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A B S T R A C T   

Cotton is an important cash crop in addition to being a fiber commodity, and it plays an essential part in the 
economies of numerous nations. High temperature is the most critical element affecting its yield from fertil
ization to harvest. The optimal temperature for root formation is 30 C -35 ◦C; however, root development ends 
around 40 ◦C. Increased temperature, in particular, influences different biochemical and physiological processes 
associated with cotton plant, resulting in low seed cotton production. Many studies in various agroecological 
zones used various agronomic strategies and contemporary breeding techniques to reduce heat stress and 
improve cotton productivity. To attain desired traits, cotton breeders should investigate all potential possibilities, 
such as generating superior cultivars by traditional breeding, employing molecular techniques and transgenic 
methods, such as using genome editing techniques. The main objective of this review is to provide the recent 
information on the environmental factors, such as temperature, heat and drought, influence the growth and 
development, morphology and physio-chemical alteration associated with cotton. Furthermore, recent 
advancement in cotton breeding to combat the serious threat of drought and heat stress.   

1. Introduction 

Gossypium species, namely Gossypium hirsutum L, Gossypium. bar
badense L, Gossypium arboreum L, and Gossypium herbaceum L have been 
growing worldwide to create textile fabric [1]. Most cotton is cultivated 
in tropical and subtropical regions with temperature changes between 
40 ◦C and 45 ◦C [2]. The temperature throughout a plant’s growth 
season affects physiological and morphological growth and biomass 
production (S. [3]) [4]. Cotton loses its blooms and squares when the 
temperature exceeds upto 36 ◦C (S. A. [5]). High-temperature stress has 
a negative impact on cotton vegetative propagation, metabolism, and 
output [6]. The sensitivity of plants to climate variability and change is 
determined by the length and severity of the heat stress [7]. 

Additionally, the stress level is directly associated with water deficiency, 
which could be aggravated even more by restricted and unpredictable 
water supplies in cotton-growing areas [8]. The availability of genetic 
heterogeneity inside a genus is required for a breeding effort to generate 
cultivars resistant to heat stress (M. M. [9]). All abiotic and biotic stress 
reactions in plants necessitate an optimal temperature difference, 
known as the temperature kinetic window (TKW). The temperature of 
such a plant ought to be in the TKW range. Heat stress occurs when the 
plant’s temperature falls below or rises over TKW. A TKW of 23.5 ◦C- 32 
◦C is essential for healthy plant development [10]. Cotton breeders are 
constantly evaluating cotton cultivars against heat sensitivity as a 
consequence of changing the climate. Seed cotton yield (SCY), like some 
of the other morphological characteristics, is regarded as a beneficial 
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Fig. 1. Trends in global temperature change. (A) Map of the annual mean temperature change (_C) during 2000–2010 relative to 1951–1980. (B) Map of the annual 
mean temperature change (_C) during 2011–2022 relative to 1951–1980. The data for land surface air temperature are from GHCNv4 (GISS analysis based on global 
historical climatology network v4), and the data of sea surface temperature are from ERSST_v5 (NOAA/NCEI’s extended reconstructed sea surface temperature v5). 
The number at the top right-hand corner of the map plot is an estimate (_C) of the global mean of the calculated area. Gray areas signify missing data. Ocean data are 
not used over land nor within 100 km of a reporting land station. The maps were made using the website of GISS Surface Temperature Analysis (https://data.giss.nas 
a.gov/gistemp/maps/index.html). Site reference. 

Fig. 2. Morphological Attributes of cotton at Heat tolerance.  

