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Abstract

RNA sequencing (RNA-Seq) experiments focused on gene expression involve removal of ribosomal RNA (rRNA) because it is the major
RNA constituent of cells. This process, called RNA enrichment, is done primarily to reduce cost: without rRNA removal, deeper sequencing
must be performed to compensate for the sequencing reads wasted on rRNA. The ideal RNA enrichment method removes all rRNA with-
out affecting other RNA in the sample. We tested the performance of three RNA enrichment methods on RNA isolated from Cryptococcus
neoformans, a fungal pathogen of humans. We find that the RNase H depletion method is more efficient in depleting rRNA and more spe-
cific in recapitulating non-rRNA levels present in unenriched controls than the commonly-used Poly(A) isolation method. The RNase H de-
pletion method is also more effective than the Ribo-Zero depletion method as measured by rRNA depletion efficiency and recapitulation
of protein-coding RNA levels present in unenriched controls, while the Ribo-Zero depletion method more closely recapitulates annotated
non-coding RNA (ncRNA) levels. Finally, we leverage these data to accurately map the C. neoformans mitochondrial rRNA genes, and also
demonstrate that RNA-Seq data generated with the RNase H and Ribo-Zero depletion methods can be used to explore novel C. neofor-
mans long non-coding RNA genes.
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Introduction
RNA sequencing (RNA-Seq) is a powerful tool for quantifying gene

expression in diverse organisms. Despite the rapid and continual
decrease in sequencing costs, the expense of sequencing is often
the limiting factor in designing RNA-Seq experiments. Due to this
cost constraint, enrichment of the RNA classes of interest, hereafter
referred to as “RNA enrichment,” is an important step in library

preparation for most RNA-Seq experiments. Ribosomal RNA (rRNA)
is the most abundant RNA, generally constituting more than 90% of
the total RNA in a cell (Giannoukos et al. 2012). Despite this, rRNA is
rarely of interest in RNA-Seq experiments because its main function
is as a component of ribosomes. Therefore, 90% or more of the data

is useless when generated without RNA enrichment. RNA enrich-
ment aims to reduce the content of rRNA in the library, eliminating
sequencing capacity wasted on uninformative data and reducing
the cost of data storage and analysis, thus decreasing the overall
cost of the experiment.

There are many different methods for RNA enrichment and
many products available based on these different methods.
When selecting an RNA enrichment method and product there
are two key considerations: (1) the fraction of rRNA removed and
(2) the side effects on other RNA in the sample. RNA enrichment
methods either specifically target the RNA of interest, most com-
monly mRNA, for isolation or specifically target rRNA for removal
(Zhao et al. 2014). The most common mRNA isolation method for
eukaryotes, Poly(A) isolation, uses an oligo(dT) affinity matrix.
Raw RNA is hybridized to the matrix, which preferentially binds
the 30 polyadenylation sequence of mRNA. By enriching polyade-
nylated mRNA, rRNA, which lacks 30 polyadenylation, is depleted
de facto. Although mRNA isolation methods are typically efficient
in eliminating rRNA, they fail to capture any RNA molecules lack-
ing polyadenylation, such as non-coding RNA (ncRNA). They are
also only applicable to eukaryotes, since mRNA in prokaryotes is
generally not polyadenylated. Most rRNA removal methods in-
volve hybridization of sequence-specific probes to rRNA. These
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probes target the rRNA for depletion. In the Ribo-Zero depletion
method, the probes are synthesized with a molecular tag, which
is used to bind the probe-rRNA complex to beads, allowing the
complexed rRNA to be removed from solution (Zhao et al. 2014).
In the ribonuclease H (RNase H) depletion method, sequence-
specific DNA probes hybridized to rRNA target the rRNA for enzy-
matic degradation by RNase H, which specifically degrades RNA
from RNA-DNA complexes (Morlan et al. 2012). The duplex-
specific nuclease (DSN) method indiscriminately depletes high
abundance sequences by denaturing and reannealing the pre-
pared RNA-Seq library, then treating with a DSN to degrade all
double-stranded DNA. Under the conditions used for reanneal-
ing, high abundance sequences are much more likely to find a
complementary sequence, so high abundance sequences, includ-
ing but not limited to rRNA, are preferentially removed from the
pool (Yi et al. 2011).

The Poly(A) isolation and DSN methods are attractive because
they are broadly applicable without any organism-specific adap-
tation: the Poly(A) method works in all eukaryotes and the DSN
method should work in any organism. However, the rRNA re-
moval methods (Ribo-Zero and RNase H) are more targeted and
are therefore expected to have fewer side-effects on biologically
important RNA molecules, such as protein-coding RNA and
ncRNA. The downside inherent in the targeted nature of the
rRNA depletion methods is that the sequence-specific probes
must be designed for the organism under experimentation or a
close relative for maximal efficacy. Because rRNA is the most
highly conserved sequence across the tree of life (Isenbarger et al.
2008), probes designed for an evolutionarily distant species will
often work, but efficiency of rRNA depletion decreases with evo-
lutionary distance. For all rRNA depletion methods, the perfor-
mance of these rRNA removal methods can vary by organism, so
it is important to assess them on the organism of interest.

The budding yeast Cryptococcus neoformans is a human fungal
pathogen that infects more than 200,000 people annually and
causes excessive mortality among immunocompromised patient
populations, such as those with HIV/AIDS and those receiving
immunosuppressive cancer therapies (Rajasingham et al. 2017).
Research on C. neoformans helps us better understand this patho-
gen, contributes to the development of treatments for C. neofor-
mans infections, and advances our understanding of fungal
pathogens in general. RNA-Seq has been used extensively in
C. neoformans studies to elucidate regulatory networks of protein-
coding genes and mRNA structure and function (Chang et al.
2014; Chen et al. 2014; Janbon et al. 2014; Gish et al. 2016; Chow
et al. 2017; Brown et al. 2018, 2020; Burke et al. 2018; Wallace et al.
2020; Yu et al. 2020). While there is intense interest in the role of
ncRNA in higher eukaryotes such as humans, relatively little
work has explored the implications of ncRNA in fungi, with focus
largely on model fungi such as Saccharomyces cerevisiae (Bird et al.
2006; Bumgarner et al. 2009, 2011; Gelfand et al. 2011; Parker et al.
2018) and Schizosaccharomyces pombe (Ding et al. 2012; Atkinson
et al. 2018). However, multiple recent studies have demonstrated
the importance of ncRNA in Cryptococcus biology and virulence,
including microRNA (miRNA) (Jiang et al. 2012; Liu et al. 2020),
small interfering RNA (siRNA) (Janbon et al. 2010; Wang et al.
2010; Liu et al. 2020), and long non-coding RNA (lncRNA) (Fan
et al. 2005; Chacko et al. 2015; Liu et al. 2020).

