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Introduction

From roundworms to mammals, living organisms have evolved strategies to permit
survival in divergent environments. Evidence shows that some of these adaptive
biological features are evolutionarily conserved; among these is heat acclimation.
This phenomenon was described first as inducing physiological and biochemical
adaptations to protect against extreme changes in environmental temperature [1].
This “heat shock response” is now accepted widely as a key mechanism to protect
cells from untoward environmental perturbations [2].

The heat shock response was first identified in Drosophila melanogaster [3].
Early experiments showed that exposure to heat led to “chromosomal puffing”
that correlated with a dramatic increase in the synthesis of a previously unrecog-
nized group of proteins [3]. This finding was later extended to other eukaryotic
organisms. These ‘heat shock proteins’ (HSPs) appeared to mediate a molecu-
lar mechanism that protected living cells from the untoward effects of heat [3].
Of these, one of the most widely studied is the 70 kDa HSP (HSP70). The genes
encoding members of the HSP70 family are a key evolutionary adaptation that
is conserved across species. The HSP70 gene is genetically simple, with a single
exon and no introns, which permits rapid transcription and translation [4, 5]. Of
the 70 kDa subfamily members, the inducible HSP72 is highly expressed during
stress while the constitutive heat shock cognate protein (HSC)70 (also known as
HSP73) is constitutively expressed, with basal levels present in the cytosol at most
times [6].

Within the cytosol of eukaryotic cells, members of the 70 to 78 kDa subfamily
of HSPs bind to and release both non-native protein aggregates and native pro-
teins with incomplete or damaged tertiary structures [6]. In this sense, HSP70
family members act as molecular chaperones to ‘guide’ proteins to their ultimate
fate–degradation, elimination, repair, or completion of the synthetic process. The
chaperone’s ‘guiding’ mechanism relies on recognition of hydrophobic regions of
non-native proteins or unstructured back-bone regions of proteins. They promote
the correct protein folding through cycles of substrate binding and release. This
is regulated through a catalytic site by an energy-requiring ATPase dependent
mechanism [3, 5, 7, 8].

Under environmental stress conditions, misfolded protein intermediates may
accumulate. [9]. The self-association of non-native protein intermediates to nearby
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proteins may induce the formation of protein aggregates [10]. In contrast to mis-
folding, aggregation is a highly cooperative inter-molecular process that strongly
depends on the concentration of misfolded monomers. Aggregates may be com-
posed of different oligomers over a wide distribution of sizes. The presence of these
aggregates is common in a number of disease processes, including neurodegener-
ative disorders such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. The
exposure of hydrophobic protein domains to unaffected proteins or membranes
may disrupt normal activity. For example, association of the hydrophobic region
of a damaged protein with a neuronal cell membrane may change ion flux and
alter function. HSP70 may prevent this and this may be a key mechanism by which
HSPs limit or prevent intra-cellular pathological processes. This underscores the
fundamental importance of the HSPs to normal living cells [11].

While this review will focus on HSP70, other subclasses among the HSPs
play important roles. These are organized by their molecular size: HSP100,
HSP90, HSP60, HSP40 (J-domain proteins) and small HSP families, such as
HSP22/27 [12,13]. Most HSPs are constitutively and ubiquitously expressed molec-
ular chaperones that guide the normal folding, intracellular disposition, and pro-
teolytic turnover of many of the key regulators of cell growth and survival [14].
Thus, the protective process involves the interaction of many different HSPs. For
example, HSP90, which comprises 1–2% of total cellular protein in non-stress
conditions [15], supports meta-stable protein conformations and expresses a high
affinity binding state to hormone receptors. This involves both HSP70, which par-
ticipates in assembly of multiprotein complexes, and HSP40, a co-chaperone that
stimulates HSP70 ATPase activity [14].

At the transcription level, HSPs, such as HSP70 and HSP90, are regulated by
the activities of a family of heat shock transcription factors (HSF). One of these,
HSF-1, normally is expressed in a negatively regulated state as an inert monomer
in either the cytoplasm or nuclear compartments [16]. Upon exposure to a variety
of stresses, HSF-1 trimerizes and accumulates in the nucleus. HSF-1 trimers bind
DNAregions calledheat shockelements (HSEs)withhighaffinity. SomesmallHSPs
are transcribed constitutively due to multiple binding of low levels of HSF1 [16].