Fig. 3. Application of Phyto-hormones in Heat Tolerance Management.  
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trait for the growth of cotton genetic variability against high tempera
ture, but it is complex as well as influenced by environmental condi
tions, necessitating particular breeding programs, and additionally, 
climate variations cannot be avoided [11]. Heat waves will occur more 
frequently and persist longer than anticipated due to global warming 
(Fig.1). Increased temperatures have a detrimental influence because 
they hinder photosynthetic activity (Y. Y. [12]). Excessive temperatures 
may bring about explicit changes in physiological processes or cause 
indirect alterations by affecting behavior processes. High temperatures, 
for instance, can cause reproduction delays or vigor loss in growing 
seedlings. It will eventually decrease blooming and vegetative growth 
[13]. When subjected to elevated temperatures, cotton sheds 35% of its 
early flowers and 50–75% of its bolls in varying environmental 
situations. 

2. Cotton under heat stress 

In numerous regions of the globe, heat exhaustion is usually 
accompanied by water scarcity. Despite being researched separately, the 
combined consequences of drought and elevated temperatures on cotton 
have not been extensively found. Despite the fact that combined impacts 

Fig. 4. Response of morphological, physiological and biochemical with heat stress.  

Table.1 
Optimum temperature required for cotton crop.  

Growth stage Average daily 
temperature (mm) 

Daily water 
requirement’s 
(mm) 

Daily water 
requirement’s (in) 

Planting Soil Minimum 18 ◦C 0 0 
Planting Air More than 21 ◦C   
Vegetative 

growth 
21–27 ◦C 1–2 0.04–0.08 

Frist Square 
leave  

2–4 0.08–0.16 

Reproduction 
growth 

27–32 ◦C 3–8 0.12–0.31 

Peak bloom  8 0.31 
Frist Boll 

opening  
8–4 0.31–016 

Maturation 21–31 ◦C 4 0.16 

[82]. 

Table 2 
Potential antioxidant for heat tolerance in different crops.  

Crops Antioxidant Response References 

Chines 
Cabbage 

CAT & SOD There was no consistent link between these enzymes and heat tolerance. [83] 

wheat Different antioxidant 
enzymes 

A detrimental connection was discovered among enzyme  
levels of antioxidants and heat tolerance. 

[84] 

Tomato APX, SOD and POD These digestive enzymes were shown to be more active in thermally resistant cultivars. [85] 
Brascia POD and CAT A favorable connection with heat resistance (Hasanuzzaman & Responses, n. 

d.) 
Wheat CAT and APX A favorable connection with heat resistance [86] 
Cotton ROS and Proline The feared ROS-driven damage accumulated higher proline and protein soluble molecules 

overall. 
[87,60]  
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were recently examined in a variety of crops, such as Tomato, [14], 
Maize (E. [3]), Arabidopsis thaliana [15], Tobacco [16], wheat (Triticum 
aestivum L.) [17], rice (M. [18]) and sorghum (Rajendra [19]). Plants are 
being exposed to an increased variety of abiotic and biotic stress combos 
due to climate change and potentially associated climatic variances, all 
of which will have significant adverse impacts on their development and 
production (H. [20]). Subsequently came to light that high temperatures 
and a water shortage have additive impacts on individual stressors. In 
essence, combining both stressors exacerbates individual stress’s im
pacts. If HSPs, reactive oxygen species, mediator reduction enzymes, 
and many other transcripts were studied using transcriptome analysis, 
they were found to be more effectively expressed under extreme tem
peratures and drought stress than under separate stressors [21]. Similar 
processes that are activated in response to a solitary stress are activated 
in response to the combined stress. The most hopeful outcome of Ara
bidopsis research [22]. The genomic variant that makes it highly resis
tant to consolidated stress [23]. A research on cotton (Gossypium 
barbadense L.) found that a combination of drought and high tempera
tures had a negative impact on physiological processes such as devel
opment and advancement if compared to a single stress [24,4]. Cotton 
breeding initiatives should concentrate on selecting during combined 
drought and heat tolerance rather than just one of these conditions [25]. 
The main objectives of this review are to focus on the environmental 
factors, such as temperature, heat and drought, influences the growth 
and development, morphology and physio-chemical alteration of cotton. 
Furthermore, recent advancement on cotton breeding to combat the 
serious threat of drought and heat. 

