISR can arise when the parameters are bounded away

from bifurcation thresholds (this is in contrast to CR, see,

e.g., DeVille et al. (2005); Yamakou and Jost (2019)). The

second expression in Eq. (8) shows that the coherence

(regularity) of the spiking created by the noise has a non-

trivial dependence on the noise amplitude and the time-

scale ratio between fast excitatory variables and slow

recovery variables. This expression means that the spiking

of the neural system will become more coherent if in the

double limit ðrp;i; eÞ ! ð0; 0Þ, the quantity
� r2

p;i

2
lnðe�1Þ

	

stays within the interval
�
DUl

iðweÞ;Fpð�Þ
	
. The last

expression of Eq. (8) requires that, in the double limit

ðrp;i; eÞ ! ð0; 0Þ, the quantity
� r2

p;i

2
lnðe�1Þ

	
be as far away

as possible from the boundaries of this interval. This last

requirement ensures that the trajectories do not spend too

much time in the wells of the double-well potential given

in Eq. (9), and hence destroy the regularity of the spiking.

Therefore, the non-occurrence or strength of SISR, if it

occurs, depends on whether (or to what extend) the chosen

values of the system parameters fðjae ; saeÞ; ðjac ; sacÞ;
ðje; seÞ; ðjc; scÞ; ðjme ; sme Þ; ðjmc ; smc Þg satisfies the expres-

sions in Eq. (8) in the double limit ðrp;i; eÞ ! ð0; 0Þ.
Using the theoretical result in Eq. (8), we calculate the

minimum (rmin) and maximum (rmax) noise amplitude

between which the degree of SISR is high as follows:

rmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DUl
iðweÞ

lnðe�1Þ

s

;

rmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Fð�Þ

lnðe�1Þ

s

;

8
>>>>><

>>>>>:

ð13Þ

where rmin and rmax get their dependence on the parame-

ters ðjae ; saeÞ, ðjac ; sacÞ, ðje; seÞ, ðjc; scÞ, ðjme ; sme Þ, and

ðjmc ; smc Þ from Uðvp;i;wp;iÞ and v�l;0;rðwp;iÞ. Later, we shall

return to Eq. (13), when we will use the expressions of rmin
and rmax to provide theoretical explanations to some of our

numerical results.

It is also worth noting that the corresponding conditions

for the occurrence of SISR in a single isolated neuron with

or without autapses and in a single isolated motif layer

network without multiplexing can be easily obtained by

setting the corresponding autaptic (jae and/or jac) and

multiplexing (jme and/or jmc ) coupling strengths in Eqs. (8)–

(12) to zero.

To answer the main questions we are interested in (see

the introductory section), we fix vl ¼ 1:515\vH and

choose the relevant coupling strengths and the associated

time delays such that Eq. (1) is in the excitable regime. We

also choose a sufficiently small timescale separation

parameter, i.e., e ¼ 0:0005 � 1, a weak noise intensity

interval, i.e., 0\rp;i � 1, and then numerically identify

the combined values of fðjae ; saeÞ; ðjac ; sacÞ; ðje; seÞ;
ðjc; scÞ; ðjme ; sme Þ; ðjmc ; smc Þg which satisfy (or at least to

some degree) or not the scaling limit conditions in Eq. (8).

Numerical method for integration

In this work, the coefficient of variation (CV) (Pikovsky

and Kurths 1997; Masoliver et al. 2017) will be used to

measure the degree of coherence of spiking induced via the

mechanism of SISR and hence, the extent of satisfaction of

Eq. (8), when the various synaptic strengths and time delay

parameters are varied. CV is an important statistical mea-

sure based on the time intervals between spikes (Pikovsky

and Kurths 1997; Masoliver et al. 2017) and which is

related to the timing precision of information processing in

neural systems (Pei et al. 1996). When CV ¼ 0, the neural

system exhibits a deterministic periodic spiking, a value

that we cannot reach in our model due to the presence of

noise. In the double limit ðrp;i; eÞ ! ð0; 0Þ, the coherence

of the spiking due to SISR increases as CV ! 0, i.e., as
� r2

p;i

2
lnðe�1Þ

	
tends to the mid-point of the interval

�
DUl

iðweÞ;Fpð�Þ
	

as the parameter values change. When

CV ¼ 1, we only have occasional (rare) spiking, leading to

a Poissonian distribution of spiking events which are

irregular. When CV[ 1, we have an occurrence of spikes

which is even more irregular than that in a spike train with

the Poissonian distribution. In these cases (i.e., when

CV� 1), the quantity
� r2

p;i

2
lnðe�1Þ

	
either lies within the

interval
�
DUl

iðweÞ;Fpð�Þ
	

but very close to its boundaries or

outside the interval, especially when CV[ 1.

We numerically integrated the Eq. (1) with a step size of

dt ¼ 0:008 for a very long total integration time of

T ¼ 3 	 105. The integration was performed with the

second order Runge-Kutta scheme for Itô stochastic dif-

ferential equations (Rößler 2009) using the itoSRI2 method

from the Python package sdeint. Moreover, each point on

the CV curves was obtained after 6 realizations of each of

these noise intensities.

