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Abstract

Genome-wide association studies (GWAS) are popular for identifying genetic variants which are associated with disease risk.
Many approaches have been proposed to test multiple single nucleotide polymorphisms (SNPs) in a region simultaneously
which considering disadvantages of methods in single locus association analysis. Kernel machine based SNP set analysis is
more powerful than single locus analysis, which borrows information from SNPs correlated with causal or tag SNPs. Four
types of kernel machine functions and principal component based approach (PCA) were also compared. However, given the
loss of power caused by low minor allele frequencies (MAF), we conducted an extension work on PCA and used a new
method called weighted PCA (wPCA). Comparative analysis was performed for weighted principal component analysis
(wPCA), logistic kernel machine based test (LKM) and principal component analysis (PCA) based on SNP set in the case of
different minor allele frequencies (MAF) and linkage disequilibrium (LD) structures. We also applied the three methods to
analyze two SNP sets extracted from a real GWAS dataset of non-small cell lung cancer in Han Chinese population.
Simulation results show that when the MAF of the causal SNP is low, weighted principal component and weighted IBS are
more powerful than PCA and other kernel machine functions at different LD structures and different numbers of causal
SNPs. Application of the three methods to a real GWAS dataset indicates that wPCA and wIBS have better performance than
the linear kernel, IBS kernel and PCA.
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Introduction

At present, genome-wide association study (GWAS) has been a

popular approach for studying the genetic susceptibility of

complex diseases. Nowadays, chips used in GWAS can simulta-

neously scan hundreds of thousands or even more SNPs in

comparatively wide chromosomal regions by comparing the

frequencies of genetic variants in cases and controls and estimating

whether the locus is associated with the disease [1,2]. Association

tests can be generally classified into two aspects: single locus

association tests and multiple loci association tests [3]. It is

common to run single locus association tests in the whole GWAS

for identifying causal single nucleotide polymorphisms (SNPs) with

strong effects on disease. However, such a SNP-wise analysis may

result in computational burden and the well-known issue of

multiple testing [4]. A multiple testing adjustment procedure is

usually required to ensure the overall type I error rates remain at

an acceptable level, such as Bonferroni correction [5,6] and false

discovery rates (FDR) [7–9]. As an example, when examining the

effects of 500,000 SNPs in a GWAS, each test has to be conducted

at the a= 1027 level, and it is very stringent [10].

It is reported that complex diseases are caused by causal SNPs

with weak effect (OR#1.5) [11]. Recent studies suggest that the

test power of existing methods is low after correction for multiple

testing. For example, assuming that OR = 1.5, a GWAS including

600,000 loci has to recruit 1890 cases and 1890 controls to achieve

a test power of 80% when MAF is 0.4. However, when MAF is

close to 0.1, 4410 individuals are required in order to reach a test

power of 80% [12,13].

Test power can be improved if multiple SNPs are tested

together which are associated in biology. Wu et al. applied logistic

kernel machine to case-control GWAS to test for the SNP-set

effect [10]. The result of Wu was that the kernel machine based

SNP set analysis has greater power than single SNP analysis. But

they didn’t compare kinds of logistic kernel machine functions

specifically. Gauderman et al. proposed a principal component

based approach (PCA) which computed principal components

(PCs) from SNP set and PCs were included in the regression model

to test for the association [14]. Zhao et al. [15] compared four
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types of kernel machine functions with principal component based

approach (PCA). Their study demonstrated that these methods are

not powerful when the MAF is low (,0.2). The present work is an

extension of Zhao et al. in which we aim to identify whether

weighted SNP set analysis (including PCA and LKM) may

increase the statistical power in the case of low minor allele

frequencies (MAF) and different linkage disequilibrium (LD)

structures.

In this article, the structure of comparing performances of

wPCA, LKM and PCA by using simulated datasets is as follows.

Firstly, the procedures of LKM, PCA will be briefly described and

we introduce weighted PCA in detail. Secondly, results of several

simulated simulation studies are provided to compare type I error

rates and test powers of these methods. We then apply these

methods to two SNP sets extracted from a real Lung Cancer

GWAS data. At last, the article will end with a discussion section.

Methods

Ethics statement
This collaborative study was approved by the institutional

review boards of China Medical University, Tongji Medical

College, Fudan University, Nanjing Medical University and

Guangzhou Medical College with written informed consent from

all participants.