3. Influence of heat stress on morphological traits of cotton 

3.1. Germination and seedling growth 

Developing or identifying heat-resistant varieties remains one of the 
most cost-effective and practical approaches to alleviate the negative 
consequences of heat stress. Crops display numerous heat and drought 

resistance systems, agronomic variations such as varying leaf angle, 
transpiration rate mechanisms, alterations in phospholipid extracellular 
matrix components, and morphometric changes under different heat 
stress regimes [7]. Despite various heat stress conditions (Fig.2), the 
plant’s stomata closure process, reduced water loss, higher stomatal and 
trachomatous frequencies, and expanding xylem arteries are the most 
prevalent responses [6]. The development and growth of agricultural 
plant seedlings depend on maintaining the ideal temperature range of 28 
to 30 ◦C. The starting temperature for seed germination is around 12 ◦C 
and 15.5 ◦C for the germination rate [26]. Cold temperatures among 
both two and four degrees Celsius are a severe issue in many regions of 
the country, particularly in the Delta area of Mississippi, particularly 
seedling germination as well as early development. In cold soil tem
peratures, genomic variations in fertilization and root growth have been 
found (X. [27]). Meshram and his colleagues discovered that soil with 
only a temperature range of 20 to 32 ◦Celsius is ideal for optimal root 
development and development [28]. Roots temperatures stress occurs 
between 35 and 40 ◦C and negatively impacts the plant’s permeability 
and infiltration capabilities, as well as poor hormone production and 
delivery [29]. Among the most delicate procedures is the production of 
cytokinins that arise mostly in roots [30]. Several root processes, 
including nutrition and water intake, enzyme absorption and biosyn
thesis, and translocation, are sensitive to temperature. Root tempera
tures could prove more vital to plant development than shoot heat 
because roots endure a narrower temperature range and are less 
responsive to significant fluctuations [28]. 

3.2. Influence of heat stress on flowering and boll-filling stage 

Surprising repeated occurrences of extreme heat stress in cotton- 
growing areas worldwide, which frequently coincide with distinct 
reproductive periods such as blossoming and boll-filling, result in poorer 
boll set and lint output [31]. Increased nighttime temperature as a result 
of the square stage caused cotton to lose growth and production and 
rapidly lose inflorescences. Cotton has also shown responsiveness to 
heat tolerance in flowering growth. At the flowering stage, pollen vi
tality and germination were reduced [32]. This same size of something 
like the pollen grain decreased at 29 ◦C, while the vitality of cotton 
pollen decreased above 32 ◦C in adjacent air [13]. Cotton visibility to HT 
reduced seedlings as well as a number of pods per plant and lint pro
duced. This research found a significant unfavorable link between cot
ton yield and high temperatures during embryogenesis (N. [27]). 
Extreme heat can boost transpiration rate while decreasing photosyn
thetic and carbohydrate synthesis, but high temperatures at nighttime 
can enhance oxygen consumption while decreasing energy (ATP) levels 
[33]. Research revealed a 50% decrease in total productivity and a lower 
number of tillers than plants cultivated within the optimal range [34]. 
Heat stress reduces carbohydrates and flower bud length by lowering the 
number of seeds & fibers in each boll. The shortening of the growing 
season causes high temperatures to have a detrimental impact on growth 
and yield features. [35]. Crops planted around 36/28 ◦C day/night heat 
kept around 70% more bolls than crops cultivated at 30/22 ◦C tem
perature [36]. Considering fiber layer formation, fiber cross-sectional 
development and micronaire influenced by heat [37]. Heat units pro
duced in the first 50 days after planting significantly influenced 
micronaire at harvest. The rate of structural protein expansion and fiber 
extension were both influenced by temperatures. Qi and his colleagues 
revealed in trials with continuous growth conditions, the shortest gap 
between blooming and boll opening (41 days) occurred at 29.5 ◦C [38]. 