The CV of N coupled neurons is defined as (Masoliver

et al. 2017):
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CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hISI2i � hISIi2

q

hISIi
; ð14Þ

where

hISIi ¼ 1

N

XN

i¼1

hISIii;

hISI2i ¼ 1

N

XN

i¼1

hISI2
i i;

8
>>>>><

>>>>>:

ð15Þ

in which hISIii and hISI2
i i are the mean and the mean

squared (over the total time of simulation T) inter-spike

intervals of the ith neuron, respectively. While hISIi and

hISI2i are the mean (over the total number of neurons N) of

hISIii and hISI2
i i, respectively. The threshold value of the

membrane potential variable above which a spike is con-

sidered to occur is vth ¼ 0:0.

Simulation results and discussion

SISR in a single neuron without autapse

In this subsection, we investigate the degree of SISR in a

single isolated ML neuron without autapses in

excitable regime (i.e., vl ¼ 1:515\vH) and how it varies

with the time scale separation parameter e and the noise

intensity r1;1 ¼ r. From Eq. (1) and Eqs. (8)–(12), we

respectively obtain a single isolated neuron without

autapses and the corresponding set of necessary conditions

for the occurrence of SISR by setting all coupling strengths

to zero, i.e., jae ¼ jac ¼ je ¼ jc ¼ jme ¼ jmc ¼ 0.

In Fig. 3a–c, we show sample trajectories in time series

and the corresponding phase portrait for increasing noise

intensities at e ¼ 0:00005. We observe that as the noise

increases, but within the weak limit (i.e., r � 1), the

coherence of the spikes is not significantly changed.

Figure5 shows the variation of CV against the noise

intensity r � 1 for several values of the time scale sepa-

ration parameter e � 1. First, we observe that the smaller e
is, the larger the interval of the noise amplitude r in which

the CV values are the lowest, i.e., typically below 0.2. This

is quite remarkable because in these larger intervals of

noise where the CV values are low, one can actually vary

the noise intensity without changing the high degree of

coherence of the spiking activity due to SISR. On the other

hand, the larger e is, the higher the minimum value of CV.

Thus, as the conditions in Eq. (8) predict, a high degree of

SISR depends on the interplay between the time scale

separation parameter and noise intensity in their weak

limits ðr; eÞ ! ð0; 0Þ.

Returning to Eq. (13), we provide a theoretical expla-

nation (based on the expressions of rmin and rmax) to the

fact that the left branch of the CV curve in Fig. 5 is shifted

to the right as e increases and while the right branch does

not significantly move. Furthermore, we use these theo-

retical expressions in Eq. (13) to accurately calculate the

order of magnitude of rmin and rmax for a single isolated

neuron at a given e. We remind that the explanations and

calculations given here for the case of a single isolated

neuron also applies to the the rest of the cases investigated

in this paper. But as a test-of-principle and for the sake of

simplicity, we only show the details for the isolated neuron

without autapses.

Why will the CV curves in Fig. 5 be shifted to the right

as e increases? To answer this question, we note that for a

fixed set of parameter values, DUlðweÞ and Fð�Þ in the

expressions of rmin and rmax are also fixed. We further

observe that as e increases, lnðe�1Þ decreases, and hence

rmin increases (since DUlðweÞ is fixed), which, therefore,

shifts the left branch of the CV curve to be right as e
increases. On the other boundary, why will the CV curves

in Fig. 5 remain almost unchanged as e increases? To

answer this question, we have to calculate Fð�Þ for the

isolated neuron. Figure 4 shows the graph of the left

DUlðwÞ and right DUrðwÞ energy barriers given by

Eq. (11).

Fig. 3 Time series (left) and corresponding phase portraits (right)

showing noise-induced coherent oscillations in a single isolated ML

neuron in the excitable regime (i.e., vl ¼ 1:515\vH) with e ¼
0:00005 and for different noise amplitudes: r ¼ 0:0006, 0.005, and

0.12 in panels a–c, respectively
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We observe that from the definition of Fð�Þ in Eq. (10)

and Fig. 4 that DUlðwÞ ¼ DUrðwÞ at w ¼ 0:2662 and

hence Fð:Þ ¼ 0:059274 for e ¼ 0:0005. This gives a max-

imum noise rmax ¼ 1:249 	 10�1. With the stable unique

fixed point evaluated at ðve;weÞ ¼ ð�0:5767; 0:19019Þ, we

calculate left energy barrier at DUlðweÞ ¼ 1:45 	 10�6 and

hence the corresponding minimum noise of

rmin ¼ 6:0 	 10�4. Comparing rmin ¼ 6:0 	 10�4 and

rmax ¼ 1:249 	 10�1 with extreme values r in Fig. 5 when

e ¼ 0:0005, we observe that the theoretical results of

Eq. (13) predict the correct order of magnitude of rmin and

rmax. Furthermore, we notice from Fig. 4 that the value of

Fð:Þ ¼ 0:059274 (i.e., the value of DUðwÞ when

DUlðwÞ ¼ DUrðwÞ) does not change as w varies. This is

why the right branches of the CV curves do not change

significantly (i.e., they all have the same order of magni-

tude) as e changes.