In planning and analyzing RNA-Seq experiments in C. neofor-
mans, it is essential to understand the side-effect profile of the
RNA enrichment method used. RNA enrichment methods that al-
ter levels of RNA of interest may give misleading or incorrect
results; this is a special concern for analysis of ncRNA. Here, we

assess three different enrichment methods for RNA-Seq applica-
tions in C. neoformans: RNase H depletion, Ribo-Zero depletion,
and Poly(A) isolation. The Ribo-Zero depletion (“Ribo-Zero Kit
Species Compatibility Tables”; Trevijano-Contador et al. 2018; Liu
et al. 2020) and Poly(A) isolation (Bloom et al. 2019; Brown et al.
2020) methods have been used previously in C. neoformans, while
the RNase H method has not. However, none of these methods
have been evaluated in C. neoformans in comparison to each
other, much less to unenriched controls. By performing this con-
trolled experiment, we quantified the efficiency of rRNA deple-
tion and determined the side-effects of each depletion method on
non-rRNA genes.

We find that the RNase H depletion method is more efficient
than the Ribo-Zero depletion and the Poly(A) isolation methods
in removing rRNA. Additionally, we report that the RNase H de-
pletion method is highly specific. It more closely reflects protein-
coding RNA levels present in unenriched controls than the other
two methods, and reflects annotated ncRNA levels present in
unenriched controls nearly as well as the Ribo-Zero depletion
method. Because the RNase H and Ribo-Zero depletion methods
both retain ncRNA, we leveraged these unique datasets to dem-
onstrate the feasibility of identifying novel C. neoformans lncRNA
when rRNA removal methods are utilized. Collectively, this work
demonstrates that RNase H depletion is an effective RNA enrich-
ment method for use in preparation of C. neoformans RNA-Seq li-
braries, further emphasizes the role of RNA enrichment in design
of economical RNA-Seq experiments, and highlights the impor-
tance of knowing the side-effect profile when choosing an RNA
enrichment method.

Materials and methods
Strains, media, and growth conditions
The C. neoformans var. grubii H99 (MATa) wild-type strain was
used for all experiments. This strain was maintained on yeast
extract-peptone-dextrose (YPD) medium (1% yeast extract, 2%
peptone, 2% dextrose, and 2% agar for solid medium).

RNA-Seq library preparation
Three biological replicate samples (A, B, and C) were used for all
analyses. Samples were prepared by growing H99 to mid-
logarithmic growth phase in three separate flasks of liquid YPD
medium, with 150 rpm shaking. Approximately 1� 109 cells from
each sample were pelleted, resuspended in fresh YPD medium,
and incubated at 30�C for 90 min with 150 rpm shaking. Cells
were then pelleted, flash frozen on dry ice, and lyophilized for
�18 h. Total RNA was isolated using the Qiagen RNeasy Plant
Mini Kit (Qiagen, Valencia, CA, USA); on-column DNase digestion
was performed to ensure elimination of contaminating genomic
DNA. Total RNA quantity and quality were assessed using the
Agilent 2100 Bioanalyzer. Purified total RNA was subsequently
stored at �80�C. Aliquots from each total RNA sample were
treated with one of three different RNA enrichment methods: the
RNase H method for selective depletion of rRNA (Morlan et al.
2012; Adiconis et al. 2013), the Ribo-Zero rRNA Removal Kit
(Yeast) (Illumina, San Diego, CA, USA), and the NEBNextVR Poly(A)
mRNA Magnetic Isolation Module (NEB #E7490) (New England
Biolabs, Ipswich, MA, USA). RNA-Seq libraries were prepared
from these enriched samples and from unenriched control sam-
ples (i.e., “Unenriched”) using the NEBNextVR UltraTM II Directional
RNA Library Prep with Sample Purification Beads (NEB #E7765)
and NEBNextVR Multiplex Oligos for IlluminaVR (Dual Index Primers
Set 1) (NEB #E7600) (New England Biolabs, Ipswich, MA, USA).
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Libraries were pooled and sequenced by the Duke Sequencing
and Genomic Technologies Shared Resource on an Illumina
NextSeq 500 using the High-Output Kit to produce 75-basepair
single-end reads.

It should be noted that while all work was done with the same
three total RNA samples, the enrichment, library preparation,
and sequencing were done in two batches, approximately one
year apart. In between, total RNA samples were stored at �80�C.
Ribo-Zero-treated, Poly(A)-treated, and Unenriched RNA control
libraries were prepared and sequenced in the first batch. RNase
H-treated, replicate Poly(A)-treated, and replicate Unenriched
RNA control libraries were prepared and sequenced in the second
batch. All Unenriched RNA samples were compared and shown
to be highly correlated (Figures 2A–4A), demonstrating that batch
effect and differences in total RNA storage times did not con-
found comparisons. It should also be noted that the Ribo-Zero-
treated libraries, the Poly(A)-treated libraries, and the
Unenriched libraries were prepared by multiple individuals,
which may explain some of the sample variation within those
groups, while the RNase H-treated libraries were all prepared by
a single individual. The individual who prepared each library is
noted in the library metadata deposited at GEO.