The great divergence in HSP70 expression explains the multiple function of
these proteins. Elevated levels of HSP70 following diverse inciting causes have
led researchers to conclude that HSP70 is involved in cellular protection in the
normothermic environment [4, 17, 18]. A wide range of noxious stimuli, such as
hypoxia, ischemia/reperfusion, hypoglycemia, endotoxemia, inflammation, and
exposure to heavy toxic metals or reactive oxygen species (ROS), induce HSP70
expression in a large number of tissues. Since HSPs respond to environmental
changes, expression in organs that are ‘outside’ the organism (for example, skin,
lung, gastrointestinal epithelium) may occur in the absence of any apparent in-
sult [17–24].

It has been demonstrated, both in vivo and in vitro, that exposure to a mild
stress, such as heat pretreatment, induces high levels of HSP70. Increased HSP70
levels may confer protection from subsequent noxious stimuli and result in ‘cyto-
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protection’.This shouldbeofbenefit against cellular injury causedby inflammation
and infection [17–23]. Thus, altering HSP70 expression might be of importance in
modulating highly lethal inflammatory diseases.

Heat Shock Proteins as ‘Disease Regulators’:
Sepsis and Acute Respiratory Distress Syndrome (Fig. 1)

Sepsis, as well as the related systemic inflammatory response syndrome (SIRS),
and multiple organ dysfunction syndrome (MODS), are the leading causes of death
in patients in surgical intensive care units (ICUs) [24, 25]. The lung is the organ
most affected in MODS, with pulmonary dysfunction taking the form of the acute
respiratory distress syndrome (ARDS), an often lethal inflammatory disorder of
the lung [26]. Recent data from the USA indicate that the mortality rate associated
with ARDS is greater than 35% [26].

ARDS is characterized by an increased inflammatory process in the lungs.
In this disorder, alveolar epithelial cells are damaged and ultimately may be de-
stroyed [27,28]. While some contributory pathophysiologic mechanisms have been
identified, most remain obscure. Therefore, a better understanding of the funda-
mental biological changes leading to ARDS would be of scientific and therapeutic
value.

Several papershave explored the roleofHSP70 inamodel of lipopolysaccharide
(LPS)-induced lung injury. These investigators concluded that heat pre-treatment

Fig. 1. Cytoprotective functions of heat shock protein (HSP)-70 of potential importance in lung
injury and organ failure
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induced HSP70 expression that protected the lungs against ventilator-induced lung
injury (VILI) by decreasing cytokine transcription in the lung [29].

LPS stimulates the production and the release of many endogenous mediators
of sepsis. These include tumor necrosis factor alpha (TNF-α), interleukin (IL)-1
and IL-6 [29]. A distinct profile in the expression of genes encoding members of
the HSP70 family was demonstrated in leukocytes obtained from different phases
of the disease course in septic patients [30]. These findings strongly suggest that
HSP70 may play a role in the outcome of septic shock patients [30]. Further,
studies proved that in an animal model of ARDS, heat pretreatment prevented
mortality [31].

Previous studies had revealed that sepsis induced by cecal ligation and dou-
ble puncture (CLP) resulted in an ARDS-like state characterized by neutrophil
accumulation and protein-rich interstitial edema formation [27, 31, 32-38]. Us-
ing this model, we found impaired hepatic expression of several essential liver-
specific genes, including those encoding proteins that catalyze gluconeogenesis,
β-oxidation of fatty acids, ureagenesis, and bile acid transport [39–41]. Further, we
have demonstrated inappropriate downregulation of the expression of several key
genes within the lung. These include surfactant proteins (SP)-A and (SP)-B and,
most importantly, HSP70 [27,42,43]. We found that HSP70 mRNA increased after
a sham operation but failed to increase after CLP [27]. HSP70 protein levels were
unchanged after either CLP or sham operation. Therefore, HSP70 mRNA fails to
increase after CLP despite significant damage to alveolar cells. This lack of increase
in HSP70 implies profound pulmonary epithelial dysfunction, similar to our find-
ings in the liver, and is supported by several other studies indicating that sepsis
and endotoxemia impair HSP70 expression [23, 27, 32, 44]. These experiments led
us to investigate in depth the role of HSP70 in ARDS and inflammation, by using
an adenovirus (AdHSP) to enhance HSP70 expression [38].