In the rest of our numerical simulations, we fix the time

scale parameter at e ¼ 0:0005. This very small value is

chosen for two reasons: (1) The behavior of SISR at a very

small value of e is qualitatively the same as at relatively

larger values (which maybe biologically more relevant),

provided that the interplay between the noise amplitude r
and e is satisfied according to Eq. (8). (2) The phenomenon

of SISR is very pronounced at very small values of e (if, of

course, Eq. (8) is satisfied), making it easier to understand

its behavior.

SISR in a single neuron with an electrical autapse

In this subsection, we investigate the degree of SISR in a

single isolated ML neuron with (only) an electrical autapse

in the excitable regime (i.e., vl ¼ 1:515\vH) and how it

varies with the autaptic coupling strength jae , time delay sae ,
and the noise intensity r1;1 ¼ r. In this case, in Eq. (1) and

Eqs. (8)–(12), we set jac ¼ je ¼ jc ¼ jme ¼ jmc ¼ 0, except

jae 6¼ 0.

As we pointed out earlier, time-delayed couplings may

invoke a saddle-node onto limit cycles (SNLC) bifurcation,

leading to the emergence of self-sustained spiking activity

in the autaptic neuron even in the absence of noise (Schöll

et al. 2009). SNLC may occur even if the Hopf bifurcation

parameter is fixed in the excitable regime (i.e.,

vl ¼ 1:515\vH) identified in Fig. 2a. Thus, it is indis-

pensable to identify and avoid time-delayed coupling val-

ues leading to SNLC in the zero-noise dynamics.

Figure 6 shows a color coded ISI in a two-parameter (kae ,

sae) deterministic bifurcation diagram. The white region

represents the desired excitable regime (where no spike

occurs and thus no ISI), while the colored regions represent

the undesired oscillatory regime (with non-zero ISI)

induced by SNCL.

In Fig. 7, we show the variation of CV against the noise

amplitude r with values of jae and sae taken from the

excitable regime in Fig. 6. In Fig. 7a, we choose a weak

autaptic coupling jae ¼ 0:05 and vary the time delay

sae 2 f0:0; 5:0; 10:0; 20:0g. We observe that in this weak

autaptic coupling regime, the time delay has no effect on

the high degree of SISR achieved, as all the CV curves

remain at almost the same (low) value. However, as the

time delay sae becomes longer, the intervals of r in which

the CV curves are the lowest shrink as the left branch of the

Fig. 4 Energy barriers DUl;r of the single isolated ML neuron against

the slow variable w in the excitable regime (i.e., vl ¼ 1:515\vH with

e ¼ 0:0005)

Fig. 5 Coefficient of variation CV against noise amplitude r in a

single isolated ML neuron in the excitable regime (i.e.,

vl ¼ 1:515\vH) for different values of the time scale parameter e.
The intervals of the weak noise intensity in which CV\0:2 shrinks

with increasing e. Furthermore, the minimum CV values in order of

increasing e are as follows: CVmin ¼ 0:018; 0:028; 0:056; 0:079; 0:18
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CV curves are shifted to the right, i.e., to relatively larger

noise intensities.

In Fig. 7b, where the autaptic strength becomes stronger,

i.e., jae ¼ 0:5, the CV curves qualitatively behaves as in

Fig. 7a, except that the degree of SISR become very sen-

sitive to small changes in length of time delays: we notice

in Fig. 7b, sae varies only between 0.0 and 2.5 in order to

have the qualitative behavior in Fig. 7a.

In Fig. 7c and d, we now fixed sae at a short (e.g.,

sae ¼ 1:0) and long (e.g., sae ¼ 20:0) time delays, respec-

tively, and vary the autaptic coupling strength. We observe

that the minimum values of the CV curves are not signif-

icantly changed as the jae changes. Nevertheless, the

intervals of r in which the CV values are the lowest, shrink

as the left branches of the CV curves are again shifted to

the right. Moreover, in long time delay regimes such as in

Fig. 7d, the degree of SISR becomes very sensitive to

variations of the autaptic coupling strength. Here, jae varies

only up to 0.06 in order to have the same qualitative

behavior observed in Fig. 7c where jae varies up to 20.0.

SISR in a single neuron with a chemical autapse

In this subsection, we investigate the degree of SISR in a

single isolated ML neuron with (only) an inhibitory

chemical autapse and how it varies with the autaptic cou-

pling strength jac;inh, time delay sac;inh, and the noise inten-

sity r. In this case, in Eq. (1) and Eqs. (8)–(12), we set

jae ¼ je ¼ jc ¼ jme ¼ jmc ¼ 0, except jac 6¼ 0. It should be

noted that we do not consider an excitatory chemical

autapse in this case. This is because with this type of

autapse, the deterministic ML neuron is always in the

oscillatory regime—the undesired predisposition for SISR.

For the whole range of parameter values of the inhibitory

chemical autapse used, the isolated ML neuron always

remains excitable.

In Fig. 8, we show the variation of CV against the noise

amplitude r with values of jac;inh and sac;inh. In Fig. 8a, at a

weak autaptic coupling jac;inh ¼ 0:05, we vary the time

delay sac;inh 2 f0:0; 5:0; 10:0; 20:0g. In this case, we

observe that variations in the time delay have no effect on

the high degree of SISR achieved. All the CV curves

remain at almost the same (low) value.