RNase H depletion
The RNase H depletion method (Morlan et al. 2012; Adiconis et al.
2013) is described briefly here; a more detailed protocol is in-
cluded in Supplementary File S1. The hybridization reaction mix-
ture consisted of 1 mg of total RNA, 1 ml of 5� Hybridization Buffer
(1000 mM NaCl, 500 mM Tris-HCl, pH 7.5), 0.65 ml of 100 mM pooled
targeting oligos (discussed below), and nuclease-free water to
bring the reaction to 5 ml. Oligo hybridization was performed in a
thermocycler with the following program: 2 min at 95�C, ramp
from 95�C to 22�C at �0.1�C/s, 5 min at 22�C. After hybridization,
samples were transferred to ice and RNase H (New England
Biolabs, Ipswich, MA, USA) was added: 2 ml RNase H (5 U/ml), 1 ml
10� RNase H Reaction Buffer, 2 ml nuclease-free water. RNase H
digestion was performed at 37�C for 30 min. After RNase H diges-
tion, samples were stored on ice while adding DNase I (New
England Biolabs, Ipswich, MA, USA): 4 ml DNase I (2 U/ml), 10 ml
10� DNase I Reaction Buffer, 76 ml nuclease-free water. DNase I
digestion was performed at 37�C for 30 min. After DNase I diges-
tion, samples were transferred to ice. rRNA depleted RNA was pu-
rified from the reaction mixture with the Zymo RNA Clean &
Concentrator-5 kit (Zymo Research, Irvine, CA, USA) according to
manufacturer instructions and eluted in 12 ml nuclease-free wa-
ter. Finally, 5 ml of the eluted RNA was input to the library prep
using NEBNextVR Ultra II Directional RNA Library Prep Kit for
Illumina (New England Biolabs, Ipswich, MA, USA).

Analysis overview
All genomic analyses used genome build CNA3 of H99 C. neofor-
mans var. grubii (accession GCA_000149245.3). The genome se-
quence and annotation were downloaded from release 39 of the
Ensembl Fungi database (Kersey et al. 2016). For mapping mito-
chondrial rRNA genes, the original GTF downloaded from
Ensembl Fungi was used. For all subsequent analyses, a modified
GTF was used which included the newly mapped mitochondrial
rRNA genes.

Analysis was performed using scripts written in the R pro-
gramming language, Bash, and publicly available software de-
tailed below. Custom R scripts used the following R and

Bioconductor packages: biomartr, Biostrings, BSgenome, callr,
CoverageView, cowplot, DESeq2, dplyr, foreach, fs, genoma-
tion, GenomicAlignments, GenomicFeatures, GEOquery, ggbio,
ggplot2, ggpubr, gridExtra, Gviz, here, knitr, magrittr,
matrixStats, plyr, purrr, readr, rentrez, rmarkdown, Rsamtools,
rstatix, rtracklayer, R.utils, stringr, tibble, tidyr, tools, and
utils.

Mapping of mitochondrial rRNA genes
Coverage depth was plotted for all reads mapped to the mito-
chondrial chromosome for data generated from the first batch of
Unenriched libraries. Visual inspection of these plots clearly indi-
cated two regions with coverage depth several orders of magni-
tude higher than the rest of the chromosome. These regions do
not overlap with any annotated feature in the mitochondrial
chromosome. We determined the boundaries of these regions,
extracted the sequences of the putative rRNA genes, and con-
firmed by BLASTn (Altschul et al. 1990) that these regions were
homologous to known fungal mitochondrial small (positions
16948-18316) and large (positions 6710-9326) subunit rRNA genes
(Supplementary Figure S1). A modified version of the C. neofor-
mans genome annotation supplemented with our mitochondrial
rRNA gene annotations is included (Supplementary File S2).

Design of rRNA targeting oligonucleotides
Short DNA oligos were designed to target all nuclear rRNA genes
(CNAG_10500, CNAG_10501, CNAG_10502, CNAG_10503) and the
newly annotated 15S and 21S rRNA mitochondrial genes. In order
to guide degradation of all rRNA by RNase H, the DNA oligos must
be complementary to the rRNA and completely tile the rRNA. For
simplicity and cost minimization, the design goal for rRNA targeting
oligos was for them to be 50 nucleotides in length with no gaps be-
tween adjacent oligos. For genes with lengths that were not multi-
ples of 50 nucleotides, single nucleotide gaps were introduced
between oligos to allow for end-to-end coverage. Two, 55 nucleotide
oligos were used to tile CNAG_10503, which is 111 basepairs long.
Oligos were validated by mapping them to the H99 genome and
confirming that they tiled as expected and mapped to the antisense
strand. This validation process identified several partial duplica-
tions of the mitochondrial rRNA, putative nuclear mitochondrial
DNA (numts) (Hazkani-Covo et al. 2010), and nuclear rRNA. These
duplications were found in CNAG_04124, CNAG_06164,
CNAG_07466, CNAG_12145, CNAG_12438, CNAG_13073, and in the
region between CNAG_10503 and CNAG_03595. CNAG_13073 was
excluded from analysis of rRNA depletion specificity because the
rRNA duplication it contains is in an exon and on the sense strand,
meaning that reads originating from rRNA genes can be misas-
signed to CNAG_13073. The other duplications do not result in spu-
rious counts because they are either not in an exon or inserted
antisense relative to the “host” gene.

The code used to design oligos should be applicable to other
genomes; it is located within the file generate_rnaseh_oligos.Rmd,
which is available, as described below, with the rest of the software
developed for this project. This Rmarkdown document generates a
TSV file in the correct format for pasting into the ordering template
supplied by Eurofins; we have included a copy of the TSV generated
for this project as a Supplementary File S3. The 179 oligos were or-
dered from Eurofins Genomics LLC at a 10nmol synthesis scale,
with salt-free purification, resuspended to 100mM, and shipped on
dry ice. Upon receipt, all oligos were thawed, pooled, aliquoted, and
stored at �80�C. Total cost for oligos (not including shipping) was
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less than $1000. This provided over 21 ml of pooled oligos (179 oligos
at 120ml per oligo), enough for over 33,000 reactions. Therefore,
while the upfront cost of oligos is substantial, the per reaction cost
is about $0.03.