3.3. Influence of heat stress on cotton fiber quality 

In addition, various considerations, including the texture of fiber 
may be manipulated as a result of temperature-induced interference 
with the growth and harvesting of the cotton plant. Cotton fiber quality 
parameters, including width, resilience, elongation, and micronaire 

Table 3 
Yield losses of different crops due to high temperature.  

Crops 
Species 

High temperature caused yield loss References 

Cotton In Nanjing, China, a temperature increase of 2–3 
◦Celsius over the ideal temperature (32 ◦Celsius) 
resulted in a 10% loss in biomass and a 40% decrease 
in yield. 

[11] 

Wheat A 0.5 ◦C rise in the typical temperature is expected to 
diminish rained crops in China by 4–7% by 2050. 

[88] 

Wheat Drought and heat stress high temperature and water 
deficit stress have the potential to minimize yield 
losses by 9–10%. 

[89] 

rice Heat stress episodes throughout the reproductive 
season endanger more than 120 million hectares of 
rice production. 

[90] 

Maize Each 1 ◦Celsius increase above 30 ◦Celsius decreases 
production by 1%, with 45% worldwide yield losses 
estimated by the 2080s. 

[91] 

Barley During 1981 to 2002, rising air temperatures lowered 
yields by  
eight million metric tons every year, cost around $1.0 
billion. 

[92] 

Soybean Around 2100, yield losses in the United States will be 
46%. 

[93] 

Different 
crops 

In India, every 1 ◦C increase might result in yield 
losses of $20  
billion each year. 

[94] 

Yousaf, M. I., Q. Hussain, M. S. Alwahibi, M. Z. Aslam, M. Z. Khalid, S. Hussain, 
A. Zafar, S. A. S. Shah, A. M. Abbasi and A. Mehboob (2023). "Impact of heat 
stress on agro-morphological, physio-chemical and fiber related paramters in 
upland cotton (Gossypium hirsutum L.) genotypes." Journal of King Saud Uni
versity-Science 35(1): 102,379. 
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suffer when temperatures rise [39]. Fiber quality & lint parameters 
strongly predict atmospheric temperature and agricultural activities 
[37]. Because the development of photosynthetic activity, which is 
actually affected by high temperature, determines fiber strength and 
characteristics [4]. Higher temperature impedes cellulose synthesis, 
thus compromising the fiber length and strength [40]. The temperature 
required for overall fiber consistency and micronaire is about 16 ◦C, 
whereas the average temp for fiber strength is 18–22 ◦C [41]. High heat 
can also have an impact on the yield and quality of fiber (K. [42]). 
Phosphorus, soluble proteins, and lactate account for 80% of total fiber 
juice, but temperature increases have a significant impact on these 
components [43]. Extreme heat can induce fiber roughness, enhancing 
the micronaire of lint [44]. High temperature during fiber formation can 
change fiber wall condensation and micronaire cross-sectional devel
opment, and fiber production can be lowered by up to 110 kg ha-1 [45]. 

3.4. Influence of heat stress on cotton yield 

Additionally, it has been shown that the temperature significantly 
affects cotton yield. Due to heat stress’s negative impacts on plant 
development, maturation, DM separation, and reproductive develop
ment, crop yield will eventually suffer greatly. It may also lessen the 
creation of carbohydrates and photosynthesis [46]. The ideal tempera
ture varies from 2 to 28 ◦C for the leaf area and is also quite vulnerable to 
extremely high temperatures. The temperature has a significant effect on 
flowering branches. However, as the daytime temperature rises above 
30 ◦C, severe heat stress throughout blooming results in the loss of leaves 
and blooms. A rise in fruit production sites of 50% is observed as a result 
of temperature increases of 10 ◦C, or from 30 to 40 ◦C [25]. According to 
reports, freshly developed bolls begin to shed when the daytime average 
temperature is 32 ◦C or even higher. Elevated temperatures during the 
night will also boost respiration and further limit the amount of carbo
hydrates that can be accessed, reducing seed set, boll size, the number of 
seeds per boll, and the length of fibers per seed [47]. Over eighty percent 
of the entire yield diversity in cotton could be attributed to the quantity 
of seeds sown per acre. Crop outputs are primarily impacted by 
morphological processes of growth, which are affected by elevated 
temperatures [48]. Several crops grown for food, including cereals, are 
being demonstrated to be impacted by temperature-induced yield re
duces, including tomato [14], maize [49], Arabidopsis thaliana [50], 
tobacco [16], wheat (Triticum aestivum L.) (R. [51]), rice (Q. [52]). Heat 
stress largely impacts productivity because of decreased warm capacity, 
which is produced by decreased photosynthesis due to changed mem
brane stability, which increases sustained respiratory costs and de
creases radiation usage efficiency. (RUE, biomass production per unit of 
light intercepted by the canopy [53]. 