In Fig. 8b, where the autaptic strength becomes stron-

ger, i.e., jac;inh ¼ 0:5, the CV curves change significantly,

both qualitatively and quantitatively. Here, as the time

Fig. 6 The mean inter-spike interval hISIi is color coded in the ðjae �
saeÞ plane for the deterministic (i.e., r1;1 ¼ r ¼ 0) ML neuron with an

eletrical autapse. The white region represents the excitable regime

(i.e., predisposition for SISR) and the colored regions represent the

oscillatory regime (i.e., undesired regime) invoked by autaptic time-

delayed couplings via SNLC bifurcations. vl ¼ 1:515\vH,

e ¼ 0:0005

(a) (b)

(c) (d)

Fig. 7 Coefficient of variation CV against noise amplitude r for

parameter combinations of the electrical autapse ðjae ; saeÞ in a single

isolated ML neuron. We observe variations in the electrical autaptic

parameters do not significantly affect the high degree of SISR, but

they can shrink the interval of the noise amplitude in which this

degree remains high, by shifting the left branch of the CV curves to

relatively larger noise intensities. vl ¼ 1:515\vH, e ¼ 0:0005
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delay increases from a non-zero value, the minimum of the

CV curves get lower, indicating a higher degree of SISR.

In Fig. 8c and d, we fix the autaptic time delays at

sac;inh ¼ 1:0 and sac;inh ¼ 20:0, respectively, and vary the

autaptic strength jac;inh 2 f0:0; 0:15; 0:3; 0:4; 0:5g. We

observe that: ðiÞ SISR is very sensitive to small variations

in the autaptic coupling strength jac;inh and ðiiÞ the time

delay sac;inh and the coupling strength jac;inh have opposite

effects on the degree of SISR. While larger values of sac;inh

increase the degree of SISR, larger values of jac;inh decrease

it.

Furthermore, the deterioration of SISR with an inhibi-

tory chemical autapse manifests in two ways: ðiÞ higher CV

curves and hence lower degree of SISR and ðiiÞ smaller

intervals of the noise intensity in which the degree of SISR

is relatively high—notice that the shrinking of the noise

interval happens on both the left and the right branch of the

CV curves. Recall from the previous subsection that the

deterioration of SISR with an electrical autapse consisted

only in a reduction of this interval and also, only from the

left branch of the CV curves.

SISR in a single motif network

In this subsection, we investigate the degree of SISR in a

single isolated motif without autapses and with either only

electrical synapses or only chemical synapses between the

three neurons and how it varies with the synaptic time-

delayed couplings (je, se) or (jc, sc), and the noise inten-

sity r1;1 ¼ r1;2 ¼ r1;3 ¼ r. In motifs with electrical

synapses, i.e., the topologies in Fig. 1b, we set in Eq. (1)

and Eqs. (8)–(12), jae ¼ jac ¼ jc ¼ jme ¼ jmc ¼ 0, except

je 6¼ 0. In the same fashion, for motifs with chemical

synapses, i.e., the topologies in Fig. 1c and d, we set

jae ¼ jac ¼ je ¼ jme ¼ jmc ¼ 0, except jc 6¼ 0 in Eq. (1)

and Eqs. (8)–(12).

To guarantee the excitability of each of these motifs

(where we fix e ¼ 0:0005 and vl ¼ 1:515 in each neuron),

we compute two-parameter deterministic bifurcation dia-

grams with respect to the synaptic parameters (je, se) or

(jc, sc). Simulations indicate that electrical and inhibitory

chemical synapses can set the deterministic motifs into

either an excitable or an oscillatory regime, depending on

the values of the synaptic coupling strengths

(je; jc;inh 2 ½0:0; 0:5
) and time delays

(se; sc;inh 2 ½0:0; 20:0
), see Figs.9 and 10. On the other

hand, all the parameter values of the excitatory chemical

synapses (figures not shown) set the deterministic motifs

into the oscillatory regime. Hence, we do not investigate

SISR in motifs layer networks with excitatory chemical

synapses.

Our simulations have also indicated that (figures not

shown) the motifs C2–C5, with only chemical inhibitory

synapses, are always in the excitable regime for all the

synaptic parameter values used. Moreover, Fig. 10c indi-

cates that the C7 topology with chemical inhibitory

synapses does not admit excitability. Hence, we also

exclude the C7 topology from our investigations of SISR.

In Figs. 11, 12 and 13, we present the variations of the

CV curves against noise intensity for the indicated motif

topology and different intra-motif time-delayed coupling

parameter values.

In Fig. 11, with the electrical motifs E1 and E2,

respectively, we observe that weaker coupling strengths je

and shorter time delays se lead to a higher degree of SISR,

especially at weaker noise intensities. There are no sig-

nificant differences in the degree of SISR in E1 and E2.