Logistic Kernel Machine Based Test (LKM)
We assume that we have a SNP set including p SNPs from n

individuals. Let zi~ zi1,zi2, . . . ,zip

� �’
denote the genotypes of the

ith individual. The disease outcome is denoted by D (1 = affected,

0 = unaffected).

For the ith individual, we have the semiparametric model given

by

logitP yi~1ð Þ~a0za1xi1z � � �zamximzh zi1,zi2, � � � ,zip

� �

Where a0 is an intercept term, a1,a2, . . . ,am are regression

coefficients corresponding to the environmental and demographic

covariates. The SNPs, zi1,zi2, � � � ,zip, influence the disease

outcome through the general function h :ð Þ, which is defined by

h zið Þ~
Pn

i’~1 ciK zi,zi’ð Þ for some c1,c2, . . . ,cn. K :,:ð Þ is a kernel

function that measures the similarity of zi and zi’ [15]. K :,:ð Þ could

be the linear, identical-by-state(IBS), weighted IBS [10]. The

weighted IBS kernel is an extension of the IBS kernel that up-

weights for similarity in rare alleles. In this article, we apply the

weights based on b distribution proposed by Wu and Lee et al.

[16]. The weight is taken as
ffiffiffiffi
w
p

~Beta MAF ; a1,a2ð Þ for a certain

SNP. a1 = 1, a2 = 25, Beta() is the density function of b distribution.

Liu et al. provided the connection between LKM and

generalized linear mixed model (GLMM) [17]. They showed that

h :ð Þ could be an arbitrary function with mean zero and variance

tK , thus a score test with t~0 could be applied to test the null

hypothesis of no association [15].

Principal Component Based Analysis (PCA)
We use Vp|p to denote the variance-covariance matrix of the

SNP set, and Ep|p~ e1,e2, . . . ,ep

� �
denotes the p p-dimension

eigenvectors of Vp|p. Let Lp~ l1,l2, . . . ,lp

� �T
denote the p

corresponding eigenvalues with l1wl2w . . . wlp [15]. The

principal components are defined by

PCi1~eT
1 zi~e11zi1ze12zi2z � � �ze1pzip

PCi2~eT
2 zi~e21zi1ze22zi2z � � �ze2pzip

..

.

PCip~eT
p zi~ep1zi1zep2zi2z � � �zeppzip

ei is selected to maximize the variance of PCi, and the constraint is

eT
i ei~1. The covariance between PCi and PCj is 0 for arbitrary

i=j. li measures the variation which is explained by PCi and

equals to its variance. Instead of using the p SNPs, we only need to

select the first k PCs in which cumulative contributionPk
i~1 li=

Pp
i~1 li is greater than the threshold (eg. 80%).

Therefore, we will just use the first k PCs in the multiple logistic

model [15]

logitP Di~1ð Þ~b0z
Xm

j~1
bixijz

Xk

p~1
dpPCip

To test the significance of the SNP set, we can use a k-df

likelihood ratio test. In our study, PCA (80%) is used to denote the

PCA with the PCs explaining Z%(80%) of the total variation with

the definition of Z~100
Pk

i~1 li=
Pp

i~1 li.

Weighted Principal Component Based Analysis (wPCA)
We propose a weighted principal component analysis. Let vp|1

denote p-dimension weighted eigenvectors corresponding to p

SNPs in the SNP set. So we use Z|diag(v) instead of Z in the

extraction of principal components. diag(v) represents the

diagonal matrix in which the diagonal elements are vp|1 and

others are 0.

The choice of weights is various, such as reciprocal of MAF or

the important significance of SNPs in biology and so on. In this

article, we apply the weights based on b distribution proposed by

Wu and Lee et al. [16]. The weight is taken asffiffiffiffi
w
p

~Beta MAF ; a1,a2ð Þ for a certain SNP. MAF is the minor

allele frequency of this SNP, a1 = 1, a2 = 25, Beta() is the density

function of b distribution.

Data simulation
We use simulated datasets to compare the performances of

wPCA, LKM and PCA. Measurements include empirical type I

error rate and test power. We assume that all the causal SNPs can

improve the risk. The disease model is assumed

logitP Di~1ð Þ~a0z
XC

j~1
bjzij

By definition, C denotes the number of causal SNPs. We set C = 0,

1 or 2 in our simulations which represents null model, single causal

SNP model or two causal SNPs model. j represents the causal

SNP, and bj is the effect of the causal SNP.