We have demonstrated that intratracheal administration of AdHSP signifi-
cantly attenuates lung injury in rats with sepsis-induced respiratory distress [38].
AdHSP, when compared to phosphate buffer saline (PBS) or a virus expressing
a marker protein (AdGFP), attenuated CLP-induced neutrophil accumulation, sep-
tal thickening, interstitial fluid accumulation, and alveolar protein exudation [38].
More importantly, AdHSP treatment significantly decreased mortality in rats sub-
jected to CLP [38]. In contrast to studies that provoked the entire heat shock
response [31, 45, 46], our investigations present a unique approach to explore the
effects of HSP70 on a single tissue, the lung [32]. We previously documented
that AdHSP preferentially increases HSP70 expression in pulmonary epithelial
cells [38]. An interesting finding was that 48 hours following CLP, virus uptake oc-
curred primarily in pulmonary epithelial cells, especially type II pneumocytes [32].
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HSP70 Inhibits Pro-inflammatory Cell Signaling Pathways in ARDS

The heat shock response is known to modulate inflammation [2]. The mechanisms
that have been investigated involve the attenuation of both cytokine-induced in-
flammatory mediator production and apoptosis [2, 22, 31, 45]. Both processes are
important in the pathogenesis of ARDS [48–50]. This involves cytokines such as
TNF-α and IL-1β [48–50, 54].

HSP70 inhibits the apoptotic machinery including the apoptosome, the caspase
activation complex, and apoptosis inducing factor [55–57]. HSP70 also participates
in the proteasome-mediated degradation of apoptosis-regulatory proteins [58].

TNF-α and IL-1β exert their effects in part via cell signaling pathways involving
thenuclear transcription factor, nuclear factor-κB(NF-κB) [59–61].This important
acute inflammatory pathway is modulated by HSP70. NF-κB is a dimeric protein,
most often consisting of two subunits, p50 and p65 (Rel A). Normally, this dimer
is retained in the cytoplasm by an inhibitory molecule, IκBα [62]. An essential
step in NF-κB activation is IκBα degradation. This permits the migration of NF-κB
into the nucleus where it can initiate transcription [61, 62]. Degradation of IκBα
involves three sequential biochemical reactions. The first is phosphorylation of
IκBα by IκB kinase (IKK). IKK is a complex molecule that contains two catalytic
subunits, IKKα and IKKβ, an essential regulatory subunit IKKγgalso called NF-κB
essential modulator (or NEMO) [63], and a recently identified co-modulator, the
105 kDa protein, ELKS [64–66]. The dominant catalytic subunit in inflammation is
IKKβ [61]. Phosphorylationof IκBα is followedbypoly-ubiquitinationbySCFβ-TrCP

ubiquitin ligase and, finally, proteolysis by the 26S proteasome [67–70].
Several in vitro models have proven that heat shock or elevated levels of HSP70

suppresses NF-κB activity and that this inhibition of NF-κB results in a general
reduction in the inflammatory response [44,46,71,73]. However, the exact molec-
ular mechanism of the HSP70–NF-κB interaction is still unknown. Ran et al. [74]
demonstrated that HSP70 promotes rather than inhibits TNF-mediated cell death,
by binding to IKKγ. This resulted in inhibition of IKK activity and consequently
inhibited NF-κB-dependent antiapoptotic gene induction [74]. Earlier, Yoo et al.
demonstrated that HSP70 prevented phosphorylation of IκBα by IKKβ [71].

Both activation and modulation of inflammation require coupling of extra-
cellular signals with intra-cellular events, processes involving a number of specific
biochemical pathways. We investigated the hypothesis that AdHSP limits sepsis-
induced acute inflammation within alveolar epithelial cells in part by suppressing
NF-κB activation. In contrast to the observations of others [71, 74], we found that
HSP70 reduced, but did not abolish, IKKβ activity. More importantly, we have un-
covered a novel mechanism of IκBα stabilization that results from an association
with HSP70 [75]. HSP70 binds to an incomplete protein degradative complex com-
posed of phosphorylated-ubiquitinated IκBαsgF-κB, and partial IKK complexes
that contain ELKS, IKKβs and/or IKKγg(NEMO). The association of HSP70 leads
to stabilization of these intermediate complexes in a way that prevents proteaso-
mal degradation of IκBα. Consequently, NF-κB is retained in the cytoplasm and is
unable to induce inflammatory responses.
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Conclusion

HSPs are important mediators of a number of key intracellular reactions. Of im-
portance to the care of the critically ill are their involvement in protein repair and
tertiary structure. HSP70 is known to modulate inflammation and apoptosis. In
models of acute lung injury and ARDS, over-expression of HSP70 improves out-
come, ameliorates lung injury and attenuates inflammation. The involvement of
HSP70 in other aspects of lung injury and in other components of MODS is under
investigation.
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