In Fig. 12, with the inhibitory chemical motifs C1, C4,

C5, and C6, we mainly observe that the high degree of SISR

(a) (b)

(c) (d)

Fig. 8 Coefficient of variation CV against noise amplitude r for

parameter combinations of the inhibitory chemical autapse

ðjac;inh; s
a
c;inhÞ in a single isolated ML neuron. We observe that

variations in these parameters significantly affect the degree of SISR

by shifting the entire CV curve to higher values and by shrinking, on

both ends, the interval of the noise amplitude in which this degree

remains relatively high. Longer autaptic time delays enhance SISR,

while stronger autaptic couplings destroy SISR. vl ¼ 1:515\vH,

e ¼ 0:0005
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achieved in the corresponding motifs are quite robust to

parametric changes in the synapses—the CV curves remain

very low and the intervals of the noise intensity in which

these high degrees are achieved remain unchanged as the

parameters change.

In Fig. 13, the CV curves of motifs C2 and C3 show

significant fluctuations in the degree of SISR as the

parameters change. In these two cases, stronger coupling

strengths and longer time delays lead to a lower degree of

SISR. See, e.g., the purple CV curves in panels of Fig. 13,

where jc;inh ¼ 1:5 and sc;inh ¼ 10:0. We observe that these

curves are shifted upwards to higher CV values compared

to other curves, thus reducing the degree of SISR. The

minimum CV values of these purple curves are: CVmin ¼
0:293 in the left panel and CVmin ¼ 0:232 in the right panel

of Fig. 13.

Comparing the degree of SISR in isolated neurons and

motif networks, we can conclude that the degree of SISR in

motifs can be as good as in the isolated neuron, but not

better. As we can see from Figs. 11, 12 and 13, as the

strength of synaptic couplings increases, the interval of the

noise amplitude within which the degree of SISR is high

decreases and the minimum of the CV curves rises to a

small but significant value. But as the strength of these

synaptic couplings decreases, this interval of noise

increases and the minimum of the CV descends to lower

values. Eventually, when the synaptic couplings decrease

to vanishingly small values (e.g., jc;inh ¼ 0:008) or even to

zero (in which case we have isolated neurons) the degree of

SISR in the motifs becomes very close to the degree of

SISR in the isolated neuron and identical when the synaptic

coupling becomes zero. Therefore, we conclude that the

motif can at most do as well as an isolated neuron, but not

better.

A natural and interesting question to investigate is

whether this significantly poor degree of SISR can be

(a)

(b)

Fig. 9 Excitability maps (left) and corresponding topology (right) of

electrically coupled motif layer networks. hISIi is color coded with

the white region representing the excitable regime and the colored

regions the oscillatory regimes. vl ¼ 1:515\vH, e ¼ 0:0005

(a)

(b)

(c)

Fig. 10 Excitability maps (left) and corresponding topology (right) of

motif layer networks with inhibitory chemical synapses. hISIi is color

coded with the white region representing the excitable regime and the

colored regions the oscillatory regimes. Notice that C7 does not admit

excitability. vl ¼ 1:515\vH, e ¼ 0:0005
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enhanced in the motifs C2 and C3. In the sequel, we present

two enhancement strategies for SISR in these motifs.

Autaptic enhancement of SISR in single motifs

In this subsection, we present one enhancement strategy of

SISR in single motifs that is based on the use of autapses.

To illustrate the efficacy of this strategy, we use the motifs

C2 and C3 from Fig. 13, with time-delayed coupling fixed at

jc;inh ¼ 1:5 and sc;inh ¼ 10:0. With this setting and in the

absence of autapses, the degree of SISR is relatively poor,

i.e., CVmin ¼ 0:293 in the motif C2 and CVmin ¼ 0:232 in

the motif C3 as indicated by the purple curves in the panels

of Fig. 13.

The goal of this strategy is to lower the value of these

CVmin using an autapse with appropriate parameter values.

Our simulations have indicated (not shown) that an inhi-

bitory chemical autapse is not effective with this strategy.

The reason is that this type of autapse puts the motifs into

the (undesired) oscillatory regime in the absence of noise.

Inserting an electrical autapse (with jae 2 ½0:0; 1:5
,
sae 2 ½0:0; 20:0
) or an excitatory chemical autapse (with

jac;exc 2 ½0:0; 1:5
, sac;exc 2 ½0:0; 20:0
) on neuron number

one of these motifs, kept the motifs in the (desired)

excitable regime. Furthermore, our extensive numerical

investigations have indicated that this enhancement strat-

egy is most efficient when the electrical autapse or the

excitatory chemical autapse is attached only to the neuron

with the highest in-degree, i.e., the neuron number one of

the motifs. Thus, we only show the results of this case in

Fig. 14 for motif C2 and in Fig. 15 for motif C3. It is worth

noting that this result on the enhancement of SISR by an

autapse attached to the neuron with the highest in-degree

may not be generally robust and may not apply to other

types of motif or larger neural networks not considered in

this study.