The generation of simulated datasets. Simulated datasets

are generated via cutting the random deviates sampled from

multivariate normal distribution with specified correlation coeffi-

cient matrix [18]. And the simulated datasets are also checked to

evaluate whether the generated MAF, LD structures of the

simulated datasets are consistent with parameter values assigned

before.

Weighted SNP Set Analysis
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Simulations based on virtual datasets with single SNP

set. To compare the wPCA, LKM and PCA, we apply a

statistical simulation based on our simulated datasets (simulated

datasets based on different MAF and LD structures) under the null

hypothesis (H0) and alternative hypothesis (H1). We set two SNP

sets, respectively. One is formed by 20 SNPs and the other

includes 100 SNPs. Parameters of the virtual simulations are

described by Table 1. Scenarios are set in three different MAFs

(MAF = 0.2 for all SNPs; MAF = 0.04 for arbitrary one SNP and

MAF = 0.1 for others; MAF = 0.04 for arbitrary two SNPs and

MAF = 0.1 for others) and three LD structures (R2 = 0.1, 0.5 or 0.8

for any two SNPs). 1,000 cases and 1,000 controls are generated.

Scenarios A1–A3 are simulated to evaluate the performances of

the three methods on controlling type I error under the null

disease model(C = 0) where the outcome is independent of the loci.

We calculate the empirical type I error rate as the proportion of

rejecting the null hypothesis in the 2,000 simulated datasets.

Scenarios A4–A6 are simulated to compare the powers of wPCA,

LKM and PCA when there is only one causal SNP in the SNP set.

We set the odds ratio (OR) as 1.2 at scenarios A4–A6. In all the

three scenarios, any of the SNPs in the SNP set has the

opportunity to be the causal SNP. We also set two causal SNPs

in scenarios A7–A9 to compare the power of the three methods.

The odds ratios of two causal SNPs are both 1.2. For scenarios

A4–A9, 1,000 datasets are simulated. We calculate the test power

as the proportion of p-values less than 0.05. All of SNPs in the SNP

set are set as the genotyped SNPs.

Simulations based on the CLPTM1L gene. We simulate

datasets on the basis of the CLPTM1L gene. CLPTM1L, encoding

cleft lip and palate transmembrane protein 1-like protein, is a

27.35 kb-long-gene located at 5p13.33. In this gene, rs31489 and

rs401681 were reported to be associated with non-small cell lung

cancer (NSCLC) [19,20]. The phased haplotypes of CHB (Han

Chinese in Beijing, China) samples are downloaded from the

HapMap web site (Phase 2, release 24). There are 28 SNPs locates

within the range including 620 kb of the CLPTM1L gene.

We conduct 8 scenarios of simulations based on the CLPTM1L

gene (scenarios B1–B8). In scenario B1, 2,000 datasets are

simulated with no association between the disease outcome and

SNPs. In scenario B2, each of the 28 SNPs in the SNP set is set to

be the causal SNP in turn with OR = 1.2, and 1000 datasets are

simulated. To make the simulations more realistic, only 8 of the 28

SNPs, which are directly genotyped by the Illumina 610k Quad

chip, are used by the three methods.

We also examine the ability of these methods from multiple

causal loci in the case of 2 causal SNPs with OR = 1.2 in the SNP

set (scenarios B3 to B8). In scenario B3, both of the two causal

SNPs are genotyped. Only one of the two causal SNPs is

genotyped in scenarios B4, B7 and B8. In scenario B5–B6, no

causal SNPs are genotyped. Besides, the MAFs of the two causal

SNPs are low in scenario B6. Just one MAF of the two causal SNPs

is low in B7–B8. Details of these scenarios are presented in

Table 2.

Application of wPCA, LKM and PCA to a real GWAS
dataset

We apply the three methods to a real GWAS dataset studying

the genetic susceptibility of non-small cell lung cancer (NSCLC).