4. Influence of heat stress on physio-biochemical response of 
cotton 

4.1. Influence of heat stress on stomata conductance 

Because of HS, which additionally affects a number of vital metabolic 
processes, plants live shorter lifetimes and produce less. In order to 
decrease evaporation, stomatal openings also decrease photosynthesis. 
Increased stomatal permeability facilitates evaporative cooling of 
plants, which lowers temperature stress. In order to decrease evapora
tion, stomatal openings also decrease photosynthesis. Additional sto
matal permeability facilitates evaporative cooling of plants, which 
lowers temperature stress [54]. Numerous species of plants experience 
mild heat stress, which inhibits stomatal permeability and net photo
synthesis due to drops in the activated state of rubisco [55]. Since sto
mata control evaporation and the amount of cooling that can be 
achieved by water evaporation, they may be investigated in the evolu
tion of heat tolerance in agricultural plants. Since CO2 and water vapors 
must pass through the stomata, transpiration may be raised and 

photosynthetic rates may be better if stomata open broader in 
higher-yielding lines. In addition, (X. [3])found that all species under 
study displayed partial cellular membranes reduction in reaction to a 
greater transpiration rate to reduce water loss. Photosynthetic capacity 
and chlorophyll were employed in numerous research investigations to 
assess the genotypes of wheat and cotton in order to identify cultivars 
that are heat-tolerant [56]. 

4.2. Chlorophyll content 

The chlorophyll content is among the most extensively used and 
effective simulations in growing crops, a non-destructive approach for 
quantifying heat plant stress. Kitajima and Butler invented the Chloro
phyll content approach developed by ( [57]). Sunlight re-emitted by 
photosynthetic pigments when transitioning between stimulated to 
non-stimulated states is employed to measure photosynthesis efficiency 
among higher plants. A thorough analysis of the Chlorophyll concen
tration method is provided by [58]. The procedure of photosynthesis is a 
procedure in cells of plants that are particularly vulnerable to temper
ature stress [59]. The photosynthesis complicated is the first complex in 
the electron transport chain used by photosynthesis, and it acts as the 
catalyst for the oxidative degradation of water and the production of 
molecular oxygen [60]. The effect of heat stress alters the 
temperature-oxidation characteristics of PSII acceptors, lowering the 
transport of electrons effectiveness in photosynthesis systems [61]. 