Fig. 11 Coefficient of variation CV against noise amplitude r for

parameter combinations ðje; seÞ in the electrical motifs topology

indicated. vl ¼ 1:515\vH, e ¼ 0:0005

Fig. 12 Coefficient of variation CV against noise amplitude r for

parameter combinations ðjc;inh; sc;inhÞ in the inhibitory chemical

motifs topology indicated. In these motifs, SISR is more robust to

parametric changes than in the motifs considered in Fig. 13.

vl ¼ 1:515\vH, e ¼ 0:0005

Fig. 13 Coefficient of variation CV against noise amplitude r for

parameter combinations ðjc;inh; sc;inhÞ in the inhibitory chemical

motifs topology indicated. In these motifs the degree is SISR can be

significantly deteriorated (see the purple curves in each panel) as

opposed to the degree in the motifs in vl ¼ 1:515\vH, e ¼ 0:0005
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Figure 14a and b, respectively, show the color coded

variation of the CVmin of the motif C2 with respect to the

time-delayed electrical or excitatory chemical autaptic

couplings (represented by the green self-feedback loop)

attached to neuron number one of the motif. We observe

that these autapses can significantly improve the degree of

SISR in the motif C2. But, in the presence autapses, C2 with

jc;inh ¼ 1:5 and sc;inh ¼ 10:0 has a very low CVmin � 0:06,

i.e., a much higher degree of SISR. We further notice that

the excitatory chemical autapse outperforms the electrical

autapse in this enhancement strategy. That is, the former

autapse provides a larger range of parameters values in

which a high degree of SISR is achieved than the latter,

especially at stronger couplings and shorter time delays.

In Fig. 15a and b, respectively, we show the color coded

variation of the CVmin of the motif C3 against the time-

delayed electrical and excitatory chemical autaptic cou-

plings. In this case, we observe that the degree the of SISR

is considerably enhanced, with a drop from CVmin ¼ 0:232

to CVmin � 0:09 for an electrical autapse and CVmin �
0:06 for an excitatory chemical autpase. However, in terms

of parameter ranges, the electrical autapse is more efficient

than the excitatory chemical autapse for stronger couplings

jae [ 1:0 and longer delays sae [ 5:0. The excitatory

chemical autapse is better at enhancing SISR for interme-

diate 0:25\jac;exc\1:0 coupling strengths and all time

delays. Moreover, we can also see that with this autaptic

enhancement strategy, the degree of SISR is best enhanced

in motif topology C2 than C3.

Enhancement of SISR based on multiplexing

In this subsection, we present another enhancement strat-

egy of SISR in a motif, based on multiplexing. That is, we

connect two motif layers into a multiplex network, where

each neuron in one layer is only connected to the replica

neuron in the other layer; see Figs. 16a and 17a. In each of

these figures, the upper motif layer in green is such that, in

isolation, the degree of SISR is very high, i.e., CVmin ¼
0:058 in Fig. 16a and 17a. The lower motif layer in red is

the one with a poor degree of SISR when it is in isolation

(i.e., CVmin ¼ 0:293 in Fig. 16a and CVmin ¼ 0:232 in

Fig. 17a), and in which we want to enhance the degree of

SISR by connecting it to the upper motif in a multiplexing

manner.

In Fig. 16, we represent the efficiency of this enhance-

ment strategy of SISR in the C2 motif layer in red when it is

multiplexed to another C2 motif layer in green, with elec-

trical inter-motif connections or single unidirectional

inhibitory chemical inter-motif connections. Excitatory

chemical connections were not used in this strategy

because they will induce self-sustained deterministic

oscillations. Furthermore, not all time-delayed coupling

values of electrical inter-motif connections would set the

system into the desired excitable regime. We can see in

Fig. 16b the range of values of the inter-motif connection

parameters—jme and sme —(the white region) in which the

entire multiplex network remains in the excitable regime.

Only the excitable values of jme and sme are used in the

(a) (b)

Fig. 14 Minimum coefficient of variation CVmin for the motif C2

against: a electrical autaptic parameters ðjae ; saeÞ and b excitatory

chemical autaptic parameters ðjac;exc; s
a
c;excÞ. There is an enhancement

in the degree of SISR from CVmin ¼ 0:293 in the absence of autapses

to CVmin � 0:06 in their presence. jc;inh ¼ 1:5, sc;inh ¼ 10:0,

vl ¼ 1:515\vH, e ¼ 0:0005

(a) (b)

Fig. 15 Minimum coefficient of variation CVmin for the motif C3

against: a electrical autaptic parameters ðjae ; saeÞ and b excitatory

chemical autaptic parameters ðjac;exc; s
a
c;excÞ. There is an enhancement

in the degree of SISR from CVmin ¼ 0:232 in the absence of autapses

to CVmin � 0:09 and CVmin � 0:06 in a and b, respectively, in the

presence of autapses. jc;inh ¼ 1:5, sc;inh ¼ 10:0, vl ¼ 1:515\vH,

e ¼ 0:0005
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enhancement strategy. When we use the C2-C2 network

with electrical multiplexing, we can identify multiplexing

parameters from Fig. 16c that improve the degree of SISR

in the red motif from CVmin ¼ 0:293 when it is in isolation

to CVmin ¼ 0:12 when it is multiplexed with itself. How-

ever, this enhancement strategy is not as efficient when

multiplexing connections are mediated by inhibitory

chemical couplings, see Fig. 16d, where the degree of

SISR is improved by just a little, i.e., CVmin ¼ 0:25.