The details of the population were described previously [20]. This

dataset includes 1,473 NSCLC cases and 1,962 controls. DNA was

extracted from the whole blood and genotyped by the Affymetrix

6.0 Quad chip. A total of 570,373 SNPs pass the general quality

control (QC) [20]. We extracted two regions from the dataset. One

is a region of 67 kb in 5p13.33, which includes 8 SNPs within a

range of 20 kb upstream and downstream of the CLPTM1L gene,

and the MAFs of 4 SNPs are lower than 20%. The gene was

reported to be associated with smoking behavior and NSCLC [19–

21]. The second region is about 208.4 kb length in 6p21.32–21.33

including 15 SNPs with genes of TNXB, FKBPL and PPT2, and

the MAFs of 12 SNPs are lower than 20%. PPT2 was associated

with pulmonary function [22] and gene expression of TNXB was

reported to be associated with lung squamous cell cancer [23].

FKBPL has been proposed as a novel prognostic and predictive

Table 1. Parameter settings of virtual datasets.

Scenario MAF LD OR

A1 0.2 0.1/0.5/0.8 1.0

A2 0.04;0.1 0.1/0.5/0.8 1.0

A3 0.04;0.04;0.1 0.1/0.5/0.8 1.0

A4 0.1 0.1/0.5/0.8 1.2

A5 0.2 0.1/0.5/0.8 1.2

A6 0.04;0.1 0.1/0.5/0.8 1.2

A7 0.1 0.1/0.5/0.8 1.2;1.2

A8 0.2 0.1/0.5/0.8 1.2;1.2

A9 0.04 ;0.04;0.1 0.1/0.5/0.8 1.2;1.2

doi:10.1371/journal.pone.0075897.t001

Table 2. Parameter settings of the CLPTM1L gene.

Scenario Number of Locations of the causal Minor allele Odds ratio

causal SNPs SNPs frequency(MAF)

B1 0 - - 1.0

B2 1 1 of 28 SNPs in turn - 1.2

B3 2 17 and 25 0.2 and 0.4 1.2

B4 2 17 and 6 0.2 and 0.067 1.2

B5 2 11 and 6 0.267 and 0.067 1.2

B6 2 8 and 9 0.144 and 0.189 1.2

B7 2 17and 8 0.2 and 0.144 1.2

B8 2 25 and 9 0.4 and 0.189 1.2

doi:10.1371/journal.pone.0075897.t002

Weighted SNP Set Analysis
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biomarker [24]. The two regions are then analyzed by wPCA,

LKM and PCA, respectively.

Datasets are generated using R packages (version 2.13.0) and

PLINK. Analyses of the simulated datasets are performed using R

packages. The SKAT package is used to conduct LKM analysis.

Results

Simulations based on virtual datasets with single SNP set
Empirical type I error rate. The empirical type I error

rates of LKM, PCA and wPCA are presented by Figure 1. All of

the three methods control the type I error at the significance level

of 0.05. For wPCA and PCA, the type I error rates are

independent of the number of PCs and different weights included

in the model.

Empirical test power based on virtual datasets with

single causal SNP. Results from the simulation on scenarios

A4–A6 are presented by Figure 2. On the basis of Figure 2, we

can examine how the test power of each method varies with minor

allele frequency (MAF) and LD structures. When the causal SNP

has high MAF, the result of wPCA is similar with PCA. It is worth

noticing that wPCA and LKM with wIBS are always much more

powerful than the other methods when the MAF of the causal SNP

is low. For example, with R2 = 0.8 of arbitrary two SNPs and

MAF = 0.04 of causal SNP in A6, the power of LKM with linear

kernel is 11.4% while the power of wIBS is 12.3% and wPCA is

22.2%. And also as an example, the power of IBS kernel is 10.6%

(the greatest power of PCA and LKM except wIBS kernel) while

the power of wIBS is 13.0% and wPCA is 18.6% with R2 = 0.1 of

any two SNPs and MAF = 0.04 of causal SNP in A6.

Empirical test power based on virtual datasets with two

causal SNPs. We present the results from scenarios A7 to A9 by

Figure 3. Once again, the power is affected by the LD between

the causal and genotyped SNPs and minor allele frequency (MAF).

It is also interesting to find that LKM with wIBS and wPCA are

more superior than the other methods in scenario A9 as the MAFs

of both causal SNPs are low. For example, when the R2 = 0.1 for

any two SNPs, the powers of the wIBS (9.1%) and the wPCA

(11.6%) are much greater than other methods.

If both the causal SNPs are in strong LD with the other SNPs

(0.8 for the R2 of arbitrary two SNPs) and relatively high MAF

(MAF = 0.1 or 0.2), then most of these methods have test power

greater than 90%. PCA and LKM with linear kernel are more

powerful than the others. The results of type I error rate and test

power of 100 SNPs in a SNP set are similar with that of 20 SNPs

in a SNP set, the detail results are listed in Figure S1 (in File
S1), Figure S2 (in File S1) and Figure S3 (in File S1).