4.3. Effects on reactive oxygen species 

As a defensive strategy, high-temperature stress causes a range of 
metabolic changes in plants, including the development of antioxidant 
and heat shock proteins (Fig. 3). Singlet oxygen, superoxide radicals, 
peroxides, hydroxyl radicals, and alpha oxygen are all chemically active 
and unstable molecules known as ROS. ROS, a natural consequence of 
regular oxygen metabolism, is involved in intercellular communication 
in addition to homeostasis. In environmentally disturbed situations such 
as heat stress, ROS are created in excess in chloroplasts and mitochon
dria, destroying cell components; this is called osmotic damage [62]. 
Excess ROS interferes with normal cell processes owing to oxidative 
damage, which can lead to cell death if stress circumstances persist. 
Plants manufacture various antioxidants as a defensive mechanism to 
defend cells from damage that is caused by excess ROS production. [63]. 
Yet, understanding the molecular pathways for selecting crops that are 
resistant to heat and drought stress is critical (A. [64]). Consequently, 
the characterization of enzymatic and non-enzymatic and enzymatic 
systems may be related to stress and might be used to identify plant 
stress tolerance. Knowing about the connection between antioxidant 
activities and yield qualities, on the other hand, might be helpful to in 
developing a practical screening approach for selecting large volumes of 
plant materials in the least period of time [65]. As a result, combining 
traditional breeding with antioxidants as screening criteria opens up 
new avenues for enhancing stress tolerance in cotton. 

4.4. Antioxidants 

A balance between the production and disintegration of ROS by 
oxidants is required for appropriate cell functioning and development 
(Fig. 3). Antioxidants prevent other molecules from oxidizing and 
neutralizing free radicals, creating less reactive molecules (W. [66]). 
Plant defense mechanisms include several enzymatic components such 
as superoxide dismutase (SOD), ascorbate peroxidase (APX), ascorbate 
(ASC), and glutathione (GSH). Antibodies in cell membranes are heat 
sensitive and easily denatured by oxidative stress [67]. As a result, the 
identification of nonenzymatic and enzymatic systems may be associ
ated with stress conditions and utilized as an indication of stress toler
ance. Nonenzymatic (proline) and enzymatic antioxidants are produced 
to reduce cellular damage caused by reactive oxygen species (ROS), such 
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as superoxide, per hydroxy radicals, hydrogen peroxide, and hydroxyl 
radicals [68]. 

4.5. Heat shock proteins (HSPs) 

Protein induced by heat shock HSPs is a non-identical collection of 
non-linear and non-proteins that function as chaperones in nature and 
are anticipated mainly to aid in organism survival when exposed to 
stress. [69]. HSPs function as chaperones, preventing cell destabilization 
and promoting refolding of protein molecules and other stress response 
systems [70]. The production of HSPs increases as the temperature 
gradually rises. Cotton has been demonstrated to produce and accu
mulate HSPs at regulated temperatures ranging from 38 to 41 ◦C [67]. 
HSPs are an evolutionarily conserved category of proteins found in both 
prokaryotes and eukaryotes. These proteins are divided by molecular 
weight into five primary families: HSP100, HSP90, HSP70, HSP60/40, 
and HSP20 [71]. The members of these groups contribute to the main
tenance of tissue homeostasis and perform distinct non-redundant 
functions in various developmental stages. 

5. Molecular mechanisms and breeding approaches against heat 
stress 

5.1. Screening of heat tolerance cultivars 

Widely planted cultivars frequently confront exceptionally high 
temperatures of up to 50 ◦C between months (May and June), which 
would be over 20 ◦C above the ideal temperature necessary for proper 
development, severely reducing crop production. A major problem is 
cultivating high-temperature economic cotton cultivars [22]. When 
faced with heat stress, seedlings’ dynamic responses make identifying 
and confirming characteristics that confer resistance to high tempera
tures difficult [25]. Researchers are indeed investigating how plants 
may be handled in high-temperature environments. Pharmacological, 
metabolic, and genomic adaptations to highly stressful conditions have 
been explored to screen recently developed cotton cultivars [72]. Dis
covery and development of prospective genotypes with higher resis
tance to heat stress might result in improved yield and quality in 
heat-prone locations. Various approaches for selecting heat tolerance 
in actual field ecological systems are commonly used. Field research is 
more beneficial for studying behavior than controlled circumstances, 
yet, it has limits in regulating the atmosphere under field conditions 
[73]. 