In Fig. 17c with the C2-C3 configuration, we now try to

enhance SISR in the C3 motif. The multiplexing enhance-

ment strategy does not work if the multiplexing is mediated

by electrical connections. But in Fig. 17d, when inter-motif

couplings are mediated by inhibitory chemical connections,

the enhancement strategy becomes very efficient. In this

case we have CVmin ¼ 0:058 in C3.

We note that in this multiplexing enhancement strategy

of SISR, the motif in which we aim at enhancing SISR (i.e.,

the red lower motifs in Fig. 16a and 17a which have a

relatively poor degree of SISR in isolation) is connected in

a multiplexed fashion to another motif in which the degree

of SISR is very high in isolation. It is worth pointing out

here that during the enhancement of SISR in the red lower

motifs in Fig. 16d and 17d (for the time-delayed couplings

values indicated), the high degree of SISR in the green

upper motifs is not affected, except in the case where we

have electrical multiplexing between the motifs. In this

case (see, e.g., Fig. 16c), while the degree of SISR is

enhanced in the red lower motif (i.e., CVmin goes from

0.293 when it is in isolation to 0.12 when it is multiplexed

to the green upper motif), the high degree of SISR in the

green upper motif is significantly deteriorated (i.e., CVmin

goes from 0.058 in isolation to 0.19 when it is multi-

plexed). Hence, in a C2-C2 multiplex network configura-

tion, inhibitory chemical couplings between the motifs is

the way to go if we want to enhance SISR in one motif

without significantly deteriorating SISR in the other motif.

Summary and conclusions

In this work, the phenomenon of self-induced stochastic

resonance (SISR) in the Morris–Lecar (ML) neuron model

was systematically investigated. First, we established the

analytical conditions necessary for the occurrence of SISR

in a motif layer network of ML neurons. Then, from our

extensive numerical simulations, we found that:

(a)

(c) (d)

(b)

Fig. 16 Excitability map in b showing hISIi of the multiplexing

scheme in a with electrical synapses in the absence of noise. CVmin

for the lower (in red) motif layer C2 against: electrical ðjme ; sme Þ and

inhibitory chemical ðjmc;inh; s
m
c;inhÞ multiplexing parameters in c and d

respectively. There is an enhancement in the degree of SISR from

CVmin ¼ 0:293 in the absence of multiplexing to CVmin � 0:12 and

CVmin � 0:25 in c and d in the presence of multiplexing, respectively.

ðjc;inh; sc;inhÞ ¼ ð1:5; 10:0Þ in the lower motif, ðjc;inh; sc;inhÞ ¼
ð0:05; 20:0Þ in the upper motif. vl ¼ 1:515\vH, e ¼ 0:0005

(a) (b)

(c) (d)

Fig. 17 Excitability map b showing hISIi of the multiplexing

scheme in a with electrical synapses in the absence of noise. CVmin

for the motif layer C3 against: electrical ðjme ; sme Þ and inhibitory

chemical ðjmc;inh; s
m
c;inhÞ multiplexing parameters in c and d, respec-

tively. There is no enhancement in the degree of SISR in c and an

enhancement from CVmin ¼ 0:232 in the absence of multiplexing to

CVmin � 0:058 in d in the presence of multiplexing. ðjc;inh; sc;inhÞ ¼
ð1:5; 10:0Þ in the lower motif, ðjc;inh; sc;inhÞ ¼ ð0:05; 20:0Þ in the

upper motif. vl ¼ 1:515\vH, e ¼ 0:0005
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• In a single isolated ML neuron without autapses,

decreasing the time scale separation parameter e
between the membrane potential v and the ionic current

w variable leads to ðiÞ a significant increase in the

degree of SISR and ðiiÞ an increase in the interval of the

noise intensity in which the degree of SISR remains

high.

• In a single isolated ML neuron with (only) an electrical

autapse, the degree of SISR is not significantly sensitive

to variations of the autaptic parameters (jae , sae).
However, at stronger autaptic coupling strengths, the

degree of SISR is relatively more sensitive to small

changes in time delays than at weaker coupling

strengths. This behavior is also observed with longer

and shorter time delays as the coupling strength

changes.

• In a single isolated ML neuron with (only) an inhibitory

chemical autapse, the degree of SISR and the interval of

the noise intensity in which a relatively high degree of

SISR can be achieved is found to be very sensitive to

changes in the autaptic parameters (jac;inh, sainh). While

stronger autaptic coupling strengths deteriorate SISR,

longer autaptic time delays enhances SISR.

• In single-motif layer networks with electrical connec-

tions E1 and E2, we observed that the weaker coupling

strengths je and shorter time delays se are, the higher

the degree of SISR, especially at weaker noise inten-

sities. On the other hand, single-motif layer networks

with inhibitory chemical connections show different

behaviors. In the inhibitory chemical motifs C1, C4, C5,

and C6, the high degrees of SISR are robust to changes

in the synaptic parameters as the CV values remain very

low and the intervals of the noise intensity in which

these high degrees are achieved remain unchanged.

However, SISR in the inhibitory chemical motifs C2 and

C3 show sensitivity to changes in the coupling strength

jc;inh and time delay sc;inh, i.e., the larger jc;inh and sc;inh

are, the more deteriorated is SISR.