Figure 1. Empirical type I error rates for LKM, PCA and wPCA in
scenarios A1–A3. The plot shows the empirical type I error rates (y-
axis) based on virtual datasets of each method over the different LD and
MAF structures (x-axis) with 20 SNPs. The first line of x-axis represents
LD, and the bottom line is MAF.
doi:10.1371/journal.pone.0075897.g001

Figure 2. Test of Power for LKM, PCA and wPCA in Scenarios
A4–A6. The plot shows the powers (y-axis) based on virtual datasets
with single causal SNP of each method over the different LD and MAF
structures (x-axis) with 20 SNPs. The first line of x-axis represents LD,
and the bottom line is MAF.
doi:10.1371/journal.pone.0075897.g002

Figure 3. Test of Power for LKM, PCA and wPCA in Scenarios
A7–A9. The plot shows the powers (y-axis) based on virtual datasets
with two causal SNPs of each method over the different LD and MAF
structures (x-axis) with 20 SNPs. The first line of x-axis represents LD,
and the bottom line is MAF.
doi:10.1371/journal.pone.0075897.g003

Table 3. Empirical type I error rates for LKM, PCA and wPCA
in Scenarios B1.

LKM PCA wPCA

Linear IBS wIBS

a 0.0480 0.0550 0.0545 0.0485 0.0555

doi:10.1371/journal.pone.0075897.t003

Weighted SNP Set Analysis
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Simulations based on the CLPTM1L gene
Empirical type I error rate. The empirical type I error

rates of LKM, PCA and wPCA are presented by Table 3. All of

the three methods control the type I error at the significant level of

0.05 just as the empirical type I error rates based on virtual

datasets.

Empirical test power with single causal SNP. Results

from the simulation on scenario B2 are presented by Figure 4. It

is important that when the MAF of the causal SNP is low (the 6th,

7th, 12th or 28th SNP in Figure 4), wPCA and wIBS have

greater power than the others in general. For the 12th SNP, the

power of wIBS is 24.6% and wPCA is 26.3% with the power of

other methods ranging from 7.5% to 14.3%. And for the 6th SNP,

the powers of wIBS(20.8%) and wPCA(21.7%) are also more

powerful than other methods.

Empirical test power with two causal SNP. We also

present the results from scenarios B3 to B8 by Table 4. As above,

the power is affected by the MAF and LD structures. In scenario

B6, power of most of the methods is less than 50%, except the

LKM with wIBS and wPCA, as the MAFs of both causal SNPs are

lower than 0.1. And the test power of the LKM with wIBS and

wPCA from scenarios B7 and B8 is as or just slightly lower than

that of other methods when only one of the two causal SNPs has

low MAF.

If both of the causal SNPs are in strong LD with the genotyped

SNPs and high MAFs (scenarios B3–B5) where the advantage of

wIBS and wPCA couldn’t be reflected and results in weak powers,

so most of these methods, except LKM with wIBS and wPCA,

have test power greater than 90%.

Application of LKM, PCA and wPCA to a real GWAS
dataset

The results of the analysis can be found in Table 5. For the first

SNP set, the least p-value in the SNP set is 2.19E-4(1.75E-3 after

the Bonferroni correction for the effective number of tests). The

least p-value of the LKM is wIBS kernel (1.30E-3). The p-value of

PCA is 1.25E-2. The p-value of wPCA is 7.01E-4. And for the

second SNP set, the least p-value in the SNP set is 5.01E-4(7.51E-3

after the Bonferroni correction for the effective number of tests).

The least p-value of the LKM is wIBS kernel (1.65E-3). The p-

value of PCA is 7.18E-2 and the p-value of wPCA is 7.50E-3.

Discussion

In our study, we compare the statistical properties of weighted

principal component analysis, weighted and un-weighted logistic

kernel machine based test, principal component analysis from

three aspects: dummy data structure, real data structure generated

based on the haplotypes downloaded from the International

HapMap Project and application of LKM and PCA, wPCA to a

real GWAS data on NSCLC. The results suggest that four

methods can control the type I error and have the ability to test the

association between the outcome and the SNP set. When the MAF

of the causal SNP is low, weighted principal component and

weighted IBS are more powerful than PCA and other kernel

machine functions at different LD structures and different

numbers of causal SNPs.