5.2. Conventional breeding method 

Conventional heat-resistant crop breeding has relied chiefly on se
lection, with the most common technique for choosing crops with stress 
tolerance being to produce genetic resources in a hot targeted testing 
environment and identify individuals/lines with a greater yield [74]. 
Because of temperature stress, cotton line improvement using tradi
tional breeding procedures lowers yield loss. At key phases of agricul
tural plants, genetic lines with high enough temperatures are always 
selected in hot locations [75]. According to scientists, the best temper
ature for nitrogen fixation throughout respiration is 23 ◦C, and heat just 
above that might influence the photometric mechanisms of cotton 
plants, reducing seed cotton output and fiber qualities [22]. [76] show 
that high temperatures slow seedlings and flower bud formation. After 
exposing their pollens to 35 ◦C for 15 min, several prospective 
high-temperature cotton genotypes were discovered to have healthy 
pollen grains. During population segregation, the same test was used to 
identify heat-tolerant families. 

Moreover, high-temperature cultivars were found based on each 
cultivar’s absolute cell injury percentage (RCI%), heat sensitivity index 
(HSI) value, and boll retaining percentage. These are easy, dependable, 
and economical heat tolerance screening procedures. In compared to 

other abiotic stressors, heat resistance requires more significant 
consideration. In the literature, there is little knowledge of stress toler
ance in cotton [25]. 

5.3. Molecular breeding techniques against heat stress 

Compared to molecular markers, specifically marker-assisted 
screening, which is very efficient and accurate, traditional breeding is 
laborious, time-consuming, and environment-dependent. Biotechnology 
has made important contributions to comprehending and increasing 
agricultural plants’ high heat tolerance [77]. Many techniques were 
employed to understand the neuron’s nerve cells of stress tolerance, 
including genetic techniques, correlations, co-segregation, and genetic 
variability [78]. In A. thaliana, for instance, four quantitative trait loci 
(QTLs) regulating heat tolerance were discovered [79]. The bulked 
segregate analysis was used to identify RAPD markers linked with 
heat-resistant properties in cotton under heat stress. Special HSPs have 
been identified in diverse crop species in response to high temperatures 
[80]. Similarly, 11 QTLs relevant for pollen tube expansion and pollen 
germination under heat-stress conditions were found in maize using the 
DNA markers RFLP (restriction fragment length polymorphism) [81]. 
Many strategies are already accessible to plant scientists to generate 
novel germplasm that can deal with harsh situations and provide food 
and nutrition security, since so many modifications have been previ
ously made to the character of agricultural plants, leading to diminished 
food security. 

6. Conclusion and future perspective 

Heat stress has become a serious threat widespread for agronomic 
crops. The intensity of abiotic stresses varies significantly between cli
matic regions and is influenced by the likelihood and duration of high 
temperatures as well as the time of circadian crops under high temper
atures. Globally temperature arising due to alarming increasing of car
bon dioxide and other greenhouse gasses, such as NO2 and CO2, from 
industry and another various sources. Since seedling, root growth, 
photosynthesis responsiveness, boll and fiber production are all regu
lated by ambient temperature changes, maximum and minimum tem
perature extremes are significant. The optimum growth temperature for 
tillering is between 30 and 35 ◦C, while the root process gradually 
retarded at 40 ◦C. The fluctuation in temperature adverslely impact on 
vegetative, reproductive phases and metabolic activity. It was deter
mined that 30 ◦C was optimal for boll formation and preservation. The 
roots, fiber, and seed development, pollen viability, anther indehiscence 
are subjected to halted at above 40 ◦C. Significant crop commodities 
require a thorough understanding of plant reactions to higher temper
atures and the mechanisms involved in identifying or creating heat 
tolerant cultivars. The way that plants react to extreme heat varies 
depending on the species, the period of growth, and the species itself. 
The impacts of extreme heat on various agricultural seasons and their 
crop, production, and cotton fiber quality are thus illustrated in this 
review paper. In order to combat the challenges of heat stress in cotton, 
heat stress tolerance cultivars should be developed by exploiting the 
recent advanced technology and breeding techniques (Fig. 4, Table 1, 
Table 2, Table 3). 
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