Bioinformatics and statistical data analyses
Basic assessments of sequence data quality were performed us-
ing FastQC (Andrews 2010) and MultiQC (Ewels et al. 2016). Raw
sequencing reads were trimmed and filtered using fastq-mcf (EA-
Utils version 1.04.807) (Aronesty 2011) and adapter sequences
were extracted from the manufacturer-provided “Sample Sheet
NextSeq E7600” template for the NEBNextVR Multiplex Oligos for
IlluminaVR (Dual Index Primers Set 1) (https://www.neb.com/-/me
dia/nebus/worksheet-samples/e7600_reverse-complement-work
flow-sample-sheet.csv, accessed June 23, 2021). Reads were then
mapped to the genome and read counts were generated using
STAR (version 2.5.4b) (Dobin et al. 2013). For quantification of
reads mapped to genes, we use the fourth column (“counts for
the 2nd read strand aligned with RNA”) of the STAR
ReadsPerGene.out.tab because the NEBNextVR UltraTM II
Directional RNA Library Prep uses the dUTP method for strand-
specific library preparation. All sequencing was done on an
Illumina NextSeq 500, which has a flow cell with four lanes that
are fluidically linked (i.e., one pool is simultaneously loaded onto
all four lanes). While we expect there to be some lane effects, we
expect these to be less than fluidically independent lanes.
Because of this, and for simplicity, reads were combined across
all four lanes for analysis of depletion efficiency and specificity.

Analysis of rRNA depletion efficiency
To calculate the percentage of rRNA reads per library, Rsamtools
(version 2.2.2) was used to extract reads from the STAR generated
BAM files and determine the number of reads mapped to the
rRNA genes. We did not use rRNA counts generated by STAR be-
cause STAR excludes multimapping reads from per gene read
counts. As discussed above, several rRNA genes are partially du-
plicated elsewhere in the genome. Because STAR excludes multi-
mapping reads from gene counts, it undercounts reads mapping
to the rRNA genes that are partially duplicated. We confirmed
the source of reads that mapped to rRNA duplicated regions by
evaluating context: the count level of these reads corresponded
to the level of expression of the rRNA genes from which the dupli-
cations seem to have arisen and not the level of expression of the
genes (or genomic region in the case of the partial duplication of
CNAG_10500) that seem to be the “acceptor sites” of these dupli-
cations. The percentage of total reads that mapped to rRNA genes
was then calculated.

Enrichment correlation analyses
Per gene read counts were generated by STAR as described above.
Read counts for each library were combined across all four lanes
using DESeq2::collapseReplicates, each library’s counts were nor-
malized by its size factor, then an average count per gene was cal-
culated for each enrichment method across all replicates. The
mean normalized count of the Unenriched replicate libraries was
considered the reference count for each gene. Specificity of each en-
richment method was determined by calculating the Pearson corre-
lation of the mean normalized count for each enrichment method
with that of the Unenriched libraries. Variation among the
Unenriched libraries was quantified by cross-correlation: Pearson
correlation was calculated for each Unenriched replicate library
with the normalized mean of the other five Unenriched replicate li-
braries. Scatterplots were generated to visualize the correlation of

replicate enriched libraries with the Unenriched libraries. While cal-
culation of mean normalized counts used all replicates for each
method, scatterplots are only shown for one technical replicate of
each RNA sample for each enrichment method (Supplementary
Figures S2, S3, S4, and S6). In addition to analyses across all genes,
calculation of Pearson correlation and generation of scatterplots
was repeated for subsets of genes, as annotated for “gene_biotype”:
protein-coding genes, ncRNA, and tRNA, according to each gene’s
annotation. rRNA genes and CNAG_13073 were excluded from all
correlation analyses and scatterplots.

To determine specifically which genes are “lost” by the Poly(A)
isolation method, we identified genes with counts at least eight-fold
lower in the Poly(A)-treated libraries than in the Unenriched librar-
ies, after first excluding genes with very low expression in the
Unenriched libraries (genes with less than 50 total read counts
across all Unenriched libraries). These thresholds were chosen to
identify obvious outliers in the Poly(A)-treated libraries and were
confirmed by visual inspection of the identified genes
(Supplementary Figure S6). We selected these thresholds to be
more conservative than thresholds commonly used to identify
genes with biologically relevant differences in expression (total
reads of at least 10 and fold change of at least 2). To explore
whether deadenylation explains the failure of the Poly(A) isolation
method to capture a subset of these protein-coding transcripts, we
visualized read depth across each of the corresponding genes and
compared these distributions to read depth across a random set of
control genes (Supplementary Figure S7). The control genes were
selected from a subset that had total read counts in the same range
as the “lost” protein-coding genes.

LncRNA analysis
To demonstrate the feasibility of identifying novel lncRNA from
RNA-Seq datasets generated using rRNA removal methods, we
applied LncPipe (Zhao et al. 2018) to the data generated from the
RNase H-treated, Ribo-Zero-treated, and Unenriched RNA librar-
ies; Poly(A)-treated libraries were not included because they were
expected to contain few, if any, reads derived from lncRNA. The
published version of LncPipe only appears to work with data gen-
erated from human samples, so we forked the LncPipe repository
and modified it to enable analysis of C. neoformans data. Details of
the forked repository are provided below.

We developed an Rmarkdown document to perform all neces-
sary pre-processing for running LncPipe (Zhao et al. 2018). This
pre-processing involved automated reformatting of the input
GTF file, preparing a subset of the GTF containing only protein-
coding genes and another subset containing only non-protein-
coding genes, generating a C. neoformans specific model for CPAT
(one component of LncPipe), and generating a Bash script which
itself runs LncPipe. LncPipe itself was run in Singularity with the
bioinformatist/lncpipe Docker image built by the LncPipe devel-
opers (https://hub.docker.com/layers/bioinformatist/lncpipe/lat
est/images/sha256-9d97261556d0a3b243d4aa3eccf4d65e458037e
31d9abb959f84b6fe54bb99a2?context¼explore). Within LncPipe,
STAR was used for mapping reads and the final step,
LncPipeReporter, was not run.