Studies have shown that analysis based on SNP set can make

full use of messages of multiple loci which have high LD with

causal SNPs when there is LD between causal SNPs and

genotyped SNPs, leading to an improved test power. All of the

three methods can divide genome-wide SNPs into SNP set which

is biologically meaningful in different ways. On the basis of prior

biological knowledge, SNP sets can be made which will lead to

additional gains in power [10].

At present, linear kernel, IBS kernel and PCA are popular

methods in genome-wide association studies. But the applications

of the three methods are limited when the MAF of the causal SNP

is low. Based on wPCA and wIBS, our studies suggest that SNP set

Figure 4. Test of Power for LKM, PCA and wPCA in Scenarios
B2. The top plot shows the power (y-axis) of each method over the
locations (x-axis) of the causal SNPs. The bar-plot shows the MAFs of all
SNPs. The bottom plot shows the LD structure of the 28 SNPs
downloaded from the HapMap project, in which the red scale indicates
the value of r2 (1 = red, 0 = white).
doi:10.1371/journal.pone.0075897.g004

Table 4. Test of Power for LKM, PCA and wPCA in Scenarios
B3–B8.

Scenario LKM PCA wPCA

Linear IBS wIBS

B3 0.996 0.989 0.747 0.955 0.430

B4 0.991 0.992 0.792 0.958 0.495

B5 0.948 0.945 0.751 0.888 0.408

B6 0.229 0.222 0.615 0.376 0.635

B7 0.934 0.910 0.658 0.689 0.551

B8 0.750 0.745 0.656 0.584 0.555

doi:10.1371/journal.pone.0075897.t004

Weighted SNP Set Analysis
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based on weights can increase the test power when MAF is low.

The SNP with low MAF is given high weight by setting

appropriate weights and therefore the test power is improved.

Before selecting the Lee weights, we have attempted some other

weighting schemes, such as the reciprocal of MAF and the

important significance of SNPs in biology. However, the results

which are not shown in this article suggest that applying the Lee

weights performs better than the other weighting schemes. This is

the reason why we choose the Lee weights in the paper. The

simulation studies demonstrate that the test power of wPCA is

higher than linear kernel, IBS kernel and PCA when the MAF of

the causal SNP is low, while wIBS is similar with wPCA [25].

We also simulate the situations of PCA and wPCA with

extracting different principal components, and the results are

similar with Zhao [15]. With extracting the principal component,

we first extract the large variation loci. When the causal SNP has

low MAF and weak LD with surrounding SNPs, information can

only be inflected by latter principal components. Failure to include

the PCs representing the causal SNPs or include too many

principal components in the model will both decrease the

statistical power. By using weighted PCA, the variance of the

SNP with low MAF will be enlarged when the SNP is given high

weight, which increases the probability of the SNP to be presented

by the top principal components. On the other hand, less principal

components are needed to explain sufficient proportions of total

variation, which decreases the consumption of degree of freedom

and increase the power.

There are several limitations in our study. First, more

complicated situations, such as gene-gene interaction, are not

included in our study. Second, more scenarios are needed to

compare wPCA, LKM and PCA. Last, due to the limited

availability of prior knowledge concerning genetic mechanism,

how to combine the methods mentioned in our paper still remains

a challenge for a special analysis. Further work to solve such

problems will certainly be warranted.

Supporting Information

File S1 Figure S1: Empirical type I error rates for LKM,
PCA and wPCA with 100 SNPs. The plot shows the empirical

type I error rates (y-axis) based on virtual datasets of each method

over the different LD and MAF structures (x-axis) with 100 SNPs.

The first line of x-axis represents LD, and the bottom line is MAF.

Figure S2: Test of Power for LKM, PCA and wPCA in
Scenarios A4–A6 with 100 SNPs. The plot shows the powers

(y-axis) based on virtual datasets with single causal SNP of each

method over the different LD and MAF structures (x-axis) with
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line is MAF. Figure S3: Test of Power for LKM, PCA and
wPCA in Scenarios A7–A9 with 100 SNPs. The plot shows

the powers (y-axis) based on virtual datasets with two causal SNPs

of each method over the different LD and MAF structures (x-axis)

with 100 SNPs. The first line of x-axis represents LD, and the

bottom line is MAF.
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