• It is shown that the poor degree of SISR in the single-

motif layer networks C2 and C3 can be enhanced using

two different strategies. In the enhancement strategy

based on autapses, it was shown that electrical autapses

with stronger couplings (jae [ 0:25) and longer time

delays (sae [ 5:0) or excitatory chemical autapses with

stronger (jac;exc [ 0:25) and longer time delays

(sac;exc � 0:0) enhances the degree of SISR in C2 from

CV ¼ 0:293 to CV ¼ 0:06. In the C3 motif network, a

similar behavior was observed, but the autapse-based

enhancement strategy of SISR is found to be relatively

better in the motif C2 than C3 in the sense that C2 can

achieve a lower CV and larger range of autaptic

parameter values in which these low CV values can be

attained.

• For the enhancement strategy of SISR in a motif based

on the multiplexing of this motif with another motif, it

was found that only electrical multiplexing of two C2

motifs can enhance the degree of SISR in one of the

motifs. In the C2 � C3 multiplex configuration, only

inhibitory chemical connections between the motifs can

enhance the degree of SISR in C3.

Although inhibitory connections between groups of neu-

rons are generally thought to support competitive learning

(Rumelhart and Zipser 1985; Grossberg 1987; Rabinovich

et al. 2001; Savin et al. 2010; Krotov and Hopfield 2019),

our finding that inhibitory chemical point-to-point con-

nections between different motifs can enhance the degree

of SISR in one of the motifs additionally suggests a puta-

tive mechanism for dynamically adjusting neural dynamics

to maintain optimal information processing.

In this paper, we treated the input noise process as solely

Gaussian. Looking forward, we must be cognizant that

Gaussian white noise is only one possible type of a noise

which can induce resonance. Stochastic processes with a

non-Gaussian distribution are well-known to more accu-

rately model the dynamics of real biological neurons (Wu

et al. 2017). In Segev et al. (2002), a plot of interspike

interval and interevent interval distributions indicates that

neurons and neural network activities are characterized by

a non-Gaussian heavy-tail interval distribution, thereby

providing a solid reason as to why it makes sense to con-

sider non-Gaussian noise such as Lévy noise in the study of

neural systems. Therefore, the mechanism via which noise

with a non-Gaussian distribution and a temporal correlation

(i.e., colored noise) can induce SISR is worth investigating

in future research. In particular, the additional timescale

brought into the system by the temporal correlation may

come along with new interesting dynamics.
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Masoliver M, Malik N, Schöll E, Zakharova A (2017) Coherence

resonance in a network of FitzHugh-Nagumo systems: interplay

of noise, time-delay, and topology. Chaos Interdisc J Nonlinear

Sci 27(10):101102

McDonnell MD, Ward LM (2011) The benefits of noise in neural

systems: bridging theory and experiment. Nat Rev Neurosci

12(7):415–425

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U

(2002) Network motifs: simple building blocks of complex

networks. Science 298(5594):824–827

Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant

muscle fiber. Biophys J 35(1):193–213

Muratov CB, Vanden-Eijnden E (2008) Noise-induced mixed-mode

oscillations in a relaxation oscillator near the onset of a limit

cycle. Chaos Interdisc J Nonlinear Sci 18(1): 015111

Muratov CB, Vanden-Eijnden E, Weinan E (2005) Self-induced

stochastic resonance in excitable systems. Physica D Nonlinear

Phenom 210(3–4):227–240

Neiman A, Saparin PI, Stone L (1997) Coherence resonance at noisy

precursors of bifurcations in nonlinear dynamical systems. Phys

Rev E 56(1):270

Patel A, Kosko B (2008) Stochastic resonance in continuous and

spiking neuron models with Levy noise. IEEE Trans Neural

Netw 19(12):1993–2008

Pei X, Wilkens L, Moss F (1996) Noise-mediated spike timing

precision from aperiodic stimuli in an array of Hodgekin-

Huxley-type neurons. Phys Rev Lett 77(22):4679

Pereda AE (2014) Electrical synapses and their functional interactions

with chemical synapses. Nat Rev Neurosci 15(4):250–263

Perin R, Berger TK, Markram H (2011) A synaptic organizing

principle for cortical neuronal groups. Proc Natl Acad Sci

108(13):5419–5424

Pikovsky AS, Kurths J (1997) Coherence resonance in a noise-driven

excitable system. Phys Rev Lett 78:775–778

Pitkänen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal

connections between the amygdala and the hippocampal forma-

tion, perirhinal cortex, and postrhinal cortex in rat: a review. Ann

N Y Acad Sci 911(1):369–391

Protachevicz PR, Iarosz KC, Caldas IL, Antonopoulos CG, Batista

AM, Kurths J (2020) Influence of autapses on synchronisation in

neural networks with chemical synapses. Front Syst Neurosci

14:91

Rabinovich M, Volkovskii A, Lecanda P, Huerta R, Abarbanel H,

Laurent G (2001) Dynamical encoding by networks of compet-

ing neuron groups: winnerless competition. Phys Rev Lett

87(6):068102
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