Results
RNase H depletion is most efficient in removing
rRNA
We focus the majority of our analyses on the RNase H depletion
and Poly(A) isolation methods, because, of the three RNA enrich-
ment methods assessed here, they are the two that are still
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available for use. To provide some context to our RNase H deple-
tion method results, we also include analyses on the Ribo-Zero
depletion method, which was frequently used in fungal RNA-Seq
experiments before its discontinuation.

As an initial assessment, we evaluated the efficiency with
which each enrichment method removed rRNA. To do so, we
quantified the percentage of total reads that mapped to rRNA
genes for each method and compared these percentages to those
of Unenriched RNA control libraries generated by sequencing
identical RNA samples without any enrichment. As expected, the
vast majority (�90–92%) of reads in the Unenriched RNA control
libraries map to rRNA genes (Figure 1). Both the RNase H-treated
libraries (�1.5–2.5%) and the Poly(A)-treated libraries (�3–5%) dis-
play a significant reduction in the percentage of reads mapping
to rRNA genes (Figure 1). The Ribo-Zero depletion method was
previously found to be efficient in depleting fungal rRNA and was
used successfully in RNA-Seq applications for various fungi
(Illumina; Trevijano-Contador et al. 2018; Liu et al. 2020). We simi-
larly evaluated the Ribo-Zero depletion method and observed
that the number of mapped rRNA reads is significantly higher in
the Ribo-Zero-treated libraries (�21–85%) than in the RNase H-
treated and Poly(A)-treated libraries (Figure 1). Overall, both the
RNase H depletion and Poly(A) isolation methods demonstrate ro-
bust efficiency in removing fungal rRNA, with the RNase H deple-
tion method modestly outperforming the commonly-used
Poly(A) isolation method.

RNase H depletion more closely reflects
Unenriched non-rRNA levels than Poly(A)
isolation
To compare the specificity of the three RNA enrichment meth-
ods, we determined the correlation between read counts in the
enriched libraries to read counts in the Unenriched RNA control
libraries generated from the same samples. To do so, we first cal-
culated the correlation coefficient between normalized reads

mapped to all non-rRNA genes from all Unenriched RNA sam-
ples, in order to determine the maximum achievable correlation
between libraries. As expected, we observed that the Unenriched
RNA samples are highly correlated (R¼ 0.983–0.997), demonstrat-
ing reproducibility between samples and batches (Figure 2A).

We compared the abilities of the RNase H depletion method
and the Poly(A) isolation method to retain all non-rRNA following
rRNA depletion. To do so, we calculated the correlation coeffi-
cient of normalized reads mapped to all non-rRNA genes in
RNase H-treated andPoly(A)-treated libraries with normalized
reads mapped to all non-rRNA genes from the Unenriched RNA
control libraries. We found that the RNase H-treated libraries
(R¼ 0.974–0.982) display a much better correlation with the
Unenriched RNA control libraries than the Poly(A)-treated librar-
ies (R¼ 0.793–0.820) for all reads mapping to non-rRNA genes
(Figure 2B and Supplementary Figure S2). We similarly assessed
the Ribo-Zero depletion method for preservation of all non-rRNA.
Ribo-Zero-treated libraries (R¼ 0.932–0.954) display a much bet-
ter correlation with the Unenriched libraries than the Poly(A)-
treated libraries, but a slightly weaker correlation than the RNase
H-treated libraries for reads mapping to all non-rRNA genes
(Figure 2B and Supplementary Figure S2). This observation sug-
gests that the RNase H depletion method may be more specific
than the Poly(A) isolation and the Ribo-Zero depletion methods,
in that it maintains non-rRNA levels observed in the Unenriched
RNA control libraries.

RNase H depletion more closely reflects
Unenriched protein-coding RNA levels than
Poly(A) isolation
We next assessed the ability of each RNA enrichment method to
retain protein-coding RNA specifically. To do so, we calculated
the correlation coefficient between normalized reads mapped to
protein-coding genes from all Unenriched RNA samples, in order
to determine the maximum achievable correlation between

Figure 1 The RNase H depletion method is highly efficient in eliminating rRNA. The percentage of rRNA reads in each library is plotted. The RNase H
depletion method has the most efficient depletion (lowest percentage of rRNA reads), with the Poly(A) isolation method a close second, and the Ribo-
Zero depletion method a distant third. Unenriched libraries show that rRNA makes up most of the RNA in C. neoformans.

C. L. Telzrow et al. | 5



libraries. As expected, we observed that the Unenriched RNA
samples are highly correlated (R¼ 0.986–0.998), demonstrating
reproducibility between samples and batches (Figure 3A).

We compared the ability of the RNase H depletion method and
the Poly(A) isolation method to retain protein-coding RNA follow-
ing rRNA depletion. To do so, we calculated the correlation coeffi-
cient of normalized reads mapped to protein-coding genes in
RNase H-treated and Poly(A)-treated libraries with normalized
reads mapped to protein-coding genes from the Unenriched RNA
control libraries. We found that the RNase H-treated libraries
(R¼ 0.985–0.990) display a much better correlation with the
Unenriched RNA control libraries than the Poly(A)-treated librar-
ies (R¼ 0.810–0.838) for all reads mapping to protein-coding genes
(Figure 3B and Supplementary Figure S3). We similarly assessed
the Ribo-Zero depletion method for preservation of protein-
coding RNA. Ribo-Zero-treated libraries (R¼ 0.935–0.962) display
a better correlation with the Unenriched libraries than the
Poly(A)-treated libraries, but a slightly weaker correlation than
the RNase H-treated libraries for reads mapping to protein-
coding genes (Figure 3B and Supplementary Figure S3). This ob-
servation demonstrates that the RNase H depletion method is
more specific than both the Poly(A) isolation and Ribo-Zero deple-
tion methods in maintaining protein-coding RNA levels observed
in the Unenriched RNA control libraries.

RNase H depletion more closely reflects
Unenriched annotated ncRNA levels than Poly(A)
isolation, but slightly less closely than Ribo-Zero
depletion
A major advantage of using rRNA removal methods in RNA-Seq
applications is their ability to retain ncRNA. We next assessed

the ability of each RNA enrichment method to retain annotated
ncRNA specifically. To do so, we calculated the correlation coeffi-
cient between normalized reads mapped to annotated ncRNA
genes from all Unenriched RNA samples, in order to determine
the maximum achievable correlation between libraries. Again,
we observed that the Unenriched RNA samples are highly corre-
lated (R¼ 0.835–0.990), demonstrating reproducibility between
samples and batches (Figure 4A).

We compared the ability of the RNase H depletion method and
the Poly(A) isolation method to retain annotated ncRNA following
rRNA depletion. We calculated the correlation coefficient of nor-
malized reads mapped to annotated ncRNA genes in RNase H-
treated and Poly(A)-treated libraries with normalized reads
mapped to annotated ncRNA genes from the Unenriched RNA
control libraries. As expected, we found that the RNase H-treated
libraries (R¼ 0.799–0.815) display a much better correlation with
the Unenriched RNA control libraries than the Poly(A)-treated li-
braries (R¼ 0.139–0.149) for all reads mapping to annotated
ncRNA genes (Figure 4B and Supplementary Figure S4). This re-
sult was expected because the Poly(A) isolation method specifi-
cally enriches RNA with polyadenylation and excludes all other
non-polyadenylated RNA, including ncRNA and tRNA. One key
advantage of methods that specifically remove rRNA, such as the
RNase H depletion and the Ribo-Zero depletion methods, is that
they “ignore” all RNA that is not specifically targeted for removal.
As a result, these non-polyadenylated RNA species should main-
tain similar levels as the input Unenriched RNA.

As a better assessment of the ability of the RNase H depletion
method to retain annotated ncRNA, we compared it to the Ribo-
Zero depletion method. Ribo-Zero-treated libraries (R¼ 0.897–
0.967) display a slightly better correlation with the Unenriched

Figure 2 The RNase H depletion method is highly specific. Pearson correlations were calculated for normalized read counts of all annotated genes in
the C. neoformans genome, excluding rRNA genes and genes containing coding-strand rRNA duplications. (A) Unenriched libraries have high internal
consistency as determined by leave-one-out cross-correlation of each Unenriched library with the mean of other Unenriched libraries. (B) The RNase H
depletion method has the best overall rRNA depletion specificity, as determined by Pearson correlation of read counts for all genes with the Unenriched
libraries. Pearson correlation coefficient (R) was calculated between each enriched library and the gene-wise average of counts across all Unenriched
libraries.
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libraries than the RNase H-treated libraries for reads mapping to
annotated ncRNA genes (Figure 4B and Supplementary Figure
S4). The higher correlation of Ribo-Zero-treated libraries with

Unenriched libraries seems to be driven by CNAG_12993, the an-
notated ncRNA gene with the highest counts in the Unenriched
libraries, but much lower counts in the RNase H libraries. When

Figure 3 The RNase H depletion method is highly specific with respect to protein-coding genes. Pearson correlations were calculated in the same way as
Figure 2, but only for protein-coding genes, excluding genes containing coding-strand rRNA duplications. (A) Unenriched libraries have high internal
consistency for protein-coding genes. (B) The RNase H depletion method has the best rRNA depletion specificity for protein-coding genes.

Figure 4 The RNase H depletion method is highly specific with respect to annotated ncRNA genes, although less so than the Ribo-Zero depletion
method. Pearson correlations were calculated in the same way as Figure 2, but only for annotated ncRNA genes, excluding rRNA genes. (A) Unenriched
libraries have high internal consistency for annotated ncRNA genes. (B) The Ribo-Zero depletion method has the best rRNA depletion specificity for
annotated ncRNA genes.
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CNAG_12993 is removed from analysis, the RNase H and Ribo-
Zero depletion methods perform similarly (Supplementary Figure
S5; RNase H R¼ 0.936–0.952, Ribo-Zero R¼ 0.892–0.959). There is
no clear explanation for the poor performance of the RNase H de-
pletion method with CNAG_12993.

We also explored the ability of each enrichment method to re-
tain tRNA. Fewer than 10 reads mapped to each tRNA gene in all
libraries, likely due to size selection in the library preparation,
precluding any meaningful analysis (data not shown).

Data generated from RNase H- and Ribo-Zero-
treated libraries can be used to explore novel
lncRNA
Because our correlation analyses demonstrated that both the
RNase H and the Ribo-Zero depletion methods retain annotated
ncRNA, we explored the feasibility of harnessing these datasets
to identify novel lncRNA. We used an existing pipeline, LncPipe
(Zhao et al. 2018), that was developed for a subset of model organ-
isms, and modified it for application to C. neoformans. We applied
this modified LncPipe pipeline to identify predicted lncRNA
within our RNase H depletion, Ribo-Zero depletion, and
Unenriched RNA datasets. Our lncRNA discovery analysis identi-
fied 11 predicted lncRNA within the C. neoformans transcriptome
(Table 1). This analysis was performed to demonstrate an advan-
tage of using rRNA removal methods like the RNase H and Ribo-
Zero depletion methods for RNA-Seq experiments. These
approaches provide investigators with the ability to explore novel
lncRNA, which would otherwise be impossible using mRNA isola-
tion methods like the Poly(A) isolation method.

Discussion
RNA enrichment is essential for cost-effectively generating data
from an RNA-Seq experiment. We have demonstrated here that,
in C. neoformans cells grown in permissive conditions, rRNA con-
stitutes more than 90% of the total RNA; even higher percentages
of rRNA have been observed in other species (Giannoukos et al.
2012). RNA-Seq experiments are typically aimed at quantifying
protein-coding RNA, and increasingly also ncRNA. Efficient re-
duction of rRNA allows one to generate the desired sequencing
depth of the RNA species of interest with one-tenth of the se-
quencing reads that would be required to generate the same
depth from total, unenriched RNA.

To be effective, RNA enrichment methods must be efficient
and specific. An efficient RNA enrichment method removes as

much rRNA as possible. A specific RNA enrichment method does
not affect other RNA species in the sample. We compared the
rRNA removal efficiency of three commonly-used methods in
C. neoformans samples. Application of the RNase H depletion
method in Cryptococcus has, to our knowledge, never been
reported. The Poly(A) isolation method (Bloom et al. 2019; Brown
et al. 2020) and the now discontinued Ribo-Zero depletion method
(Illumina; Trevijano-Contador et al. 2018; Liu et al. 2020) have
both been used in RNA-Seq applications with Cryptococcus sam-
ples in the past. We find that both the untested RNase H deple-
tion method, as well as the frequently used Poly(A) selection
method, are very efficient in removing fungal rRNA. Surprisingly,
the Ribo-Zero depletion method showed poor efficiency in C. neo-
formans, despite previous work showing efficient removal of vari-
ous bacterial rRNA (Giannoukos et al. 2012). While the Ribo-Zero
manufacturer predicted that the Ribo-Zero Yeast kit would work
for C. neoformans, the probes were designed to target S. cerevisiae,
which may explain the poor performance observed here. Of the
three methods tested, the RNase H depletion method is the most
efficient in removing fungal rRNA.

Following the removal of rRNA, the majority of remaining
RNA is typically protein-coding. Ideally, the removal of rRNA
should not have any effect on protein-coding RNA. In reality,
there is no known method that can reduce rRNA without having
some effect on non-target RNA, including protein-coding RNA.
When assessing the ability of these RNA enrichment methods to
retain protein-coding RNA, we observe that the RNase H deple-
tion method is more specific than the Poly(A) isolation method
and somewhat more specific than the Ribo-Zero depletion
method, in that it more closely reflects protein-coding RNA levels
observed in the Unenriched controls.

We evaluated the specificity of each RNA enrichment method
in retaining annotated ncRNA. The Poly(A) isolation method is
unable to retain ncRNA; this is as expected since it depends on 30

polyadenylation, which is absent from ncRNA. The RNase H de-
pletion and the Ribo-Zero depletion methods both perform well
in retaining annotated ncRNA, with the Ribo-Zero depletion
method being slightly more specific than the RNase H depletion
method, in that it more closely reflects annotated ncRNA levels
observed in the Unenriched controls.

To determine a possible mechanism impacting specificity of
the Poly(A) isolation method, we identified the genes that are most
underrepresented in the Poly(A)-treated libraries compared to the
Unenriched libraries (Supplementary Figure S6). A total of 41 genes
were identified as substantially underrepresented in the Poly(A)-

Table 1 LncPipe identification of C. neoformans lncRNA

Name Chromosome Start End # Exons Total exonic length Mean TPM Median TPM

LINC-CNAG_07358-1 1 996421 997387 2 863 6.689427833 6.2667
LINC-CNAG_07633-1 6 499352 499840 3 350 2.844233167 0
LINC-CNAG_07649-1 6 1351673 1352718 3 913 5.5161474 5.799715
LINC-CNAG_07769-5 9 828268 829327 3 919 9.2005976 10.76355
LINC-CNAG_07769-4 9 831951 833064 4 2019 5.333811583 5.026716
LINC-CNAG_07769-1 9 838389 840007 10 2730 4.443440783 3.846055
LINC-CNAG_04857-1 10 199988 203380 43 6849 12.5665295 12.729905
LINC-CNAG_04857-2 10 203693 205767 2 1983 1.903616517 1.67792
LINC-CNAG_01945-1 11 1333989 1334590 2 540 3.47618165 1.745465
LINC-CNAG_06521-2 13 743402 744570 4 1003 5.924291983 5.627535
LINC-CNAG_07042-1 13 750280 751009 3 609 5.950332833 4.02392

Predicted lncRNA were discovered by analysis of RNase H-treated, Ribo-Zero-treated, and Unenriched RNA libraries. The name (assigned by LncPipe), chromosomal
location, exon number, exonic length, and transcripts per million (TPM) across samples are shown for all 11 lncRNA identified.
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treated libraries; as expected, 24 of these genes are
non-coding genes (Supplementary Table S1). In analyzing the
remaining 17 protein-coding genes that are underrepresented in
the Poly(A)-treated libraries, we observed a pattern. The vast ma-
jority of these genes (12 of 17) are located on the mitochondrial
chromosome (Supplementary Table S1). This observation is sup-
ported by previous work that has demonstrated that mitochon-
drial transcripts in fungi, including Cryptococcus, lack
polyadenylation (Toffaletti et al. 2003; Chang and Tong 2012). In
seeking to understand why the remaining five nuclear protein-
coding genes are underrepresented, we visualized the read depth
across them in the Unenriched libraries. We observed that reads
are concentrated at the 50 end and the middle of these genes,
which suggests that a substantial fraction of the reads mapped to
these genes arise from degradation intermediates (Supplementary
Figure S7). Deadenylation is often a marker of mRNA degradation
in eukaryotes, including fungi, so these underrepresented tran-
scripts are likely degradation intermediates (Parker 2012). Because
the Poly(A) isolation method depends on 30 polyadenylation, it is
not surprising that deadenylated degradation intermediates would
be underrepresented in the Poly(A)-treated libraries. Work in other
eukaryotic systems has suggested that deadenylated mRNA can
have fates beyond degradation, including recycling to the translat-
ing pool of mRNA (Decker and Parker 2012). With this in mind, we
conclude that the Poly(A) isolation method is highly effective in
profiling mRNA encoded in the nuclear genome that is poised for
canonical translation at a specific point in time. The RNase H de-
pletion method, on the other hand, provides a more complete pro-
file of all present mRNA, including functional mRNA, degradation
intermediates, and mRNA that may not clearly fall into either cat-
egory. Analyses such as those performed in Supplementary Figure
S7 can be used to hypothesize about the functionality and fate of
these transcripts. As a result, we find that the Poly(A) isolation
method represents an overall accurate depiction of the true distri-
bution of most protein-coding mRNA. However, the failure of the
Poly(A) isolation method to efficiently capture RNA that is not pol-
yadenylated makes it poorly suited for C. neoformans RNA-Seq
experiments investigating mitochondrial mRNA, deadenylated
mRNA, or ncRNA. As a result, experiments using the Poly(A) isola-
tion method may overlook important biological phenomena, in-
cluding the dynamics of mRNA with rapid turnover.

Interest in ncRNA has recently expanded in the fungal genet-
ics field. The majority of work has focused on ncRNA in model
systems (such as S. cerevisiae, Neurospora crassa, and Aspergillus fla-
vus), in which lncRNA and natural antisense transcripts have
been implicated in stress responses and development (Smith
et al. 2008; Gelfand et al. 2011; Ding et al. 2012; Xue et al. 2014).
Comparatively, little work has explored ncRNA in pathogenic
fungi. For example, RNA interference is known to regulate trans-
poson activity in C. neoformans (Janbon et al. 2010; Wang et al.
2010; Yadav et al. 2018). The first lncRNA in Cryptococcus, RZE1,
was recently functionally characterized. RZE1 is required for
Cryptococcus yeast-to-hyphal transition and virulence through its
regulation of the transcription factor ZNF2 (Chacko et al. 2015).
Additionally, siRNA, miRNA, and lncRNA are known to be se-
creted, albeit for an unknown purpose, by C. neoformans (Liu et al.
2020). We identified 11 predicted lncRNA in C. neoformans by min-
ing our dataset by modifying LncPipe (Zhao et al. 2018) to run on
genomic data from non-model organisms. It is important to note
that this type of analysis is the initial step in identifying novel
lncRNA; these predicted lncRNA must be experimentally vali-
dated using approaches such as northern blotting and ribosome
profiling. These predicted lncRNA display reasonable expression

across each respective gene, so they are interesting candidates
for experimental validation and investigation for novel biological
activity in conditions relevant to fungal pathogenesis, as many
fungal ncRNA are induced in response to stressful stimuli
(Supplementary Figure S8). Furthermore, the C. neoformans ge-
nome may contain undiscovered lncRNA that are not expressed
in the permissive growth conditions used in these experiments
but can be discovered using the approaches and analyses out-
lined here. Furthermore, it is possible that LncPipe requires opti-
mization for identification of lncRNA in C. neoformans, because
some lncRNA gene boundaries identified seem inconsistent with
the reads, based on visual inspection (Supplementary Figure S8).

In conclusion, based on the data presented here, we consider
the RNase H depletion method to be the most generally effective
in preparation of C. neoformans RNA-Seq libraries. We also find
that the Poly(A) isolation method is effective in many contexts. It
does efficiently reduce rRNA reads (although not as efficiently as
the RNase H depletion method), but it fails to capture biologically
relevant RNA species that are not adenylated, including ncRNA,
mRNA expressed in the mitochondria, and deadenylated mRNA.
The RNase H depletion and the Ribo-Zero depletion methods both
display strengths and weaknesses. The RNase H depletion method
performs better in efficiency of rRNA reduction and specificity for
protein-coding transcripts, while the Ribo-Zero depletion method
performs moderately better in specificity for annotated ncRNA.
While this work was being conducted, the Ribo-Zero product line
was discontinued. It has since been replaced with the Illumina
Ribo-Zero Plus rRNA Depletion Kit, which only targets human,
mouse, rat, and bacterial rRNA. As a result, we conclude that the
RNase H method may be the best option for RNA-Seq analysis of
C. neoformans, as well as many other non-model organisms. While
the RNase H depletion method has a substantial upfront cost to
purchase DNA oligonucleotides (approximately $1000), we esti-
mate that for this method our total cost per sample was less than
$6.50 (more than half of this total was the final cleanup with the
Zymo RNA Clean & Concentrator-5 kit).

Data availability
The RNA-Seq data analyzed in this publication have been deposited
in NCBI’s Gene Expression Omnibus (GEO) (Edgar et al. 2002; Barrett
et al. 2013) and will be accessible through GEO Series accession
number GSE160397 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc¼GSE160397). The custom programs developed for process-
ing and analyzing the RNA-Seq data are available in a GitHub repos-
itory (https://github.com/granek/rna_enrichment) and the version
of the LncPipe pipeline that we modified to run on the H99 genome
is available in a GitHub repository (https://github.com/granek/
LncPipe) that was forked from the original. For purposes of repro-
ducibility, all analyses were run within Singularity containers (v
3.5.2). All lncRNA discovery was performed using the bioinforma-
tist/lncpipe Docker image (run within Singularity) provided by the
LncPipe developers (https://hub.docker.com/layers/bioinformatist/
lncpipe/latest/images/sha256-9d97261556d0a3b243d4aa3eccf4d65e
458037e31d9abb959f84b6fe54bb99a2?context¼explore). All other
analyses were performed using a Singularity image which we built
and is publicly available (library://granek/published/rna_enrich-
ment). These resources include all programs, support files, and
instructions for automatically replicating all analyses presented
here using the data available from GEO.

All supplementary information is deposited in figshare:
https://doi.org/10.25387/g3.15428664. Figure S1 contains a depth
of coverage plot of the mitochondrial rRNA genes. Figures S2,
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S3, and S4 display scatterplot visualizations of rRNA depletion

specificity summarized in Figures 2, 3, and 4, respectively.

Figure S5 displays the rRNA depletion efficiency for ncRNA

genes, excluding CNAG_12993. Figure S6 displays a scatterplot

visualization of the genes that are underrepresented by the

Poly(A) isolation method, Figure S7 displays the read depth

across each of these genes, and Table S1 provides details of

these genes. Figure S8 displays the read depth across each of the

predicted lncRNA genes identified by LncPipe analysis. File S1

contains the RNase H depletion protocol. File S2 contains the

Ensembl GTF with newly annotated mitochondrial rRNA. File S3

contains DNA oligonucleotide sequences used in the RNase H

depletion method.
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